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Computer-aided diagnosis of Alzheimer3s disease (AD) is a rapidly developing field of neuroimaging with strong
potential to be used in practice. In this context, assessment of models3 robustness to noise and imaging protocol
differences together with post-processing and tuning strategies are key tasks to be addressed in order to move
towards successful clinical applications. In this study, we investigated the efficacy of Random Forest classifiers
trained using different structural MRI measures, with and without neuroanatomical constraints in the detection
and prediction of AD in terms of accuracy and between-cohort robustness.
From The ADNI database, 185 AD, and 225 healthy controls (HC) were randomly split into training and testing
datasets. 165 subjects with mild cognitive impairment (MCI) were distributed according to the month of
conversion to dementia (4-year follow-up). Structural 1.5-TMRI-scanswere processed using Freesurfer segmen-
tation and cortical reconstruction. Using the resulting output, AD/HC classifiers were trained. Training included
model tuning and performance assessment using out-of-bag estimation. Subsequently the classifiers were vali-
dated on the AD/HC test set and for the ability to predict MCI-to-AD conversion.Models3 between-cohort robust-
ness was additionally assessed using the AddNeuroMed dataset acquired with harmonized clinical and imaging
protocols.
In the ADNI set, the best AD/HC sensitivity/specificity (88.6%/92.0%— test set) was achieved by combining corti-
cal thickness and volumetric measures. The Random Forest model resulted in significantly higher accuracy com-
pared to the reference classifier (linear Support Vector Machine). The models trained using parcelled and high-
dimensional (HD) input demonstrated equivalent performance, but the former was more effective in terms of
computation/memory and time costs. The sensitivity/specificity for detecting MCI-to-AD conversion (but not
AD/HC classification performance) was further improved from79.5%/75%–83.3%/81.3% by a combination ofmor-
phometricmeasurementswith ApoE-genotype and demographics (age, sex, education).When applied to the in-
dependent AddNeuroMed cohort, the best ADNI models produced equivalent performance without substantial
accuracy drop, suggesting good robustness sufficient for future clinical implementation.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction
The application of pattern recognition approaches to neuroimag-
ing offers the potential for diagnostically relevant analysis tech-
niques, in particular for magnetic resonance imaging (MRI), which
has already been demonstrated to provide relevant support in the
diagnosis of Alzheimer3s disease (AD) (O3Brien, 2007). A large num-
ber of studies addressing the use of pattern recognition methods in
image-based detection of AD have been published in recent years
(Gray et al., 2013; Liu et al., 2012; Cuingnet et al., 2011; Klöppel
et al., 2008).

The advantage of these methods over visual assessment by a
medical expert is that they are fully automated and therefore unbi-
ased towards humanmistakes and can be incorporated into comput-
erized medical decision-support systems, a growing field with
especially fast research progress in radiology (Stivaros et al., 2010;
Belle et al., 2013).

However, such methods do have limitations. Our previous work
demonstrated that pattern recognition methods are sensitive to
MR-protocol differences (Westman et al., 2011; Lebedev et al.,
2013) and that a harmonization step is therefore required. Another
relevant issue pertains to the comparison of high-dimensional imag-
ing data input versus measurements extracted by neuroanatomical
parcellation atlases, with the areas separated according to functional
and histological maps of the human cortex (for simplicity, we will
use the term “parcelled data”). Parcelled input has some obvious
advantages in terms of lower computation, memory cost and
processing time. However, it is possible that it could be biased by
these landmarks. Normalized high-dimensional measurements
without parcellation, in contrast, are unbiased, but at the same
time are more difficult to handle using multivariate and machine
learning approaches due to computation and memory costs. More-
over, situations where the number of measurements is much larger
than the number of observations (p ≫ n) are often associated with
the so-called “curse of dimensionality” (Bellman, 1961). This refers
to a number of events that happen when dealing with high-
dimensional input (due to increasing sparsity of the data), signifi-
cantly hampering modeling efficacy. Such cases often require a
preparatory step of dimensionality reduction.

Random Forest (RF) is an ensemble machine learning algorithm,
which is best defined as a “combination of tree predictors such that
each tree depends on the values of a random vector sampled inde-
pendently and with the same distribution for all trees in the forest”
(Breiman, 2001).

In many applications this algorithm produces one of the best
accuracies to date and has important advantages over other tech-
niques in terms of ability to handle highly non-linear biological
data, robustness to noise, tuning simplicity (compared to other
ensemble learning algorithms) and opportunity for efficient parallel
processing (De Bruyn et al., 2013; Caruana and Niculescu-Mizil,
2006; Menze et al., 2009). These factors also make RF an ideal candi-
date for handling high-dimensional problems, where the number of
features is often redundant. Although RF can itself be considered as
an effective feature selection algorithm, several approaches for fea-
ture set reduction within and outside the context of RF have been
proposed to further improve its performance (Tuv et al., 2009). In
the current study, we use recursive feature elimination (Kuhn,
2012a) to optimize the models.

