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Despite a longstanding research interest ever since the early work by Claude Bernard, the functional
significance of autonomic liver innervation, either sympathetic or parasympathetic, is still ill defined. This
scarcity of information not only holds for the brain control of hepatic metabolism, but also for the metabolic
sensing function of the liver and the way in which this metabolic information from the liver affects the brain.
Clinical information from the bedside suggests that successful human liver transplantation (implying a
complete autonomic liver denervation) causes no life threatening metabolic derangements, at least in the
absence of severe metabolic challenges such as hypoglycemia. However, from the benchside, data are
accumulating that interference with the neuronal brain–liver connection does cause pronounced changes in
liver metabolism. This review provides an extensive overview on how metabolic information is sensed by
the liver, and how this information is processed via neuronal pathways to the brain. With this information
the brain controls liver metabolism and that of other organs and tissues. We will pay special attention to the
hypothalamic pathways involved in these liver–brain–liver circuits. At this stage, we still do not know the
final destination and processing of the metabolic information that is transferred from the liver to the brain.
On the other hand, in recent years, there has been a considerable increase in the understanding which brain
areas are involved in the control of liver metabolism via its autonomic innervation. However, in view of the
ever rising prevalence of type 2 diabetes, this potentially highly relevant knowledge is still by far too limited.
Thus the autonomic innervation of the liver and its role in the control of metabolism needs our continued
and devoted attention.
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1. Introduction

The autonomic nervous system is the unconscious part of the
peripheral nervous system and comprises the motor system for
viscera, smooth muscles and exocrine glands. The scientific interest
for the innervation of the liver by the autonomic nervous system and
its function in the control of energy metabolism can be traced back to
a timewhen the need to understand the pathophysiology ofmetabolic
diseases like type 2 diabetes mellitus may have been less urgent than
in our modern affluent society. The great French physiologist Claude
Bernard was the first to discover and describe that the liver can store
and release glucose, and he named this stored form of glucose
glycogen. At that time in history the general assumption was that the
body could not synthesize glucose de novo (gluconeogenesis).
However, Claude Bernard believed that hepatic glucose production
was under the control of autonomic nerves and carried out the earliest
study on the autonomic innervation of the liver and glucose
metabolism in 1848. He observed a decrease in hepatic glucose output
after peripheral vagotomy, but failed to show increased glucose output
by electrically stimulating the vagal nerves. He then tried to punch the
floor of the fourth ventricle, i.e., the place of origin of the vagal nerves.
The short-term “artificial diabetes” he induced in this way (the well-
knownpiqûre diabetique)was not blocked by cutting the vagal nerves,
but it could be blocked by transection of the spinal cord, i.e., the origin
of the sympathetic nerves that innervate the liver. Although this
earliest functional study did not mean he could distinguish the
glucoregulatory function of the liver from that of other visceral organs,
it was the first indication of a brain mechanism controlling peripheral
glucose homeostasis and of the involvement of the autonomic nervous
system. Despite this inspiring starting point, the role liver innervation
plays in the control of energy metabolism is still not fully uncovered
today, especially regarding metabolic sensing by the liver.

After insulin was discovered by Banting and Macleod in the 1920s,
physiologists and biochemists focused their attention on the control
of liver metabolism by hormones, and in subsequent years only little
attention was paid to the involvement of neuronal signaling in liver
metabolism. In the 1950s Mayer put forward the “glucostatic theory”,
the “lipostatic theory” and the “glucoreceptor” conception [1–3] as
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explanatory brain mechanisms involved in the control of feeding
behavior and glucose metabolism. Although these theories renewed
interest in neuronal sensing mechanisms involved in the control of
liver function, the “glucostatic theory” itself was soon rejected based
on experimental studies by others [4]. In the early sixties the existence
of glucose-sensitive neurons in the ventromedial hypothalamus
(VMH) and lateral hypothalamus (LH) was proven by Anand [5] and
Oomura [6]. Russek then proposed the existence of glucose receptors
in the liver [7]. Soon after, a change of vagal activity was recorded by
Niijima upon glucose infusions into the portal vein [8].

The term “glucoreceptor” was gradually replaced by “glucose
sensing”. Glucokinase (hexokinase) (GK) [9] and glucose transporters
(GLUT) [10,11] are considered to be the main molecular components
of neuronal glucose sensing [12], while other mechanisms such as
sodium/glucose cotransporter type 3 (SGLT3) [13] and twik1-related
acid-sensitive K+ channel subunit (TASK) 1 and 3 [14,15] could be
also involved.

In contrast to glucose sensing, a mechanism for lipid sensing by the
liver was strongly doubted at the beginning of last century. It was
thought that, of the threemacronutrients, only hydrophilic glucose and
amino acids could enter the liver via the portal vein after absorption
from the intestine into themesenteric veins. Fatty acidswere thought to
be absorbed in the intestinal lymph and to enter the heart through the
thoracic duct and the superior vena cava. Compared with other organs
and tissues, the liver was thus thought to have only nutritional input via
glucose and amino acids, but not via lipids. It was Frazer [16] who
discovered that indeed neutral fat globules will only enter the systemic
circulation, but that fatty acids do pass into the portal capillaries and
enter the liver. Thereafter, short- and medium-chain fatty acids were
confirmed to be transported into the portal vein [17,18], and this was
later confirmed for long-chain fatty acids and triglycerides as well [19].

As was the case with glucose, lipid was proven to be a metabolic
signal that can be sensed by vagal nerves as well [20]. More
importantly, however, it became clear that the brain too, is an
important metabolic sensing organ. Today, there is no doubt that the
brain (especially the hypothalamus) and liver, as well as the
gastrointestinal tract, can independently detect glucose, lipids and
other metabolic information. The relative importance, however, of
each of these components separately has only recently become the
subject of both animal and human studies.

This review will start with an overview of the anatomical and
physiological approaches used to identify the pattern of autonomic
liver innervation. Then we describe the different roles played by the
spinal and vagal afferents and efferents in liver metabolic sensing as
well as in liver glucose and lipid production. The review ends with a
description of the different levels of integration of metabolic
information followed by a discussion of the current status of the
known connections and missing links between the brain and liver in
the control of energy metabolism.

2. Neuroanatomy of the hepatic innervation

The liver is innervated by sympathetic and parasympathetic
nerves, both containing afferent as well as efferent fibers. The
sympathetic splanchnic nerves innervating the liver originate from
neurons in the celiac and superior mesenteric ganglia, which are
innervated by pre-ganglionic neurons located in the intermediolateral
column of the spinal cord (T7–T12). The parasympathetic nerves
innervating the liver originate from pre-ganglionic neurons in the
dorsal motor nucleus of the vagus (DMV) located in the dorsal
brainstem. Unlike other visceral organs, no clear intrahepatic
postganglionic neurons have been identified [21].

