Markov model for evaluating the long-term cost-effectiveness of clopidogrel in patients with NSTEMI was adapted and extended by using local utility and economic values. The effect of clopidogrel was applied during the first year in the model and was estimated by the CURE trial. Costs assigned to each health state included antiplatelet treatment cost, cost for the management of adverse events and the costs for concomitant medication, hospitalization, outpatient visits, rehospitalizations, and the cost of not taking the medication. The incremental cost-effectiveness ratio (ICER) was calculated. A probabilistic sensitivity analysis was conducted in order to assess the impact of all uncertain model parameters varying simultaneously. The results are presented as mean (95% Uncertainty Interval (UI)). RESULTS: The analysis showed a discounted survival of 10.18 (8.34–10.10) years in the aspirin + clopidogrel treatment group, 7.57 (6.27–8.30) years in the aspirin + clopidogrel treatment group, respectively, resulting in a difference of 0.4 (0.10-0.70) years. The meanIncremental cost-effectiveness ratio (ICER) was calculated to be €3487 (14,848–16,715) and €15,392 (14,301–16,535), for aspirin and clopidogrel treatment arm, respectively, a difference of €684 (525–1067). The ICER was €1629 (3342–16,557) for each life-year saved and €3835 (4387–5647) for each LY gained. For a willingness-to-pay threshold of €5500 per discounted QALY, clopidogrel + aspirin is cost-effective in more than 95% of randomly sampled analyses. CONCLUSIONS: Treatment with clopidogrel in addition to aspirin is a cost-effective treatment option in patients with NSTEMI from the perspective of a third-party payer in Greece.

PCV79
ECONOMIC EVALUATION OF ROSUVASTATIN VERSUS ATORVASTATIN, SIMVASTATIN AND PRAVASTATIN IN HIGH RISK PATIENTS TREATED FOR PRIMARY AND SECONDARY PREVENTION OF CORONARY ARTERY DISEASE IN GREECE
Fragoulakis V, Kourlaba G, Maniadakis N, National School of Public Health, Athens, Greece
OBJECTIVES: To evaluate common therapeutic alternatives (rosuvastatin, atorvastatin, simvastatin, pravastatin) for the prevention of primary and secondary cardiovascular events in Greece. METHODS: A Markov model with distinct health states (event, no event, fatal/non fatal acute myocardial infarction (MI), fatal/non fatal stroke, rehospitalization and nursing). The incremental cost-effectiveness ratio (ICER) was calculated to be €16,863–20,939 and €21,039 (20,006–22,089), for aspirin and clopidogrel treatment arm, respectively. The ICER was calculated to be €4,921 (€3,079–€9,969) for each LYS and €6,326 (€3,737–€16,699) for each QALY saved. For a “willingness-to-pay” threshold of €9,500 per discounted QALY, clopidogrel was found to be cost-effective in more than 95% of randomly sampled analyses. CONCLUSIONS: This economic analysis indicates that treatment with clopidogrel for secondary prevention of cardiovascular events in atherothrombotic patients is a cost-effective anti-platelet treatment over aspirin in a Greek third-party payer perspective.