Our previous work revealed that parcelled cortical thickness
together with subcortical volumetric measurements (used as an
input to a multivariate model) resulted in the best performance,
compared to other modalities (Westman et al., 2013). Here, we
aimed not only to assess the accuracies of the classifiers trained
with different morphometric modalities, but also to analyze the
impact of dimensionality, parcellation strategy on models3 accuracy,
computation/memory/time costs of model training and feature
selection. Finally, previous studies have successfully employed
pattern recognition techniques to classify MRI images from different
cohorts only within the combined sets (Westman et al., 2011;
Lebedev et al., 2014). The present study was planned as one of the
first to assess classifiers3 between-cohort robustness in two indepen-
dent large-scale datasets.

We hypothesized that with the use of more disease-specific
parcellation atlases (in this case, when the measurements are
extracted from the predefined regions, known to be affected by
Alzheimer3s disease), it would be possible to achieve AD-detection
accuracy equivalent to that of the models trained with high-
dimensional input without parcellation with shorter computational
time. In addition, we hypothesized that it is possible to achieve
good between-cohort generalization of the models if the MRI proto-
cols are harmonized.

2. Methods

2.1. Subjects

The study was based on two cohorts. The first set of clinical and
MRI data was obtained from the Alzheimer3s Disease Neuroimaging
Initiative (ADNI-1) database (http://adni.loni.ucla.edu). In short,
ADNI-1 includes more than 800 subjects with up to 5 years of annu-
al follow-up with comprehensive clinical, neuropsychological,
imaging and laboratory evaluations, performed at the 57 special-
ized ADNI sites in North America. For details, see Aisen et al.
(2010) and ADNI-Core (2011). The present cross-sectional study is
focused on baseline imaging data and longitudinal information
regarding conversion to dementia.

In total, 3D T1 baseline brain scans from 809 subjects passed
our image quality control criteria. From this group we selected
575 subjects – 185 AD, 225 healthy controls (HC) and 165 patients
with mild cognitive impairment (MCI) and long term follow up infor-
mation – who met the inclusion criteria (see below).

In order to test the impact of different cohorts, we additionally
included 321 subjects (AD 107, 114 MCI and 100 HCs) from the
AddNeuroMed study with harmonized clinical and imaging protocols
(http://www.innomed-addneuromed.com/). The standardized study har-
monization workflow (described in previous publications) particularly
included careful MR protocol alignment evaluated by phantom scan-
ning and careful quality control (Simmons et al., 2011).

2.2. Inclusion criteria and clinical assessment procedures

All ADpatientsmet theNINCDS/ADRDA criteria for probable AD, had
mild level of dementia, defined as the Mini-Mental State Examination
(MMSE) score between 20 and 26, and had the Clinical Dementia Rating
(CDR) score of 1.0.

Inclusion criteria for MCI were: 1) MMSE score between 24 and 30,
2) memory complaints and objective memory impairment measured
by the Logical Memory II subscale of theWechsler Memory Scale (edu-
cation adjusted), 3) CDR of 0.5, 4) absence of significant levels of impair-
ment in other cognitive domains, 5) preserved activities of daily living,
and 6) absence of dementia. MCI converters had to meet the criteria
for Alzheimer3s disease during at least two sequential evaluations
(e.g., at 24 and 36 month follow-ups). Those MCI subjects who did not
have the required follow-up information or had their diagnoses changed
back from AD to MCI (or to HC) were excluded (n = 232 out of 397). To
considerMCI subjects as beingnon-converterswe required that their clin-
ical status remained stable for at least 3 years of follow-up.

Controls (general inclusion/exclusion criteria): 1) MMSE scores
between 28 and 30, 2) CDR of 0, and 3) they did not meet the criteria
for clinical depression at baseline, MCI or dementia within 3 years of
follow-up. One HC subject (ID # 0223) was excluded from the sample
due to conversion to AD at follow-up. One AD subject (ID # 0805) was
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excluded during the outlier detection procedure, leaving 575 subjects.
Subjects were between 55 and 90 years of age.

Apart from this, the standardized clinical evaluation protocol includ-
ed multi-test assessment of cognitive functions and neuropsychiatric
symptoms, ApoE genotyping and some other procedures (for more de-
tails see http://www.adni-info.org/).
2.3. Subsampling

From the final ADNI cohort of 575 subjects, 150 AD patients and
150 HCs were randomly selected, forming the training dataset, with
the remaining AD 35 and 75 HC (coupled with 165 MCI patients) sub-
jects included in the testing dataset.

MCI subjects were split into 6 subgroups according to the month of
MCI-to-AD conversion during 4 years of follow-up (6th-, 12th-, 18th-,
24th-, 36+th-month converters and non-converters).
2.4. Study ethics

The studies were approved by the local Regional Committees for
Medical Research Ethics. All patients providedwritten consent to partic-
ipate in the study after the scheduled procedures had been explained in
detail to the patient and a caregiver. All subjectswerewilling and able to
undergo all study procedures including imaging and agreed to longitu-
dinal follow-up.
2.5. MRI

All subjects had 1.5 Tesla T1 3D MRI images acquired using the har-
monized ADNI-1 protocol (Jack et al., 2008). For details visit http://adni.
loni.usc.edu.
2.6. Image post-processing

Image processing was performed at one site: Centre for Neuroimag-
ing Sciences, IoP (KCL). Image quality controlwasperformedusing stan-
dardized procedures (Simmons et al., 2011; Simmons et al., 2009).