The distribution of sympathetic and parasympathetic nerves in the
liver is markedly species-dependent. Histochemical and immuno-
chemical studies have been performed using a variety of markers for
autonomic liver innervation. For instance, vasoactive intestinal
peptide (VIP), tyrosine hydroxylase (TH) and neuropeptide Y (NPY)
have been used as markers for sympathetic efferent fibers [22,23]. In
addition,α-adrenergic andβ-adrenergic receptors for the sympathetic
neurotransmitter noradrenaline are present in the hepatic artery and
portal vein [24,25]. On the other hand, acetylcholinesterase (AChE)
and vesicular acetylcholine transporter (VAChT) [26], located in
parasympathetic postganglionic cells [21], tend to be the vagal efferent
markers of choice [27,28]. Calcitonin gene-related peptide (CGRP) has
been used as a spinal afferentmarker, since the nodose ganglia express
much less CGRP than the dorsal root ganglia (DRG) [29]. Finally,
substance P (SP) has been used as a marker for both vagal and spinal
afferents [30,31]. Different combinations of these markers have been
applied to hepatic tissues of human, monkey, dog, rabbit, rat, hamster,
guinea pig, mouse, carp, bullfrog, and turtle. Some results are not
firmly established as they could not be repeated in later studies, but
this is probably due to non-specific technical limitations, such as those
encountered using earlier histochemical methods for the demonstra-
tion of acetylcholinesterase (AChE) in rat parenchyma [32]. Generally,
in most of the examined species, sympathetic and parasympathetic
markers (either neurotransmitters or synthesizing enzymes) could be
detected in the hepatic artery, the portal vein region and the area
around the bile ducts. Differences mainly exist in the interlobular area
and parenchyma. In several studies, TH and NPY showed co-
localization, and both kinds of terminals have been observed in the
connective tissue of the interlobular septum and parenchyma from
human,monkey, and guinea pig, but not from rat, hamster andmouse.
In rabbit liver parenchyma, TH is expressed without co-localization of
NPY. AChE fiberswere not found in human liver parenchyma, or in any
other species studied [22,23,33–37]. Although NPY is sometimes also
considered a neurotransmitter for postganglionic parasympathetic
nerves [38,39], no study has shown co-localization of NPY and AChE in
liver tissue. A major difference between sympathetic innervation of
humans and the most commonly used animal models, i.e., rats and
mice, is that the latter have no clear parenchymal sympathetic
innervation, while in human liver (also in guinea pig), sympathetic
noradrenaline-immunoreactive fibers penetrate deep into the lobule
to end of hepatocytes [40]. However, the functionality of the
sympathetic efferent innervation of species with parenchymal
sympathetic innervation could still correspond to that of species
without [41] as information from aminergic and peptidergic nerve
terminals can be relayed electrically to individual cells by structures
such as cell-to-cell connecting gap junctions [42,43]. Indeed, signal
propagation through gap junctions, i.e., via electrotonic coupling, can
compensate for the sparse direct inputs to the hepatocytes, especially
with respect to sympathetic signal transduction [43,44]. Also, there is
considerable homology between the rat and human liver gap junctions
[45]. This brought about the idea of additional functions of the gap
junctions, such as the relay of hormonal signals from the periportal
area to the hepatocytes [46]. Furthermore, the sympathetic signal may
be propagated via the release of prostaglandins from Ito cells [47,48]
(the Ito or stellate cells are located in the space of Disse, which is
separated from the lumen by the fenestrated endothelium, while
Kupffer cell and dendritic cell face the sinusoidal lumen [49]).

Only few approaches are available to investigate and differentiate
the intrahepatic neuroanatomy of the autonomic innervation, such as
neuronal tracing or neuronal denervation in combination with
physiological interventions. In rats, liver vagal afferentsmainly ascend
to the left nodose ganglion [50,51], with the axon processes from the
nodose ganglion projecting to the nucleus of the solitary tract (NTS).
Sympathetic afferents from the liver enter the dorsal root ganglion
(DRG), with the DRG axons terminating in the dorsal horn of the
spinal cord [21]. The remarkable lack of either vagal efferent or
afferent innervation of liver parenchyma as indicated by the
(immuno)histochemical studies was confirmed by neuronal tracing
studies in rats, as no anterograde labeling was found in the
parenchymal liver tissue from anterograde tracer injections in either
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the nodose ganglion or the dorsal motor nuclei [50]. In addition, it was
reported that the hepatic vagal nerve is only a sub-branch from the
common hepatic branch that terminates in the upper duodenum,
pancreas, pyloric sphincter, and antral stomach [50] (Fig. 1). This
observation was not in line with the assumption that vagal nerve
fibers derived from the common hepatic branch and the periarterial
plexus of the hepatic artery proper exclusively innervate the liver. The
anatomical observation that the gastroduodenal vagal branch joins
the hepatic vagal branch to form the so-called “common hepatic
branch” complicates the interpretation of data from experiments in
which the common hepatic vagal branch is disrupted or its neural
activity is recorded. This is well evidenced by the separation of the
gastroduodenal branch from the common hepatic branch by means of
denervation, as it turns out that an electrical signal of the common
hepatic branch that is sensitive to serotonin is blocked by transection
of the gastroduodenal branch [52]. In other words, stimulation of the
intestinal tract may affect recordings of the hepatic branch, and
“hepatic parasympathetic denervation” will in fact denervate the
common hepatic branch.

Retrograde tracing from liver parenchyma close to the hilus (i.e.,
where all nerve bundles enter the liver) only results in a limited
amount of DRG labeling from Th7–11, indicating that only very few
DRG afferents innervate the hepatoportal system [21].

As just mentioned, the classic anterograde and retrograde tracers
are only able to reveal the location of first order sensory and motor
neurons. The location of second-order motor neurons in the central
nervous system can be revealed with the multi-synaptic viral tracing
technique. After injection of the pseudo-rabies virus in rat liver,
several hypothalamic areas are highlighted (in addition to the
brainstem) as containing second-order neurons, such as the lateral
hypothalamus (LH), the paraventricular nucleus (PVN) and the
retrochiasmatic area [53]. Combining the viral tracing technique
with selective denervations of either sympathetic or parasympathetic
liver innervation clearly demonstrated the presence of separate
Fig. 1. An illustration of the relationship between the hepatic common vagal branch, the hepa
up in the upper duodenum, pancreas, pyloric sphincter, and antral stomach) (partly adapte
branch (site A) and the right branch (site B) originating from the right posterior subdiaphr
dotted line). It is not feasible to selectively remove the hepatic branch proper and therefore l
transecting the hepatic branch proper.
populations of, respectively, parasympathetic and sympathetic
motor neurons, both first and second [54].

Human liver nerve fibers show a strong plasticity in their
distribution. Pathological challenges related to autonomic hyperac-
tivity, such as (pre)cirrhosis and noncirrhotic portal hypertension,
cause a decreased parenchymal innervation [55], whereas nerves are
proliferating in the portal region [56,57] as indicated by an increased
number of NPY fibers [58]. Whether this redistribution is related to a
change in liver metabolism is not clear.

Summarizing it is evident that, despite the clear evidence for both
a sympathetic and parasympathetic innervation of the liver, many
details still have to be filled in and a lot is still to be learned about the
autonomic innervation of the liver. Technical limitations still prevent
a clear mapping of some parts of the liver neuronal network, such as,
for instance, the location of parasympathetic postganglionic cell
bodies. This lack of more detailed knowledge is a major obstacle for
functional studies on the role of the autonomic innervation in the
control of liver metabolism as they very much depend on the existing
knowledge on its neuroanatomy. Also the difficulty of separating the
sensory and motor branches still provides a profound obstacle to
differentiate the various functional aspects. Despite these neuroana-
tomical difficulties, the evidence presented below clearly shows that
the liver is a powerful metabolic sensor, and a crucial link in the brain
control of energy metabolism.

3. Afferent pathways and metabolic sensing

All macronutrients absorbed from intestinal digestion will be
“sensed” first by the gastrointestinal tract [59], before entering the
liver via the portal vein. Cephalic, postprandial and post-absorptive
gastrointestinal secretions will also reach the liver via the portal vein.
With the large variety of chemoreceptors located in the hepatoportal
system, it is more than likely that these metabolic signals will also be
sensed by the liver and reported to the brain. For a long time,
tic vagal branch proper and the gastroduodenal vagal branch (which terminates further
d from [21,282]). Hepatic parasympathetic denervation includes denervation of the left
agmatic vagal nerve (the nerve branch running behind the stomach is illustrated by a
eft branch denervation is routinely performed at the common hepatic branch and not by
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metabolic sensing by the liver (or hepatoportal system)was therefore
considered to be the primary source of information for the brain to
regulatemetabolism. However, in the last two decades, the prominent
role of liver metabolic sensing has been challenged, since it has
become clear that the brain is able to sense metabolic information
frommanymore sources than just the liver. For instance, the presence
of insulin [60], leptin [61,62], adiponectin [63], ghrelin [64] and
neuropeptide Y [65] receptors in the brainmakes it very likely that the
brain can also sense metabolic information coming from organs such
as the pancreas, adipose tissue, stomach and gut directly. The liver
releases a number of factors that function as paracrine and endocrine
regulators of glucose and lipid metabolism, such as adropin [66] and
fibroblast growth factor 21 (FGF21) [67,68]. Remarkably, to date, none
of these circulating factors have been reported to convey metabolic
information from the liver to the brain. Therefore, the brain and liver
are probably specialized in collecting different types of information,
and this information is converging into integration centers, such as
the nucleus of the solitary tract (NTS) in the hindbrain [69] and the
paraventricular nucleus (PVN) in the hypothalamus [70]. The studies
on glucose and lipid sensing provide some of the best examples to
illustrate this complex network. In addition, a different type of
metabolic sensing is relayed within the afferent fibers from
intrahepatic metabolic sensors such as the liver X receptor (LXR)
[71] and the carbohydrate response element binding protein
(ChREBP) [72], as these intrahepatic sensors mainly work as
coordinators between glucose sensing and lipid synthesis at the
intracellular level. Recently, the peptide adropin, secreted by the liver
and brain, was identified as a downstream signal regulated by LXR.
Adropin mainly functions as a paracrine factor, but it also works as an
endocrine factor to regulate glucose homeostasis and lipid metabo-
lism [66]. Whether adropin acts locally on its targets or via an
autonomic neuronal connection has not been elucidated yet. Finally,
there is the hepatic insulin sensitizing substance (HISS), a substance
released from the liver by parasympathetic stimulation, but not yet
identified at the molecular level, that seems to be involved in the
remote control of skeletal muscle glucose uptake [73].
3.1. Glucose sensing