Next, the raw3DT1MRI data underwent processing for surface-based
cortex reconstruction and volumetric segmentation using the Freesurfer
image analysis software (http://surfer.nmr.mgh.harvard.edu/) version 5.1
installed on a CentOS4 x86_64 cluster. There are several rationales for
using Freesurfer in our study. Firstly, the surface-based registration ap-
proach incorporated into this software has been shown to have better re-
producibility compared to Laplacian- or Registration-based methods for
cortical thickness estimation (Clarkson et al., 2011). Secondly, this frame-
work provides a range of different kinds of surface-based and volumetric
measurements, as well as different parcellation atlases for extracting av-
eraged morphometric data. The steps of this processing are described in
detail elsewhere (Ségonne et al., 2007; Ségonne et al., 2004; Fischl and
Dale, 2000; Fischl et al., 1999; Dale et al., 1999; Sled et al., 1998).

The surface-based pipeline produced several morphometric mo-
dalities (cortical thickness, Jacobian maps, and sulcal depth). After the
Freesurfer steps, cortical models from each individual were registered
to a spherical atlas, providing matching across subjects, and finally
327,684 normalized measurements acquired for every subject were
concatenated into large matrices (one for each high-dimensional mor-
phometric modality).

41 volumetric measurements for all subjects were corrected for intra-
cranial volume (ICV) using linear modelling (removing linear effects of
ICV) and finally concatenated into an n-by-41 matrix that was used in
the subsequent analysis.

The image post-processing and analysis steps are illustrated in
Appendix: Fig. A1.
2.7. Statistical analysis

Statistical analysis was carried out using the R programming lan-
guage (R Core Team, 2012), version 2.15.1, on R-Cloud built on EBI 64-
bit Linux Cluster (Kapushesky et al., 2010). Demographic and clinical
features were compared using parametric and non-parametric tests as
appropriate. Principal component analysis (PCA) from the R ‘base’ pack-
agewas usedwith visual inspection of PCA score-plot for the outlier de-
tection (Esbensen et al., 2002). One subject was excluded during this
procedure (see Results). The ‘randomForest’ package (Liaw and Wiener,
2002) was used in further analysis.
2.8. Problem formulation

The Random Forest algorithm is formally defined as a collection of
tree-structured classifiers: f(x,θk),k=1,2,…,K; where θk is a randomvector
that meets i.i.d. (independent and identically distributed) assumption
(Cover and Thomas, 2006) and each tree casts a unit vote for the most
popular class at input x (Breiman, 2001). For classification problems, the
forest prediction is the unweighted plurality of class votes (majority
vote). The algorithm converges with a large enough number of trees.
For more detailed explanation see Breiman (2001).
2.9. Parameter selection and classification

The R package ‘caret’ (Kuhn, 2012a) was used to implement recur-
sive feature elimination (RFE) based on the Gini-criterion with 5-fold
cross-validation (CV) within the context of RF (Kuhn, 2012b). Each of
the steps described below was performed for all modalities: cortical
thickness, sulcal depth, Jacobianmaps, non-cortical volumes, combined
parcelledmeasurements of cortical thickness and non-cortical volumes.
First, the measurements with near-zero variance were removed from
the feature sets and the resulting output underwent stepwise RFE.
10,000 trees were used to “grow” the first forest (using full feature
set), and afterwards RFE was performed based on feature importance
vector (defined in Eq. 1) derived from the first forest, by removing the
lowest-ranked 5% of the features at each step (gradually reducing the
dimensionality as 100%, 95%,… etc., up to 50%), and by the subsequent
accuracy comparison with 5-fold CV. In order to reduce CPU, RAM and
time usage the forests were trained with 1000 trees (instead of 10,000
for the first forest) at each step of RFE. After selection of the optimal fea-
ture subset, mtry-parameter adjustment was also performed using 1000

trees (search range ∈ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N features

p
4 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nfeatures

p � 2:5�, step =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N features

p
4 ), and

finally the forests were retrained with optimal parameters using
10,000 trees. For the parcelled data (non-cortical volumes and
parcelled thickness), an exhaustive search for optimal feature subset
and mtry-parameter was performed, “growing” 1000 trees at each
step with 10-fold CV. See diagram in Appendix Fig. A2.

The following parameters from the final models were reported to
characterize performance: out-of-bag error (for the term definition
see Breiman, 2001), area under the ROC curve (AUC), sensitivity/speci-
ficity and overall accuracy on the testing datasets of AD, HC and MCI
subjects (see “Subsampling”). ROC-curves of the bestmodelswere com-
pared using DeLong3s test for two correlated ROCs, as implemented in
the ‘pROC’ R-package (Robin et al., 2011).

The robustness of eachmodel was also tested with respect to cohort
differences (using a different cohort of AD and HC subjects from the
AddNeuroMed study) (Simmons et al., 2011).

Finally, variables of importance were mapped from the best model
into the brain space in order to identify the regions, which were most
relevant for the classification.

At every split node τ one of the mtry variables, say xk, is used to
form the split and there is a resulting decrease in the Gini index.
The mean decrease of the Gini index, ▵i(τ) (Eq. 1) was used as a
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Table 1
Subject demographics: ADNI cohort.

AD HC MCIa AD/HC-comparison:
test (p-value)

N 185 225 165 −
Age 75.2 [±7.48] 75.95 [±5.02] 75.46 [±7.37] T = –1.17 (0.24)
M/F ratio 1.01 (93/92) 1.05 (115/110) 1.66 (103/62) χ2 = 0.01 (0.93)
Education 14.6 [±3.24] 16.0 [±2.85] 15.65 [±2.97] T = –4.65 (0.001)
MMSE 23.3 [±1.99] 29.1 [±0.98] 27.04 [±1.78] T = –35.5 (0.001)

a 149 of total 165MCI subjects developed Alzheimer3s disease at some point during the
4-year follow-up period (MCI-converters).
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metric, i.e.:

ΔiðτÞ ¼ iðτÞ−ðpLiðτLÞ þ pRiðτRÞÞ ð1Þ

where iðτÞ ¼ 1−∑c∈Cp2c is the Gini index at node τ, pL ¼
jsLj j
js j j and

pR ¼ jsRj j
js j j are the probabilities of sending a data point to the left and

right nodes, respectively.
This metric reflects the contribution of a variable xk to the node ho-

mogeneity of τ. Thus, a higher mean decrease (Eq. 1) of the Gini index
for a particular feature means that the variable is present more often
in nodes with higher purity among all trees in the forest (overall). The
sum of all decreases in the forest due to a given variable xk, normalized
by the number of trees, therefore gives an estimate of its Gini impor-
tance (Eq. 2), i.e.:

IGðxkÞ ¼
1

ntree
∑
ntree

t¼1
∑
τ

Δixk ðτ; t Þ: ð2Þ

Therefore, the Gini importance IGðxkÞ indicates how frequent the
particular feature xk was selected in a split node, and how large its over-
all discriminative value was for the classification task.

2.10. Morphometric modality combination

The classifiers trained with individual morphometric modality
were combined by a majority vote and subsequently compared
with the best model that demonstrated the highest accuracy (the
one trained using parcelled thickness and volumetric measure-
ments) on the test set.

We were also interested in assessing the effects of feature selection.
For this purpose, all the steps described above (in “Parameter selection
and classification”) were performedwithout RFE (only mtry-parameter
adjustment). The resulting classifiers were assessed using the identical
approach and combined together by a majority vote.

2.11. Use of different parcellation schemes

To investigate the effect of different atlases, we selected cortical
thickness as a measurement type that produced the most accurate
models and applied two parcellations implemented in the Freesurfer
package – Desikan–Killiany (DK) and Destrieux (D) atlases – to extract
averaged values from the predefined regions.

DK (Desikan et al., 2006) is a gyral-based neuroanatomical
parcellation atlas that subdivides each hemisphere of the human brain
cortex into 34 regions. One of the important features of this atlas,
which is especially relevant for the present study, is that it has been
developed using MRI scans not only from healthy controls (young,
middle- and old-age groups), but also frompatientswith AD, and there-
fore this parcellationmay be considered asmore disease-specific. In ad-
dition, the atlas includes the entorhinal cortex as a separate region. This
area is a crucial element of the episodic memory system (Lipton and
Eichenbaum, 2008) and known to be affected by Alzheimer3s disease
from its initial stages (Braak and Braak, 1985).

The D atlas (Fischl et al., 2004; Destrieux et al., 2010) utilizes proba-
bilistic labeling algorithm and among its advantages is that it is not tied
to any specific neuroanatomical template, incorporating not only the
probable location of a region of interest, but also the potential inter-
subject variance of the location of the region (Fischl et al., 2004). This
parcellation includes more regions than the DK atlas (74 areas for
each hemisphere versus 34 in the DK atlas).

Next, after the training steps, we compared models3 performance
and ROC-curves as described above.
2.12. Comparison with linear SVM

Apart from this, we compared our best models with “reference clas-
sifier”, linear support vectormachine (SVM) (Vapnik, 1995), tunedwith
recursive feature elimination. Of note, a non-linear SVMwas not used as
a reference, because it would be substantiallymore difficult and compu-
tationally expensive to tune and therefore would not be a fair compari-
son in terms of computation and memory costs.

2.13. Combining imaging biomarkers with ApoE genotype and demographics

The ɛ-4 allele of the gene encoding Apolipoprotein E is one of the
major genetic risk factors for Alzheimer3s disease (Alonso Vilatela et al.,
2012). In order to investigate whether it was possible to further improve
the bestmodel (trained using combined cortical thickness and volumetric
measurements) information on subjects3 ApoE genotype (together with
demographics) was added as an additional feature. The resulting model
was trained and assessed as described above.

3. Results

3.1. Demographics

Themain demographic characteristics are described in Table 1. Signif-
icant differences between AD and HC subjects were observed in educa-
tion, in addition to word recall, ADAS-Cog andMMSE scores as expected.

Corresponding description of the AddNeuroMed cohort is provided
in Appendix Table A3.

3.2. Outlier detection

PCA-based outlier detection revealed one subject, whose Freesurfer
output was corrupted and was therefore excluded from the subsequent
analysis.

3.3. Classification

Time andmemory costs of RFE andmtry-adjustment varied substan-
tially depending on the number of features. Thus, the total tuning time
varied between 10 min (volumetric data) and more than 89 h (Jacobian
maps). For all steps, from 6 to 10 CPU cores were used, and RAM usage
also varied significantly between 1 Gigabyte (GB) (volumetric data)
and 58 GB (Jacobian maps). For details see Appendix Table. A4.