The brain is unable to either synthesize or store the amount of
glucose required for its normal cellular function, therefore it
accurately keeps track of the whole process of glucose metabolism,
from the initial stages of glucose intake, through absorption, storage,
production and ultimately utilization. The mechanism of glucose
detection, or glucose sensing, takes place in different areas of the brain
[5,6,12,74–76], as well as in the periphery. Moreover, in the brain, not
only neurons can detect glucose levels, but glial cells expressing
glucose transporter type 2 (glut2) are also involved, especially in the
hypoglycemia-stimulated glucagon secretion mechanism [77,78]. The
primary places of peripheral glucose sensing are located in the taste
bud cells [79], the intestinal lumen [80,81], the carotid body [82], and
the best studied locus, the hepatoportal area [83–86]. For an up to date
review on this issue the reader is referred to the recent review by
Watts and Donovan [87].

In the earliest study of liver glucose sensing, using fairly high
concentrations of glucose, Niijima [8] proposed three different
locations for the “glucose receptor”: 1) the wall of the portal vein,
2) the parenchyma of the liver, and 3) the wall of the hepatic vein.
Nowadays it is generally accepted that glucosensors are mainly
located in the portal area [83–85], which is innervated by both
sympathetic and vagal afferents [88,89]. The functional meaning of
glucosensing by these two types of afferents is still under investiga-
tion. High concentrations of glucose presented in the portal vein by a
positive porto-arterial glucose gradient are mainly sensed by the
vagus nerve and inhibit its activity [8]. The signal transduction from
portal vein glucose infusion to the NTS can be blocked by hepatic
vagotomy [90,91].

One hypothesis is that hepatic glucosensors participate in the
control of food intake, by sensing the flow of digested glucosewhen its
concentration is high. However, total liver denervation does not seem
to affect feeding behavior in any significant way [92,93]. Possibly the
portal–peripheral glucose gradient alone is not sufficient to inhibit
feeding, but when joined with brain glucose sensing it may be able to
reduce food intake. On the other hand, decreasing the portal–
peripheral glucose gradient will activate vagal afferent activity [94],
and this activation has been proven to be essential for the initiation of
food intake [86,95–97]. Therefore, in the control of feeding behavior,
hepatic glucosensing might play a more important role in triggering
the initiation of feeding than in its termination.

Inmore recent studies, hypoglycemia sensed by the portal vein has
received increased attention especially in the setting of insulin
therapy in view of its essential role in tight glycemic control in
diabetes patients. The occurrence of frequent and severe hypoglyce-
mia may partially originate from defective glucose counterregulation
[98]. Hypoglycemia detection is not mediated by vagal afferents
[99,100], but does involve the capsaicin-sensitive primary spinal
afferent nerves [101]. It has also been suggested that portal vein
glucose sensors only play a key role in the response to slow-onset
hypoglycemia [102], but that the primary place of detection shifts to
other loci such as the brain when hypoglycemia develops rapidly
[103,104].

In animal studies, a selective sympathetic or parasympathetic
hepatic denervation is not sufficient to prevent the counterregulatory
response resulting from an insulin-induced hypoglycemia
[100,105,106]. On the other hand, contradictory results were found
when a total denervation was applied [100,105], and apparently the
results are very much dependent on the denervation method.

The hypoglycemia counterregulatory response has also been
investigated in patients who received a liver transplantation. In this
“model”, all direct neural connections but not the neurohumoral
factors are lacking. In clinical studies carefully excluding bias from
immunosuppressive treatment such as prednisone [107] data from
chronic uveitis patients are compared with data from liver transplant
patients. During a hypoglycemic clamp, liver transplanted patients
appeared to have impaired hypoglycemic counterregulation as shown
by less epinephrine and a cortisol release and a blunt recovery of
endogenous glucose production (EGP) to basal levels [108]. These
defects indicate that neuronal inputs from liver to brain (and/or brain
to liver) are important to elicit the appropriate hypoglycemic
counterregulation. The exact intrahepatic mechanism of glucose
sensing is not clear yet, but it has similarities with the pancreatic β-
cells, as it needs activation of the glucagon-like peptide-1 (GLP-1)
receptor [109–114], and is GLUT-2 dependent [115].

3.2. Lipid sensing

Although normal feeding behavior does not require intact liver
innervation, overingestion of lipids can affect food intake through the
autonomic innervation of the liver. Experimentally administered free
fatty acids (FFAs) in the small intestine can be directly transported to
the portal vein to enter the liver. Gastrointestinal primary sensory
nerves have been reported to be involved in mediating the
suppressive effect of intestinal lipid on feeding behavior [116,117].
Further studies specifically differentiating general abdominal vagot-
omy from hepatic vagotomy suggested that the hepatic vagus has a
major involvement in this mechanism [118]. Hepatic portal infusions
of lipids significantly increase hepatic vagal afferent activity [20]. The
inhibitory effect on feeding behavior induced by hepatic lipid sensing
has also been confirmed under diabetic conditions in experimental
animals. A high-fat diet normalizes food intake in STZ-diabetic rats
[119–121], but common branch hepatic vagotomy can completely
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block both the fat-induced decrease in caloric intake as well as
normalize the increased hypothalamic NPY and CRF mRNA
expression [120,122].

Still, in some studies, the inhibitory effects of FFAs on food intake
cannot be simply blocked by subdiaphragmatic bilateral vagotomy
[123]. Thus, in addition to FFA, high fat diets might contain information
that affects feeding. Alternatively, FFAs may be able to manipulate
feeding via other mechanisms such as the hypothalamus [124].

Under physiological conditions not only food-derived lipids will
enter the liver. Fatty acids are also the metabolically most important
product of adipose tissue lipolysis, and especially triglycerides stored
in the abdominal adipose tissue will release FFAs into the portal vein.
The hepatoportal vagal sensing of lipids may therefore not only be
important for the “reflexive” regulation of feeding behavior, but it
may also play a role in the pathophysiology of metabolic abnormal-
ities such as hepatic insulin resistance. Physiologically, abdominal
adipose tissue only contributes a small part of the total amount of FFAs
entering the portal vein, but an increased release of FFAs from the
adipose tissue can be triggered by stress, anger, frustration, and other
factors, such as smoking [125]. Elevated levels of FFAs in the portal
vein have been suggested to be the cause of insulin resistance, as they
might directly reduce insulin clearance by the liver [126–128].
Furthermore, since the anti-lipolytic effect of insulin on omental
adipose tissue is minor, due to the low insulin receptor number [129],
insulin resistance will result in a further increase of the amount of
FFAs released. The overloading of the liver by FFAs may finally cause
an increased synthesis of triglycerides and an excess secretion of very
low density lipoprotein (VLDL).

As with glucose sensing, a specific lipid receptor has not yet been
identified, but lipids are natural ligands for the peroxisome-proliferator-
activated receptors (PPARs) [130] that are also involved in glucose
metabolism. A knock-out of the lipogenic enzyme fatty acid synthase
(FAS) will not only induce hypoglycemia and a fatty liver, but also a
defective expression of PPARα. Furthermore, PPARα deficiency pre-
vents glucose intolerance caused by diet-induced obesity [131,132].
Unlike glucose sensing, splanchnic nerve afferent activity is not affected
by jejunal lipid administration [118], and no study so far has shown
spinal afferent responses to any other kind of adiposity information.

3.3. Protein sensing

Protein digestion will elevate portal vein amino acid levels and high
protein feeding has been reported to stimulate glucagon release
independently of amino acids blood levels [133]. It is hard to saywhether
this is due to a special portal amino acid sensor, because surprisingly, only
few studies on hepatoportal protein sensing are available. A high protein
diet is able to inhibit food intake [134,135] but this effectmight not bedue
to a direct hepatoportal protein sensing mechanism, but rather to the
stimulation of intestinal gluconeogenesis [136–138] which may conse-
quently activate portal glucose sensing [139]. This high glucose loading
may then eventually result in inhibited feeding.

3.4. Hormone sensing

Not only nutrition itself can be sensed by the liver, but the
nutrition and absorption process will elicit the release of a variety of
hormones (so-called incretins), that can also be sensed by the liver.
Glucagon-like peptide-1 (GLP-1) is one of the best studied signals in
this class of hormones.

Besides its brain origin and its involvement in the control of food
intake by a central mechanism [140,141], GLP-1 is also secreted from
the intestines during meal absorption. Its stimulatory effect on insulin
secretion and its depressive effect on glucagon secretion implicate a
remote control on the pancreas [142,143]. Because of its low
postprandial plasma levels and its rapid degradation, the action of
GLP-1 is probably close to its site of release [144]. The action of GLP-1
most likely also involves a neuronal pathway. Indeed, GLP-1 receptors
are expressed in the hepatoportal area [145]. Infusion of a truncated
form of GLP-1(7-36)amide (tGLP-I) into the portal vein increases
hepatic vagal afferent activity and pancreatic vagal efferent activity
[113], while it augments glucose-stimulated insulin secretion [146].
Peripheral GLP-1 is also able to influence feeding behavior. Its effects
on meal size are mediated by the vagal nerve, but this effect does not
involve the hepatoportal mechanism [147], which we will discuss
later.

The brain has been proven to be the main sensor of the adipokine
leptin, affecting hepatic vagal afferent activity directly in a dose-
dependent manner, with low doses inhibiting its activity and high
doses increasing it. In addition, the activity of glucose-sensitive units
is inhibited by low concentrations of leptin [148]. The gastrointestinal
peptide cholecystokinin (CCK) released from the duodenal mucosa
also has satiety effects, which are mediated by the gastric branch of
the vagus [149]. CCK can be sensed by hepatoportal regional terminals
[52], but whether its inhibitory effect on feeding is mediated by the
hepatoportal vagal branch or via the gastric vagal branch is not clear.
The fact that lesions of the termination centers of the common vagal
afferents, i.e., area postrema and NTS, do not impair the satiety
induced by CCK [150], further complicates the understanding of the
central processing of peripheral CCK information. Portal infusion of
somatostatin, yet another one of the gastroenteropancreatic hor-
mones, also increases hepatic vagal afferent activity [151]. How this
signal is processed further, within the brain, is not yet known.

The inhibitory effect of illness on feeding activity is thought to be
mediated by inflammatory factors [152]. The cytokine interleukin-1
(IL-1) released during immune activation, has been studied in great
detail. Intraperitoneal administration of IL-1β inhibits food intake
[153], and this effect is proposed to involve hepatic vagal sensing since
its afferent activity is increased by IL-1β stimulation [154]. Peripheral
administration of IL-1α has similar anorexic effects [155]. However,
hepatic vagotomy is unable to block this effect [156].

In conclusion, the contribution of metabolic sensing in the liver to
the overall whole body energy balancing network is still under
discussion. Unlike the brain, where the glucose concentration is
sensed by glucose excitatory and inhibitory neurons (and glia), in the
liver the glucose concentration is more likely to be monitored by the
sympathetic and parasympathetic nerves. The glucose sensing
mechanisms in the brain and liver clearly interact, but many details
still need further clarification. Unfortunately, very little is still known
about the cellular mechanism of glucose sensing in the liver.

4. Efferent pathway and the control of hepatic metabolism

4.1. Neuronal signals in control of liver glucose and lipid metabolism

After the initial findings of Bernard, numerous efforts have been
made to understand in more detail the brain mechanisms responsible
for the control of liver metabolism, be it with some delay. First of all,
Bernard's findings on the control of liver glucose output by the
autonomic nerves were confirmed and extended. For instance, liver
glycogen content can be changed by neuronal inputs independent of
influences from circulating glucoregulatory hormones, such as the
catecholamines, insulin and glucagon. Follow-up studies focused on
specific brain–liver connections, such as the information from
different brain regions and their output pathways to the liver via
specific autonomic nerves.

Early studies often used surgical removal of othermetabolic organs
or a total isolation of the liver. For instance, it was shown that in
adrenalectomized and/or pancreatectomized animals, electrical stim-
ulation of the splanchnic nerve decreases liver glycogen content and
causes an increased release of glucose by increasing the activity of the
liver glycogen phosphorylase and glucose-6-phosphatase enzymes
[157,158], as well as a partial inactivation of phosphorylase
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phosphatase activity [159]. Stimulation of the vagus nerve, alterna-
tively, accelerates glycogen synthesis, and this effect could be
completely counteracted by a simultaneous stimulation of the
splanchnic nerve [160,161]. Later on, the independence of this
neuronal pathway in the control of liver glucose production was
also confirmed in an eviscerated animal model. In these experiments
the authors showed that the reduction of blood glucose concentra-
tions induced by insulin administration to the brain (via the carotid
artery) was conserved after a total pancreatectomy together with the
removal of the entire gastrointestinal tract and the spleen [162].
Recently, the original data on the inhibitory effects of central insulin
on plasma glucose concentrations were confirmed when insulin was
applied directly into the cerebral ventricle. In addition, it was shown
that the inhibitory effect of central insulin on hepatic glucose
production could be blocked by both hepatic vagotomy and
sympathectomy, and that this central insulin effect only needs vagal
efferents (not afferents) without affecting glucose uptake [163,164].
Very recently, it became clear that the vagal efferents to the liver are
vital for the CCK signal generated in the gut to regulate hepatic
glucose production andmaintain glucose homeostasis. In this study, it
was shown that the intraduodenal administration of CCK-8 can
enhance hepatic insulin sensitivity and inhibit glucose production,
and that these effects can be negated by hepatic vagotomy [165].

Lipid metabolism in the liver mainly includes the synthesis and
secretion of VLDL, ketone bodies and fatty acid oxidation. Reducing liver
noradrenaline by phenol-induced hepatic sympathetic denervation can
decrease carnitine palmitoyltransferase (CPT), which is responsible for
transferring long-chain fatty acid into the mitochondria [166]. The
hepatic sympathetic input is also involved in regulating the secretion of
apoB-containing lipoproteins, including VLDL [167]. In the perfused
liver model, noradrenaline is able to inhibit the secretion of triglyceride
and apoB as well as the release of VLDL at a post-transcriptional level
[168,169]. In line with this, hepatic sympathetic denervation results in
lower VLDL secretion, and higher concentrations of plasma cholesterol
and VLDL-cholesterol [170]. The sympathetic innervation to the liver
also influences ketone body metabolism. In the perfused liver model,
sympathetic stimulation inhibits hepatic ketogenesis [171], resulting in
a reduced ketone body output from the liver [172].

Perfusion of isolated liver has also been used to highlight the
importance of the autonomic innervation of the liver and eliminate
the possibility of extra-liver humoral inputs. In the perfusion model,
splanchnic nerve stimulation caused an increased glucose and lactate
output, whereas decreased urea, glutamine formation and ketone
body production were observed [173,174]. These effects mainly
involved activation of the α1-adrenergic receptors [175], and to a
much lesser degree that of the β-receptors [176].