Among all models, three had the best competing performances
(Table 2, Fig. 1). The model trained using high-dimensional thickness
measurements demonstrated AD-detection sensitivity/specificity of
88.6%/90.7%, its out-of-bag AUC (95% C.I.) was 0.93 (0.9–0.96); while
the model trained using volumetric measurements resulted in sensitivity/
specificity = 82.9%/86.7%, AUC = 0.91 (0.88–0.95); and using parcelled
measurements of cortical thickness and subcortical structures resulted
in sensitivity/specificity = 88.6%/92.0%, AUC = 0.94 (0.91–0.96).

Comparing these 3modelswith the correspondingoneswithout RFE
revealed significant (p b 0.001) advantages of RFE only for the model
trained with high-dimensional cortical thickness measurements. The
difference between the remaining two models was not significant.



Table 2
AD/HC performance of the final models: ADNI cohort.

Models OOB error
[Train]

Sensitivity/specificity
(OA) [Test]

AUC (95% C.I.)

Cortical thickness RFE 14.0% 88.6%/90.7% (89.62%) 0.93 (0.9–0.96)
Sulcal depth 21.3% 80.0%/74.7% (77.3%) 0.84 (0.8–0.89)
Jacobian 21.7% 77.1%/81.3% (79.2%) 0.84 (0.79–0.88)
Volumes 15.0% 82.9%/86.7% (84.7%) 0.91 (0.88–0.95)
Thickness +
volumes (ROI)

11.7% 88.6%/92.0% (90.3%) 0.94 (0.91–0.96)

Thickness no RFE 14.7% 88.6%/89.3% (89.0%) 0.92 (0.89–0.95)
Sulcal depth 14.0% 80.0%/73.3% (76.67%) 0.83 (0.79–0.88)
Jacobian 21.0% 80.0%/80.0% (80.0%) 0.84 (0.79–0.88)
Volumes 16.7% 80.0%/86.7% (83.3%) 0.91 (0.88–0.94)
Thickness +
volumes (ROI)

12% 85.7%/89.3% (87.5%) 0.93 (0.91–0.96)

AD/HC— Alzheimer3s disease/healthy controls; OA— overall accuracy; OOB— out-of-bag
estimate; AUC (95% C.I.) — area under the ROC curve with 95% confidence interval.

Fig. 1.ROC curves:morphometricmodalities (AD/HC). Thefigure illustrates ROC-curves of
the models trained with different morphometric inputs. Three inputs demonstrate com-
peting performances: high-dimensional (HD) cortical thickness, volumetric data and com-
bined parcellated measurements. AD/HC— Alzheimer3s disease/healthy controls.

Fig. 2. Effect of cortical parcellation using DK and D atlases on AD/HC performance. ROC-
curves differed significantly when compared to one from the model trained using non-
parcellated high-dimensional measurements (p-values: 0.002 and 0.009 — for Desikan-
Killiany (DK) and Destrieux (D), respectively) differences were non significant between
DK and D. AD/HC — Alzheimer3s disease/healthy controls.
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Comparison of the most accurate imaging-based RF model
(trained using parcelled measures of cortical thickness and volu-
metric data) with a corresponding SVM classifier, revealed advan-
tages of the former. Test set AUCRF + RFE (95% C.I.) = 0.98 (0.96–1) and
AUCSVM + RFE (95% C.I.) = 0.93 (0.87–0.98). Although there was a slight
overlap between 95% C.I.s, further DeLong3s test revealed significant
(p = 0.03) differences.

3.4. Combined models

Combining all models by a majority vote improved the overall accu-
racy (OA) to 91.0% (sensitivity/specificity=88.6%/93.3%— test set). The
ROC difference between the combined models with and without RFE
was significant (p = 0.017). It did not, however, differ from the ROC of
the best classifier trained using parcelled measurements of cortical
thickness and non-cortical volumes (see Appendix Fig. A5).

3.5. Effects of different parcellation schemes on classifier performance

Use of the D parcellation atlas resulted in lower accuracy: test set
sensitivity/specificity/OA = 74.3%/82.7%/78.5% (compared to 82.9%/
88.0%/85.4% for the DK atlas). ROC differences between parcellations
[AUCs: 0.89 (0.85–0.93) and 0.90 (0.86–0.94), respectively] were non-
significant. Both models demonstrated lower performance compared to
the one trained using non-parcelled measurements of cortical thickness
(sensitivity/specificity/OA = 88.6%/90.7%/89.6%, AUC = 0.93(0.9 −
0.96)). ROC differences (compared with “non-parcelled” models) were
significant in both cases (p-values = 0.002 and 0.009, respectively).
Test set accuracies were, however, equivalent for the DK and atlas-free
measures. Results from this section are illustrated in Fig. 2.

3.6. Prediction of MCI-to-AD conversion

The best ability to predict MCI-to-AD conversion based on imaging
data only was observed for the model in which all RF ensembles were
combined by a majority vote, and was achieved at 76.6% in overall
MCI-to-AD conversion detection sensitivity, 2 years before actual de-
mentia onset (averaged value for 6th-, 12th-, 18th- and 24th-month
converters) with a specificity of 75.0% (see Table 3).