However, the physiological significance of the sympathetic
innervation for hepatic glucose production is constantly being
questioned. For instance, in systemic α1-adrenergic receptors
deficient mice higher liver glycogen content was found together
with a higher parasympathetic tone [177]. However, blocking the
portal α1 and β-receptors during heavy exercise does not change the
hepatic glucose production [178].

In the perfusion model, effects of neuronal manipulation on liver
hemodynamics are inevitable. For instance, acetylcholine (Ach)
applied into such an isolated model causes vasoconstriction and a
reduction of blood flow and oxygen supply to the liver [179].
However, the early liver perfusion studies provided convincing
evidence that the metabolic changes observed in the liver were not
caused by hemodynamic changes in the liver or an overflow of
noradrenalin into the hepatic vein [180,181].

4.2. Brain areas involved in liver control of glucose metabolism

Stimulation of several brain areas has been shown to induce
similar changes in liver glucose metabolism as produced by direct
stimulation of sympathetic or parasympathetic nerves. These brain
areas are either proposed or proven to be able to affect liver glucose
metabolism via their effect on autonomic neuronal output. For
instance, electrical stimulation of the VMH causes an increased
activity of the liver gluconeogenic enzyme phosphoenolpyruvate
carboxykinase (PEPCK), and a marked suppression of hepatic
pyruvate kinase (PK) activity, a key glycolytic enzyme [182]. These
responses could not be abolished by adrenalectomy [183]. Stimulation
of the LH, on the other hand, resulted in a decrease in PEPCK activity
but did not alter PK activity [182]. Physiologically, it seems that
cholinergic, but not noradrenergic, dopaminergic or serotonergic
receptors in the LH are selectively involved in the stimulation of liver
glycogen synthesis [184]. These early proposals for putative direct
neuronal pathways were only recently supported by evidence from
more detailed studies on the effects of brain insulin signaling on liver
glucose metabolism. Brain insulin signaling inhibits liver gluconeo-
genesis (GNG) via neurons in the mediobasal hypothalamus that
contain ATP-sensitive potassium (KATP) channels [185], an effect that
can be largely blocked by hepatic vagotomy [163], but also involves
NPY signaling to sympathetic pre-autonomic neurons [164].

Electrical stimulation of the suprachiasmatic nucleus (SCN) has
also been reported to induce hyperglycemia [186]. This hyperglyce-
mia might involve both direct hepatic and indirect (i.e., pancreatic)
stimulatory effects on glycogenolysis [187]. Blocking the GABA-
containing projections from the SCN to the PVN by bicuculline also
induces hyperglycemia, and this hyperglycemia could be eliminated
by hepatic sympathetic but not parasympathetic denervation [54].
The autonomic innervation of the liver is also involved in the hepatic
insulin resistance and in increased hepatic glucose production
induced by thyrotoxicosis, again an effect that seems to be mediated
via a PVN mechanism and is independent of circulating glucoregula-
tory hormones, including the thyroid hormone itself [188,189].
Among the aforementioned hypothalamic peptidergic systems, NPY
is well defined as a target of several circulating factors, due to its
location in the arcuate nucleus (ARC), i.e., the “metabolic window of
the brain”. For instance, the adipokine resistin can modulate lipid
metabolism and increase glucose production via its action on NPY
neurons [190–192]. Considering the well-established role of NPY in
the control of hepatic insulin sensitivity via the hepatic sympathetic
innervation [164,193], it is very likely that autonomic nerves will also
mediate the central effects of resistin on liver metabolism. The
involvement of NPY and other hypothalamic neuropeptides in the
control of glucose homeostasis will be discussed in more detail in the
next paragraph.

Virtually nothing is known about brain areas that are in control of
hepatic lipid metabolism. Two recent papers have described effects of
the i.c.v. administration of glucose and NPY on hepatic lipid
metabolism [193,194], but no information is available about the
possible location of these effects.

4.3. Hypothalamic neuropeptides involved in the control of liver glucose
metabolism

4.3.1. Neuropeptide Y (NPY)
Best known among the hypothalamic neuropeptidergic networks

are the NPY-containing neurons in the ARC with their projections to
several hypothalamic brain areas including the PVN. The first report
on the glucoregulatory effects of the hypothalamic NPY system
appeared in the mid nineties when it was shown that i.c.v.
administration of NPY increases endogenous glucose production in
rats, probably by decreasing hepatic insulin sensitivity [195,196].
Later on these results were confirmed in mice [193]. In view of the
inhibitory effects of hypothalamic insulin receptors on hepatic glucose
production [185,197], the abundant expression of insulin receptors in
the ARC [198], the inhibitory effect of insulin on NPY neuronal activity
[199], and the effects of i.c.v. NPY on sympathetic activity [200–202],
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studies in our group by combining the euglycemic–hyperinsulinemic
clamp technique with the i.c.v. administration of NPY, and hepatic
sympathetic-, parasympathetic- and sham-denervated in rats, con-
firmed once again that i.c.v. NPY is able to block (partially) the
inhibitory effects of hyperinsulinemia on hepatic glucose production,
but it also showed that a specific denervation of hepatic sympathetic
nerves blocks the effect of NPY. Therefore, the brain-mediated
inhibitory effect of insulin on hepatic glucose production is probably
effectuated via an inhibition of NPY neuronal activity in the ARC.
Subsequently, the resulting diminished release of NPY will decrease
the stimulatory input to the sympathetic pre-autonomic neurons in
the PVN and thus reduce the sympathetic stimulation of hepatic
glucose production. The results of Pocai et al. [163], however, show
that also the parasympathetic innervation of the liver is involved in
the inhibitory effect of insulin on hepatic glucose production. This
means that in addition to the effect of NPY on the sympathetic pre-
autonomic neurons there is probably another neurotransmitter that is
responsible for the transmission of insulin's effects in the ARC to the
parasympathetic pre-autonomic neurons in the PVN. Moreover, the
effects of NPY also seem to be specific for glucose production as in
none of the above experiments was there a significant effect on whole
body glucose disposal.

4.3.2. Pro-opiomelanocortin (POMC)
Next to the orexigenic NPY/AGRP neurons, the ARC also contains a

population of anorexigenic POMC/CART-containing neurons. The
most important POMC-derived peptide with respect to feeding and
metabolism is alpha-MSH. The antagonistic function of the NPY/AGRP
and POMC/CART cell populations is most clearly illustrated by the fact
that AGRP acts as an endogenous antagonist of the melanocortin
receptors 3 and 4 [203]. The antagonizing mechanism of these
neuropeptides are extremely important to adapt the hypothalamic–
pituitary–thyroid (HPT) axis to the prevailing food/energy status, i.e.,
the fasting-induced suppression of TRH mRNA in the PVN needs the
reduction in alpha-MSH and the increase in AGRP [204]. Surprisingly,
this antagonistic cell population does not seem to be involved in the
inhibitory effect of hypothalamic insulin on glucose production, as co-
administration of a melanocortin antagonist failed to block the
decrease in glucose production induced by central insulin [205].
Blocking alpha-MSH signaling via i.c.v. infusion of the melanocortin
3/4 receptor (MC3R/MC4R) antagonist SHU9119 has no effects on
glucose metabolism, but i.c.v. infusion of alpha-MSH itself has a clear
stimulatory effect on glucose production via GNG which can be
antagonized by SHU9119. In the liver, the stimulation of GNG is
confirmed by the increased expression of glucose 6-phosphatase
(G6Pase) and PEPCK. In addition, all these central manipulations had
no effects on peripheral glucose uptake. It has been proposed that the
hypothalamic MC3R/MC4R signaling pathway mediates the effects of
systemic leptin on glucose production. Central administration of
leptin has been proven to be involved in liver GNG regulation, by
redistribution of intrahepatic glucose fluxes, in which GNG is
increased and glycogenolysis was suppressed. However, unlike the
central action of insulin to inhibit glucose production [185], this
redistribution action of leptin does not change total glucose
production by the liver [206,207]. Although systemic leptin alone
did not alter hepatic insulin sensitivity, it can enhance the hepatic
insulin sensitivity by the i.c.v. co-infusion of SHU9119 [205]. Indeed,
just like insulin, also the effects of systemic leptin on glucose
production are mediated via a hypothalamic mechanism. Recently, it
was nicely shown that the adenoviral-induced expression of leptin
receptors in the ARC of leptin receptor knock-out animals improves
peripheral insulin sensitivity via enhanced suppression of glucose
production [208]. The ARC-induced expression of the leptin receptor
was associated with a reduced hepatic expression of G6Pase and
PEPCK, but again, no significant changes in the insulin-stimulated
whole body glucose utilization were apparent, which is different
from the leptin action in the VMH on stimulating glucose uptake via
an insulin-independent way [209]. Moreover, the effects of hypotha-
lamic leptin signaling on hepatic insulin sensitivity could be blocked
by a selective hepatic vagotomy, providing further supportive
evidence for the idea that ARC projections to pre-autonomic neurons
(in the PVN) are important for the transmission of the effect of leptin
on glucose production.

4.3.3. Orexin
The neuropeptides orexin-A and orexin-B (also known as

hypocretin-1 and hypocretin-2) were initially identified as the
endogenous ligands for orphan receptors involved in the pathogen-
esis of narcolepsy [210,211]. They were recognized as regulators of
feeding behavior and energy metabolism because of the exclusive
localization of their cell bodies in the lateral hypothalamus (LH), the
induction of feeding upon their i.c.v. administration, their respon-
siveness to peripheral metabolic cues such as leptin and glucose, and
the metabolic phenotype of the knock-out animals. More recent
studies suggest that the orexin system is particularly important for the
maintenance of wakefulness. However, recent data from our group
also clearly revitalize the metabolic function of the orexin system. We
showed that an increased availability of orexin in the central nervous
system, either by i.c.v. infusion, or by local activation via removal of
GABA inhibition, increases plasma glucose concentrations through an
increase in hepatic glucose production. As with NPY also the
stimulatory effect of orexin on glucose production could be blocked
by a hepatic sympathetic but not parasympathetic denervation.
Although it is not entirely clear yet where in the brain orexin is
acting to stimulate glucose production, the i.c.v. infusion experiments
and the presence of a pronounced orexin-containing fiber network in
the PVN suggest that its main action is again at the level of the
sympathetic pre-autonomic neurons in the PVN, but in view of the
electrophysiological data of Van Den Top et al. [212], a direct effect of
orexin at the level of the sympathetic pre-ganglionic neurons in the
intermediolateral column of the spinal cord can also not be excluded.

4.3.4. Pituitary adenylate cyclase activating peptide (PACAP)
PACAP is a 38-amino acid, C-terminally α-amidated neuropeptide

that was originally isolated from the ovine hypothalamus on the basis
of its ability to stimulate adenyl cyclase activity in rat anterior
pituitary cells [213]. Studies conducted in rodents have shown that
PACAP exerts a wide array of biological activities both in the CNS and
in peripheral organs. Again the results from knock-out studies
indicated the involvement of PACAP in glucose metabolism. However,
these studies did not reveal which part of the metabolic phenotype
should be attributed to central signaling pathways of PACAP, although
some evidence for central effects on energymetabolismwas available.
Among others it has been shown that in the brain PACAP decreases
food intake [214,215] and increases plasma glucose [216]. Data
obtained in our lab clearly show that i.c.v. administered PACAP has a
strong effect on glucose production [217]. This effect is very likely
mediated through the pre-autonomic neurons in the hypothalamus,
since i.c.v. infusion of PACAP-38 induced c-Fos is expressed by
sympathetic pre-autonomic neurons in PVN, and sympathetic but not
parasympathetic hepatic denervation can eliminate the hyperglyce-
mic response to i.c.v. infusion of PACAP-38.

4.3.5. Glucagon-like peptide 1 (GLP-1)
Besides the above mentioned effects of GLP-1 as a metabolic signal

sensed by the liver portal vein nervous system, GLP-1 is also known to
decrease food intake in rodents and humans [218,219]. The anorectic
effects of GLP-1 are probably mediated through both peripheral and
central mechanisms, as a population of GLP-1 positive neurons is
located in the brainstem and projects to hypothalamic and brainstem
areas important in the control of energy homeostasis [220,221]. GLP-1
is also involved in glucose metabolism and may lower plasma glucose
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levels through multiple mechanisms [222], including central mechan-
isms. First, Knauf et al. [223] demonstrated that during hyperglycemia
i.c.v. administered GLP-1 decreases non-insulin-dependent muscle
glucose uptake. Although the hypothalamic GLP-1 projections from
the brainstem target both the PVN and the ARC [220], it was shown
that direct administration of GLP-1 in the ARC, but not in the PVN,
reduces glucose production [141]. On the other hand, GLP-1
administration in the PVN causes a decrease in food intake.
Interestingly, GLP-1 receptor mRNA is also expressed in ∼70% of the
ARC-POMC neurons. These data seem to suggest that both central and
peripheral GLP-1 can regulate food intake and glucose homeostasis,
and provides a nice example of how the peripheral and central effects
of a hormone/neurotransmitter can work synergistically to regulate
glucose homeostasis.

Most of the above mentioned neuropeptides share a common
effective hypothalamic area i.e., the PVN, but not for all of them has it
been fully proven yet that they regulate specifically glucose
metabolism via the PVN. In our studies and studies of others, central
administration of orexin-A, PACAP-38, NPY [224] and synthetic MC3R
andMC4R agonists [225] are all associated with Fos immunoreactivity
in this nucleus. Moreover, for the PACAP-38 induced Fos-ir neurons in
the PVN we have shown that they project to the sympathetic pre-
ganglionic neurons in the spinal cord. Since some of these peptides are
orexigenic (orexin, NPY, and MCH), while others (POMC and PACAP)
are anorexigenic, this suggests that the mechanism of feeding
regulation is separated from that of glucoregulation. Secondly,
sympathetic and parasympathetic pre-autonomic neurons in the
PVN are separated [226]; this brings about the question, whether the
neuropeptidergic effects we just described can be categorized into
two groups, depending on their specific effects on either the
sympathetic or parasympathetic output pathway. In our studies, the
orexin-A and PACAP-38 induced hyperglycemia can only be blocked
by hepatic sympathetic but not parasympathetic denervation. Also in
the case of NPY, although it does not influence basal glucose turnover,
the suppressive effect on hepatic insulin sensitivity is only blocked by
hepatic sympathetic denervation. On the other hand, it has been
shown that insulin and leptin signaling in ARC influence hepatic
insulin sensitivity also via the vagal nerves, supposedly via another
type of neurotransmission from the ARC (to the PVN) to influence pre-
autonomic neurons in the hypothalamus. Clearly, further studies
combining neuroanatomy and physiology are necessary to reveal this
“parasympathetic pathway”.

4.4. Liver innervation and the balance between glycogenolysis and
gluconeogenesis

Sympathetic stimulation of glycogenolysis is enhanced further via
Ca2+ release from mitochondria, the stimulation of phosphorylaseβ
kinase activity, and the subsequent activation of phosphorylase
activity [227–230]. Vagal efferent activity is thought to regulate
gluconeogenesis (GNG) [163] by targeting liver IL-6 and STAT3
signaling [231] via SirT1 [232]. One important issue in liver glucose
metabolism is how the balance between glycogenolysis and GNG is
regulated, or under which conditions GNG can be augmented.
Clarification of this issue is of direct importance for understanding
the mechanisms that underlie the development of the metabolic
syndrome and, maybe more importantly, how obesity can trigger the
development of type 2 diabetes. One of the hallmarks of type 2
diabetes is the excessive hepatic glucose production. Hepatic insulin
resistance has been considered to be central to the pathophysiology of
the excessive glucose production, especially via an increased GNG
through the increased activity of PEPCK and G6Pase [233]. However,
this change in GNG is not explained by an alteration in glucoregu-
latory hormones. An acute increase or decrease in the insulin
concentration mainly influences the rate of glycogenolysis but has
little effect on GNG in non-diabetic subjects and/or in type 2 diabetic
patients [234–236], and infusion of glucagon in non-diabetic subjects
does not increase the rate of GNG either [237]. In addition, a clear
organization of GNG based on zone can be observed in the liver, with
higher rates of GNG being found in the periportal zone of the rat as
compared to the pericentral zone, both under fed [238] and fasting
conditions [239].