3.7. Combination with ApoE genotype and demographics

Adding ApoE genotype and demographics (age, sex, education) as
additional predictors into our best AD/HC model, trained using com-
bined cortical thickness and non-cortical volumetric measurements,
did not improve AD/HC classification accuracy (sensitivity/specificity/
OA = 90.7%/82.9%/86.7%). Meanwhile, its accuracy for MCI-to-AD con-
versionwas relatively higher compared to othermodelswithmaximum
sensitivity/specificity/OA values of 83.3%/81.3%/82.3% (See Table 4).
However, this improvement was not significant with AUC for the
averaged group of the 2-year converters of 0.83 (0.7–0.965) in the
combined model versus AUC = 0.8(0.65 − 0.95) for cortical thickness
alone (p = 0.74).



Table 3
Ability of the AD/HC models to predict MCI-to-AD conversion: morphometric data, ADNI cohort.

Measurements MCI-to-AD converters detection accuracya

6 m (n = 14) 12 m (n = 44) 18 m (n = 30) 24 m (n = 35) 36 m+ (n = 26) NC (n = 16)

Cortical thickness 78.6% 79.5% 70.0% 62.9% 65.3% 75.0%
Sulcal depth 71.4% 77.3% 53.3% 51.4% 53.8% 62.5%
Jacobian 60.2% 70.5% 76.7% 71.4% 53.8% 56.3%
Volumes 78.6% 72.7% 70.0% 68.6% 53.8% 75.0%
Combined 78.6% 79.5% 76.7% 71.4% 61.5% 75.0%

6, 12, 18, 24, 36 m+— month of MCI-to-AD conversion; NC— non-converters (detected as HC by the classifiers); AD/HC — Alzheimer3s disease/healthy controls.
a Here the same models trained to classify images from AD and HC were used.
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3.8. Robustness in different cohorts

Testing the ADNI models on AddNeuroMed data revealed good
generalizability of the classifiers. The best stability (both for AD
detection and prediction) was found for the models trained with
high-dimensional measures of cortical thickness and parcelled
thickness with volumetric measures. Combined models trained
using both imaging and non-imaging data demonstrated absence
of accuracy drop (see Table 5).

3.9. Regions of relevance

As expected, the observed pattern of feature relevance was typical for
AD and similar in models trained using high-dimensional and parcelled
input (Figs. 3 and4). It included atrophy in temporal areas (withmore ex-
tensive changes in the entorhinal cortex, hippocampus, and amygdala),
lateral ventricular size differences and parietal cortical abnormalities.
4. Discussion

In the present study, we managed to produce robust and accurate
models with good generalization across different cohorts. Our classifier
ensembles demonstrated one of the best AD detection and prediction
accuracy to date, superior over the reference model (linear SVM). It is
also worth noting that performance of the best ADNI models on the
AddNeuroMed dataset was equivalent to the cross-validated accuracies
reported in Westman3s study (Westman et al., 2011).

Of note, a recent study found no effect of the ApoE genotype on AD/
HC discrimination accuracy (Aguilar et al., 2013). This is in linewith our
results, which however demonstrated that adding this feature may be
Table 4
MCI-c/MCI-nc performance of the combined model (morphometry + ApoE+ demographics).

OOB error AD: Sens/spec (test) MCI

6 m (n = 14) 12

Th + vol + ApoE+Age+Educ 11.3% 90.7%/82.9% (86.7%) 78.6% 75.

Th— cortical thickness; Vol— non-cortical volumes; Educ— education; MCI—mild cognitive im

Table 5
Classifiers’ performance in the same (ADNI) and separate (AddNeuroMed) cohorts.

Models AD: Sens/Spec (OA)

Same cohort (ADNI) Separate cohor

Thickness 88.6%/90.7% (89.62%) 87%/78% (82.5%
Sulcal Depth 80.0%/74.7% (77.3%) Failed
Jacobian 77.1%/81.3% (79.2%) 78.5%/72% (75.
Volumes 82.9%/86.7% (84.7%) 70.1%/89% (79.
Thickness + volumes (parc) 88.6%/92.0% (90.3%) 83.2%/89% (86.
Morphometry +ApoE +demographics 90.7%/82.9% (86.7%) 84.2%/88.3% (8

The classifiers were trained on the subset from the ADNI dataset and then validated on testing
Sens/Spec (OA) – Sensitivity/Specificity (Overall Accuracy);
* – for the AddNeuroMed cohort, definition of the MCI-to-AD converters subgroup (n=21) wa
NB: We did not compare accuracy to detect MCI non-converters due to only 1-year follow-up
beneficial for detecting earlier stages of the disease (MCI-to-AD
converters).

To the best of our knowledge, this study is also one of the first to in-
vestigate the impact of different parcellation schemes and dimensional-
ity of the imaging features on machine learning modeling accuracy,
computation/memory and time costs.

In our experiments, the use of a parcellation with more subregions
(148 versus 68) resulted in a drop in accuracy, which can be explained
by the fact that the Desikan–Killiany atlas provides more AD-specific
segmentation of temporal lobes compared to the Destrieux scheme,
extracting measurements from the entorhinal cortex (the cortical area
first affected in AD). Therefore, the use of atlases providing segmentation
of the regions primarily affected by themost commonneurodegenerative
diseases may be beneficial in such tasks. However, this is rather specu-
lative, since the atlases used in our study differ in many more aspects
than just availability of the disease-specific regions. Measurement-
specific parcellation schemes may also be useful for further accuracy
improvement.

We did not find strong advantages for using high-dimensional input
over parcelledmeasurements for our classification and prediction tasks.
Both inputs produced models with equivalent performance. It is worth
noting that tuning of the models with the parcelled input involved an
exhaustive search for the optimal feature subset and mtry-parameter,
whereas tuning of the HD-models was carried out only partially. There-
fore, we cannot be sure that exhaustive tuning of the HD-models would
not outperform the parcelled approach. But clarifying this currently
does not appear to be feasible and practically relevant, even given abun-
dant computational andmemory resources available for our study. Nev-
ertheless, it is worth mentioning that the use of high-dimensional raw
features may have advantages for certain tasks due to the absence of
spatial constraints of ROIs. Thus, we would generally expect this
m (n = 44) 18 m (n = 30) 24 m (n = 35) 36 m+ (n = 26) NC (n = 16)

0% 83.3% 80.0% 50.0% 81.3%

pairment; ApoE— ApoE genotype; MCI-c/MCI-nc—MCI converters/MCI non-converters.

MCI-converter 1yr sensitivity*

t (AddNeuroMed) Same cohort (ADNI) Separate cohort (AddNeuroMed)

) 79.0% 76.2%
74.4% Failed

25%) 65.4% 57.1%
5%) 75.7% 57.1%
1%) 79.0% 71.4%
6.25%) 78.0% 79%

sets from both ADNI (same) and AddNeuroMed (separate) cohorts.

s defined based on 1-year follow-up.
available for the AddNeuroMed cohort



Fig. 3. Cortical pattern of relevance for Alzheimer3s disease detection: high-dimensional morphometric data. The figure illustrates regions, which were the most relevant for Alzheimer3s
disease detection based on themean decrease of the Gini index (seeMethods). In all three high-dimensionalmodalities, the patternwas AD-specific and included changes predominantly
in temporal lobes (with maximum relevance of entorhinal region).

121A.V. Lebedev et al. / NeuroImage: Clinical 6 (2014) 115–125
approach to produce better performancewhen a disease-specific atlas is
not available.

In the present study, classifiers trained to differentiate between AD
and HC demonstrated a good ability to predict MCI-to-AD conversion
within 2 years before the onset of Alzheimer3s disease, which is in line
with previous results (Westman et al., 2012). The best accuracy was
observed for the classifier produced by the combination of all
“high-dimensional” models with the model trained using non-cortical
volumetric measurements. Superior accuracy of this classifier over the
model trained using parcelled data can be explained by the ability to
Fig. 4. Pattern of relevance for Alzheimer3s disease detection: parcelled morphometric data
(cortical thickness [DK-atlas] + non-cortical volumes). The figure illustrates regions, which
were the most relevant for Alzheimer3s disease detection based on the mean decrease of
the Gini index. Likewise in the high-dimensional input, the pattern-of-relevance is AD-
specific.
detect less extensive structural changes, which are averaged in the
atlas-based parcellation.

Interestingly, a drop in the ability to predict MCI-to-AD conversion
over 6, 12, 18, 24 and 36+months was substantially steeper for cortical
thickness and sulcal depth compared to Jacobian maps, which demon-
strated relatively stable performance over 2 years. It can be speculated
that cortical thickness and sulcal depth aremore dynamicmeasures, in-
dicating disease progression, while Jacobian maps, as a geometric fea-
ture associated with cortical folding patterns, may be more genetically
determined and therefore more stable across lifespan. Thus, it has
been shown that geometric measures are associatedwith the formation
of neuronal connections and cortical connectivity patterns, serving as
characteristics of cerebral development (Armstrong et al., 1995; Van
Essen, 1997). However, further research is clearly needed to support
or reject this speculation.

Another interesting observation was that recursive feature elimina-
tion for the high-dimensional data improved performance of themodel
trained with cortical thickness, whereas other HD models did not seem
to demonstrate substantial improvement. A possible explanation for
this may be that the impact of neurodegeneration on cortical thickness
is more localized to the entorhinal area, whereas its impact on sulcal
depth and brain deformation is sparser, which complicates feature
elimination.

The main strengths of the present study are:

(a) the use of two large imaging databases of Alzheimer3s disease
with assessment of the classifiers3 between-cohort robustness;

(b) optimized models with one of the best accuracy to date;
(c) evaluation of several important factors influencing classification

performance, such as morphometric data modality and dimen-
sionality, parcellation schemes;

(d) long-term follow-up available for the MCI subgroup from the
ADNI cohort that allowed the appropriate definition of MCI
non-converters and assessment ofmodels3 sensitivity at different
disease stages before the actual dementia onset.