The involvement of brain signaling was thus considered and most
of the evidence highlights the importance of hypothalamic mechan-
isms. Electrical stimulation of the VMH and LH changes the activity of
the gluconeogenic enzyme PEPCK [188], whereas increased insulin
signaling in the mediobasal hypothalamus inhibits liver GNG via the
hepatic vagal innervation [163]. In addition, central administration of
leptin has been shown to redistribute intrahepatic glucose fluxes, in
such a way that GNG is increased and glycogenolysis suppressed.
However, unlike the inhibitory action of central insulin on total
glucose production [191], leptin does not change total liver glucose
production [212,213]. When one of the downstream signaling
components of the leptin—the melanocortin pathway—is interrupted,
total glucose production is decreased due to abolishment of GNG. In
addition, activation of melanocortin receptors can stimulate GNG
[211].

In addition to leptin and insulin, evidence is accumulating that
FFAs are also sensed by the hypothalamus directly. It has been shown
that fatty acids within the hypothalamus stimulate liver GNG [124].
However, it remains to be elucidated where and at what level FFAs
elicit this effect.

Although there are indications that K(ATP) channels in the
mediobasal hypothalamus are involved, the (neuronal) pathways
from brain to liver that control GNG are still poorly defined. In the
hypothalamus, ARC NPY/AGRP neurons, LH orexin neurons and PVN
neurons (in the lateral magnocellular subdivision) are all activated
during fasting [240,241]. Activation of the parvocellular division of the
PVN including the sympathetic pre-autonomic neurons by the
neuropeptide PACAP-38 [223] mainly stimulates glycogenolysis and
hardly changes GNG. Therefore, either there is a cellular differenti-
ation within the PVN with respect to the control of the balance
between GNG and glycogenolysis, or other signaling pathways than
the PVN have to be considered.

In summary, in recent years major progress has been made in the
unraveling of the hypothalamic circuitry that is involved in the control
of hepatic glucose production. This progress involves both the
awareness that many peripheral nutritional and metabolic signals
may “use” the central nervous system as an intermediate to affect
hepatic glucose metabolism, as well as more detailed information on
neural pathways and neurotransmitters able to affect hepatic glucose
production. Themain challenge in the years to comewill be to connect
all these peripheral signals to the appropriate hypothalamic
pathways.

5. Metabolic integration in the liver and brain

5.1. Intrahepatic interaction of neuronal and humoral signals that
control metabolism

Sympathetic and parasympathetic liver efferent nerves contain the
classic aminergic (epinephrine and norepinephrine) and cholinergic
neurotransmitters, as well as peptidergic components such as NPY
which can be co-released with the classic neurotransmitters from
both sympathetic and parasympathetic terminals [242,243]. At the
same time, the liver also receives a large amount of humoral
information via the portal vein or arterial inputs. One of the unsettled
issues is the interaction between the humoral signals and the
neuronal signals that the liver receives during different energetic
situations. First of all, insulin has an antagonizing effect on
sympathetic (adrenergic) stimulation of glucose production [244],
probably by interrupting the Ca2+ flux into the mitochondria of the
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hepatocytes [245]. Secondly, sympathetic nerve stimulation in the
presence of glucagon increases the output of glucose further and
reduces the enhanced lactate uptake by glucagon [244]. These data
implicate that the stimulatory effects of hepatic nerves on glucose
output can be modulated by circulating glucoregulatory hormones.
The opposite pathway, i.e., neuronal signals modulating a hormonal
signal, does not seem to exist since in dogs complete liver denervation
has no clear effects on the glucose production-increasing properties of
glucagon [246].

NPYmay interact with both humoral and neuronal signaling in the
liver. In dogs, NPY infusion into the portal vein stimulates hepatic
glucose uptake without significantly altering whole body glucose
disposal [247]. On the other hand, although NPY per se is not able to
directly regulate hepatic glucose production, it can inhibit the
stimulatory effects of glucagon and noradrenaline on glucose
production [248]. In contrast to NPY, galanin, the other neuropeptide
released from the celiac ganglion as a sympathetic neurotransmitter,
has no effects on its ownwhen infused into the portal vein, but it does
potentiate the action of norepinephrine to stimulate hepatic glucose
production [249].

It has been hypothesized that insulin induces liver glucose uptake
and storage into glycogen when the glucose level is higher in the
portal vein than in the hepatic artery (portal–artery gradient). Thus
this gradient sensing is involved in the stimulatory action of insulin on
liver glucose uptake [250]. This process can be augmented by vagal
stimulation as mimicked by an intraportal infusion of acetylcholine
[251]. Type 3muscarinic receptors in the hepatocyte possibly mediate
these effects [179]. In contrast, blocking vagal efferent signals by
atropine can inhibit insulin-mediated glucose uptake under the
portal–artery gradient situation [252]. Not surprisingly, the effects
of vagal activation on the effects of glucagon are opposite to its
synergistic action on insulin, i.e., the glucagon-stimulated glucose
release is antagonized by either vagal nerve stimulation or Ach [253].
Whether these interactions take place at the level of receptor
sensitivity or are due to a direct influence on the fractional extraction
of these hormones is not clear.

5.2. The brain as an intermediary for the outflow of metabolic liver
information to other organs

The increased PPAR activity in the liver needs intact vagal afferents
to the brain in order to result in the expected systemic effects [254].
Interestingly, vagal inputs seem to be mediating strikingly different
signals, since on the one hand disruption of vagal afferent fibers can
prevent PPARα mediated glucocorticoid-induced metabolic derange-
ments including insulin resistance [255], whereas on the other hand
they are also essential for hepatically expressed PPARγ2 to increase
insulin sensitivity [254]. Again, this brings back the topic of the
location of vagal sensing: due to the apparent lack of vagal afferent
innervation in parenchyma, the above-describedmechanisms seem to
depend mainly on sensors located in the portal region. Within the
brain–liver circuit, hepatoportal afferents and efferents form an
autonomic feedback loop. This circuit could be “built” as a simple
sensory-motor reflex, but most likely involves a complex brain
mechanism [87].

Net hepatic glucose uptake is more pronounced when glucose is
loaded directly into the portal vein instead of into the general
circulation, despite controlled insulin and glucagon levels [256–259].
This means that the hepatoportal signal evoked by glucose has to be
sensed by a specific pathway. Indeed, it was reported that an intact
nerve supply to the liver is vital for this response. First, after a
complete liver denervation the extra uptake by the overload of
glucose into the portal vein was blocked [256]; second, after hepatic
vagotomy liver glucose uptake was decreased by approximately 40%
under euglycemic–hyperinsulinemic conditions during portal glucose
infusions [260]. It is therefore logical to expect that the storage of
glucose in the liver will be changed by interruption of liver
innervation. However, a complete denervation only changes the
variability of both glycogen synthesis and GNG but not its absolute
level [261,262]. The central pathway can thus influence these
processes, but the liver also contains a strong autoregulatory
mechanism. Interestingly, under hyperinsulinemic conditions, total
hepatic glucose production can be increased during portal glucose
loading [260]. This raises the possibility that the autonomic nerves
interact with insulin signaling as discussed before.

Stimulation of the hepatoportal glucose sensors by glucose
infusions can stimulate glucose uptake in the heart, brown adipose
tissue, and muscle. These portal glucose-induced changes in glucose
utilization involve both an insulin-dependent and an insulin-
independent mechanism [263]. The insulin-independent mechanism
possibly relates to GLUT-4 and AMP-activated protein kinase (AMPK)
signaling in muscle [264]. Besides glucose, high physiological doses of
GLP-1 infusion in the portal vein are also able to stimulate glucose
clearance in non-hepatic tissues [110].

5.3. CNS integration of liver and blood borne metabolic information

The brain controls energy metabolism by balancing energy
expenditure and energy intake and/or production. In order to
maintain the right balance, the brain, liver, gastrointestinal and
other metabolic sensing mechanisms, either via the neuronal or the
humoral pathway, cannot be separated from each other.