It is also important to acknowledge several methodological limita-
tions, such as an influence of possible diagnostic mislabeling of the
data on our results, and possible misdiagnosis, since autopsy data
were not available. Therefore, without solving these issues one should
not expect perfect diagnostic class separation. The first problem can
be addressed post-hoc by using computational approaches to detect

image of Fig.�4
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mislabeled examples, whereas the second problem is organizationally
more complex and pertains to the imperfection of diagnostic criteria
for AD,which can potentially be overcome by employingmore diagnos-
tic procedures (for example, dopamine transporter imaging to exclude
patients with Lewy body dementias), cerebrospinal fluid markers, and
post-mortem diagnosis.

Another important issue pertains to robustness of the classifiers to the
MR-protocol differences. Clinical implementation of suchmodels will still
require additional reliability assessment in order to make sure that
models3 between-cohort generalization is appropriate. Apart from this,
traditional “offline” or “batch” learning framework (used in our study,
where the whole training set is available to the algorithm at the begin-
ning) does not allow any modifications of the models after the training
has been completed. The latter would be very relevant especially for the
clinical setting where continuous data flow is usually available. The “on-
line” learning framework (where the system gradually “learns” using
one instance at a time) may be beneficial in this context, providing not
only an opportunity to update the models, but also valid estimations of
the prediction confidence under a general i.i.d. assumption (independent
and identically distributed) (Vovk, 2005; Gammerman and Vovk, 2007;
Nouretdinov and Lebedev, 2013). Since this approach can be applied to
an individual patient and gives reliable estimations of possible diagnoses,
it has strong potential to be used in clinical practice and, to our opinion,
would be the best candidate for diagnostic trials employing computer-
aided medical decision-support systems.

To conclude, our workflow produces accurate models for detec-
tion and prediction of AD with good between-cohort robustness.
The use of raw high-dimensional measurements does not appear to
be effective due to its high computation/memory costs and at the
same time equivalent performance compared to models trained
with parcelled input. Therefore, we recommend using disease-
specific parcellation schemes for image classification tasks. Combi-
nation with other imaging and non-imaging biomarker modalities
Fig. A1.Workflow diagram. The diagram illustrates main steps of image post-processing and a
dimensionalmeasurements using Freesurfer software (blue box). After this part had completed,
used in further Random Forest classification runs (in R programming language — gray box). W
adjustment (which defines the number of predictors randomly sampled at each node of the cla
the brain space (for the high-dimensional data) or plotted (for the parcelled input).

Appendix
may provide further improvement in accuracy and model
robustness.
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Fig. A2. Classifier tuning diagram. The diagram describes main steps performed during the tuning of Random Forest models. This framework was employed for all modalities: cortical
thickness, sulcal depth, Jacobian maps, non-cortical volumes, combined parcelled measurements of cortical thickness and non-cortical volumes.
(1) First, the measurements with near-zero variance were removed from the feature sets and the resulting output underwent stepwise recursive feature elimination (RFE);
(2) 10,000 trees were then used to “grow” the first forest (using full feature set), and afterwards
(3) RFEwas performed based on feature importance vector derived from the first forest, by removing lowest-ranked 5% of the features at each step (gradually reducing the dimensionality
as 100%, 95%, … etc., up to 50%), and by the subsequent accuracy comparison with 5-fold CV;
(4) after selection of the optimal feature subset, mtry-parameter adjustment was also performed using 1000 trees (search range ∈ ½
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4 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nfeatures

p � 2:5�, step =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N features

p
4 );

(5) the forests were retrained with optimal parameters using 10,000 trees.

Table A3
AddNeuroMed cohort demographics.

AD HC MCIa

N 107 100 114
Age 75.7 [±5.63] 73.2 [±6.87] 74.4 [±5.79]
M/F ratio 0.65 (42/65) 1.08 (52/48) 1.11 (60/54)
Education 7.6 [±3.78] 8.59 [±4.17] 10.5 [±4.82]
MMSE 20.8 [±4.74] 29.1 [±1.26] 27.1 [±1.68]

a 21 of total 114 MCI subjects developed Alzheimer3s disease at some point over 1-year follow-up. (MCI-converters)

Table A4
Model tuning.

Measurement NZV Feature subset after RFE Opt mtry CPU cores used RAM usage (RFE/mtry) Total tuning time

Thickness (HD) 14,880 156,402 356 6 51.3/44 GB 80 h 50 min
Sulcal depth (HD) 14,851 218,983 1170 6 51/46 GB 84 h 22 min
Jacobian (HD) 0 262,147 1024 6 58/45 GB 89 h 27 min
Volumes (ROI)a 0 6 2 10 1 GB 10 min
Thickness + volumes (parc)a 0 24 4 10 3.8 GB 3 h 35 min

NZV— number of features with Near-Zero Variance removed at the first step; RFE — Recursive Feature Elimination; opt mtry — optimal mtry-parameter (see Methods for details).
a For these models, an exhaustive search for optimal mtry parameter and feature subset has been performed.

123A.V. Lebedev et al. / NeuroImage: Clinical 6 (2014) 115–125



Fig. A5. ROC curves: best models (AD/HC). The figure illustrates ROC-curves of the most accurate models trained to differentiate between AD and HC. The model trained using combined
parcelled (DK atlas) cortical thickness measures and subcortical volumetric data produced equivalent accuracy compared to the higher-order ensemble model (where all classifiers were
combined together by a majority vote). AD/HC — Alzheimer3s Disease/Healthy Controls.
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