From the information provided above it is clear that a multilevel
network is dedicated to receiving and relaying the liver and other
visceral metabolic information to the brain via both hormonal and
neuronal routes. The first order of convergence for the neural
information frommetabolic sensing from the different visceral organs
is found at the level of the nodose and dorsal root ganglia. Hereafter,
the second level for convergence of information is in the NTS and the
dorsal horn of spinal cord. Although this has never been investigated
specifically for the liver, there is the possibility of an ultrashort
feedback loop via projections from the dorsal horn to IML, or fromNTS
to the dorsal motor nucleus of the vagus (DMV). Interestingly,
although spinal ascending pathways and the NTS both project into the
parabrachial nuclei (PB), the topographic separation of spinal and NTS
inputs into PB [265] does not make this area a likely integration place
for spinal and vagal inputs. One of the possible integration sites in the
midbrain is the periaqueductal gray matter (PAG), which receives
inputs from both the general-visceral recipient part of the NTS and the
thoracic spinal cord [266]. How this sympathetic–parasympathetic
integration overlaps or “interferes” with the proposed columnar
organization of the PAG [267] in the control of liver metabolism is not
yet known.

Within the hypothalamus, the lateral hypothalamus (LH) has been
reported to respond to portal vein infusions of glucose or CCK
[268,269]. The responses to glucose were not found in other
hypothalamic areas like the supraoptic nucleus, PVN or ventromedial
hypothalamus [270]. Furthermore, the excitability of LH neurons
seems to follow the rhythm of the day/night cycle [271]. Interestingly,
splanchnic denervation eliminates the LH responses to glucose,
whereas vagal denervation exaggerates this response [270]. These
data suggest that the LH receives both spinal and vagal liver glucose
sensing information and thus may be one of the main hypothalamic
integration areas for these neuronal inputs.

Regarding the integration of neuronal and humoral sensing
information, the arcuate nucleus, which is the unique metabolic
sensor for almost all circulating metabolites and their relatives, is a
strong candidate for the integration of humoral and vagal inputs via
the NTS-ARC projection [272]. Another major candidate is the PVN, as
both sympathetic and parasympathetic metabolic sensing informa-
tion reaches the PVN by direct and indirect pathways [70]. Moreover,
other forebrain areas, such as the bed nucleus of the stria terminalis
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and a number of hypothalamic nuclei also innervate the PVN. This
unique position allows the PVN to integrate a very broad spectrum of
neuronal and humoral metabolic sensing information and to organize
its autonomic and neuroendocrine outflow consequently according to
these different inputs.

Finally, at the level of the hypothalamus probably also the
integration of information from the metabolic–homeostatic system
and the cognitive–hedonic processes involved in the control of energy
balance and food intake take place, as information from the limbic
system and cortex also reaches the PVN via projections to the BNST
and subPVN [273].

Vice versa it is clear that hepatic autonomic afferents transmit
glucosensing information to higher brain areas, but how the many
different brain regions are involved in accepting and integrating this
information is still very ill defined. However, a very recently published
anatomical study on the communication within the hypothalamic,
cortical and mesolimbic circuitries involved in the regulation of
energy balance, provides a clear clue that indeed neuronal pathways
do transfer energy sensory information from the hypothalamus to
cerebral cortex [274].

6. Discussion and perspectives

6.1. What can be learned from “gain of function” and “loss of function”
studies?

Despite all the evidence for manipulation-induced effects of
neuronal elements on liver glucose and lipid metabolism, the
physiological significance of the afferent and efferent liver innerva-
tions is still not clear.

Liver transplanted humans and animals are suitable models to
study the consequences of a complete denervation on liver metab-
Fig. 2. Summary of the hepatic metabolic sensing and the neuronal pathways involved. Va
olism. In liver transplanted patients, no reinnervation of either hepatic
sympathetic efferent or afferent nerves has been observed until
30 months [275]. In transplanted rats, by using growth-associated
protein (GAP)-43 as an axonal marker, regenerating axons possibly
originating from parasympathetic ganglion cells in the hepatic hilus of
liver allografts have been observed [276,277], but a centrally derived
reinnervation has never been claimed.

Liver transplanted patients have relatively normal insulin-dependent
glucosemetabolism, andafter a long termrecovery fromthe initial effects
of the immunosuppressive treatment, also protein and FFA metabolism
return to nearly normal [108,278]. When comparing results from
matched healthy subjects and kidney-transplant patients who received
immunosuppressive medication similar to that received by the liver
transplant patients, exercise data showed that glucose production
increased to a similar extent in control subjects as in liver transplanted
patients [279].

In mice, 9 months after orthotopic liver transplantation, body
weight and other hepatic and general metabolic parameters are in the
normal range, despite an increase in LDL cholesterol, LDL/HDL ratio
and in hepatic glucose production. In short-term (2 weeks) com-
pletely liver denervated dogs, liver glycogenolysis response to a
physiological increase in glucagon is unaltered [246], despite the fact
that in the intact situation vagal activity will antagonize the effects of
glucagon. A similar observation has been made in other experimental
animals [262].

Taken together, these data indicate that the direct efferent liver
innervationmay not be essential for maintaining normal liver glucose,
amino acid and lipid metabolism, and that autoregulatory mechan-
isms inside the liver are fully able to control liver metabolism in basal
(i.e., non-stimulated) conditions. However, the defective hypoglyce-
mic counterregulation observed in liver transplanted individuals, as
discussed before, suggests that the autonomic innervation of the liver
gal and sympathetic afferents originate from both the liver itself and the portal vein.
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might be more essential during “fight or flight” responses, by
triggering catabolic responses such as stimulation of glucose output
via a fast neuronal pathway, preparing the individual for emergency
conditions. Interestingly, if only a sympathetic or parasympathetic
liver denervation is performed, the normal daily rhythm in plasma
glucose concentrations is eliminated but a complete denervation of
both branches simultaneously does not result in such disturbed
glucose rhythmicity [280]. Apparently for the remaining humoral and
autoregulatory control systems it is easier to maintain a balanced
glucose output without any autonomic innervation, than with an
unbalanced autonomic input. These findings support the idea that
disorders of (hepatic) glucose metabolism are more likely to be
derived from an unbalanced autonomic input to the liver than from a
complete absence of such inputs.

6.2. Perspective

From the viewpoint of whole body harmonization, afferent liver
signaling is important for allowing the brain to synchronize liver
physiology with that of other parts of the body. The liver can be
considered as a primary nutritional sensor, while the brain serves as
an overall energy sensor. Metabolic sensing in the liver is organized in
such a way that most of the metabolic signals that indicate
“plentifulness” are sensed by the vagal nerves, i.e., high concentra-
tions of glucose and lipid absorbed from food, leptin released from
adipose tissue, and lipid-activated PPARs activity (Fig. 2). Continuous
high levels of lipid sensed by the portal vein nerves may lead this
sensing system to increase its threshold; consequently more lipids are
needed to generate the appropriate afferent signal. In a chronic
situation this may mean that the brain integration center loses this
piece of peripheral information. However, whether this eventually
results in a profound loss of feedback about the metabolic situation
from periphery to the brain needs to be investigated. Probably,
parallel running humoral factors such as the newly defined lipid
sensor ghrelin O-acyl transferase (Goat)-ghrelin can also signal to the
brain about the availability of energy [281], and this pathway may
either complete the neuronal metabolic sensing from liver or even
take over when neuronal sensing from the liver is not available, for
instance after liver transplantation. Checking the metabolic profile
after blocking the (Goat)-ghrelin signaling with hepatic vagal
denervation could test this possibility.

In contrast to vagal innervation, spinal nerves predominantly sense
the “inadequate” metabolic information, especially the lack of glucose.
These opposing roles might also be involved in a dysbalance during
pathophysiological states. One of the hypotheses is that a hypoglycemia
counterregulation pathway may be activated inappropriately during a
euglycemic or hyperglycemic condition, driving the liver continuously
to produce glucose, and overriding the inhibition from insulin.
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