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The aim of this paper is to go deeper into the study of local minimality and its connection
to some naturally related properties. A Hausdorff topological group (G, τ ) is called locally
minimal if there exists a neighborhood U of 0 in τ such that U fails to be a neighborhood
of zero in any Hausdorff group topology on G which is strictly coarser than τ . Examples
of locally minimal groups are all subgroups of Banach–Lie groups, all locally compact
groups and all minimal groups. Motivated by the fact that locally compact NSS groups
are Lie groups, we study the connection between local minimality and the NSS property,
establishing that under certain conditions, locally minimal NSS groups are metrizable.
A symmetric subset of an abelian group containing zero is said to be a GTG set if it
generates a group topology in an analogous way as convex and symmetric subsets are
unit balls for pseudonorms on a vector space. We consider topological groups which
have a neighborhood basis at zero consisting of GTG sets. Examples of these locally GTG
groups are: locally pseudoconvex spaces, groups uniformly free from small subgroups (UFSS
groups) and locally compact abelian groups. The precise relation between these classes of
groups is obtained: a topological abelian group is UFSS if and only if it is locally minimal,
locally GTG and NSS. We develop a universal construction of GTG sets in arbitrary non-
discrete metric abelian groups, that generates a strictly finer non-discrete UFSS topology
and we characterize the metrizable abelian groups admitting a strictly finer non-discrete
UFSS group topology. Unlike the minimal topologies, the locally minimal ones are always
available on “large” groups. To support this line, we prove that a bounded abelian group G
admits a non-discrete locally minimal and locally GTG group topology iff |G| � c.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Minimal topological spaces have been largely studied in the literature [7]. Minimal topological groups were introduced
independently by Choquet, Doïtchinov [14] and Stephenson [36]: a Hausdorff topological group (G, τ ) is called minimal
if there exists no Hausdorff group topology on G which is strictly coarser than τ . The major problem that determined
the theory of minimal abelian groups was establishing precompactness of the abelian minimal groups (Prodanov–Stoyanov’s
theorem [13, Theorem 2.7.7]; for recent advances in this field see [9,10,13]).
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Generalizations of minimality were recently proposed by various authors. Relative minimality and co-minimality were
introduced by Megrelishvili in [24] (see also [11,34]). The notion of local minimality (see Definition 2.1) was introduced by
Morris and Pestov in [26] (see also Banakh [5]). A stronger version of this notion was used in [12] to characterize the locally
compact subgroups of infinite products of locally compact groups.

We start Section 2 with some permanence properties of local minimality (with respect to taking closed or open sub-
groups). We prove in Theorem 2.8 that nw(G) = w(G) for every locally minimal group (in particular, all countable locally
minimal groups are metrizable). Section 2.2 is dedicated to the NSS groups. Let us recall, that a topological group (G, τ ) is
called NSS group (resp., NSnS group) if a suitable zero neighborhood contains only the trivial (resp., normal) subgroup. The
relevance of the NSS property comes from the fact that it characterizes the Lie groups within the class of locally compact
groups. Since local minimality generalizes local compactness, it is quite natural to investigate local minimality combined
with the NSS property. It turns out that locally minimal abelian NSS groups are metrizable (Proposition 2.13), which should
be compared with the classical fact that locally compact NSS groups are Lie groups (hence, metrizable). We do not know
whether “abelian” can be removed here (cf. Question 6.7).

Section 3 is dedicated to a property, introduced by Enflo [15] that simultaneously strengthens local minimality and the
NSS property. A Hausdorff topological group is UFSS (Uniformly Free from Small Subgroups) if its topology is generated
by a single neighborhood of zero in a natural analogous way as the unit ball of a normed space determines its topology
(a precise definition is given in Definition 3.1 below). In Proposition 3.8 we show that locally minimal NSnS precompact
groups are UFSS (hence minimal NSS abelian groups are UFSS). Local minimality presents a common generalization of local
compactness, minimality and UFSS. Since the latter property is not sufficiently studied, in contrast with the former two, we
dedicate Section 3.2 to a detailed study of the permanence properties of this remarkable class. We show in Proposition 3.12
that UFSS is stable under taking subgroups, extensions (in particular, finite products), completions and local isomorphisms.

In Section 4 we introduce the concept of a GTG set that, roughly speaking, is a symmetric subset U of a group G
containing 0, with an appropriate convexity-like property (i.e., these sets are generalizations of the symmetric convex sets
in real vector spaces, see Definition 4.2). A topological group is called locally GTG, if it has a base of neighborhoods of 0 that
are GTG sets. Since locally precompact abelian groups, as well as UFSS groups, are locally GTG, this explains the importance
of this new class. On the other hand, minimal abelian groups are precompact, so minimal abelian groups are both locally
minimal and locally GTG. We prove in Theorem 5.10 that a Hausdorff abelian topological group is UFSS iff it is locally
minimal, NSS and locally GTG. According to a theorem of Hewitt [20], the usual topologies on the group T and the group R
have the property that the only strictly finer locally compact group topologies are the discrete topologies. Since locally
minimal locally GTG topologies generalize the locally compact group topologies, it would be natural to ask whether the
groups T and R admit stronger non-discrete locally minimal locally GTG topologies. In Corollary 4.24 we give a strongly
positive answer to this question for the large class of all non-totally disconnected locally compact metrizable abelian groups
and for the stronger property of UFSS topologies. To this end we develop, in Theorem 4.21, a universal construction of GTG
sets in arbitrary non-discrete metric abelian groups, that generates a strictly finer non-discrete UFSS topology.

The description of the algebraic structure of locally minimal abelian groups seems to be an important problem. Its solution
for the class of compact groups by the end of the fifties of the last century brought a significant development of the theory
of infinite abelian groups. This line was followed later also in the theory of minimal groups, but here the problem is still
open even if solutions in the case of many smaller classes of abelian groups are available [9, §§4.3, 7.5], [13, chapter 5].
Unlike the minimal topologies, the locally minimal ones are always available on “large” groups. To support this line, we prove
in Theorem 5.18 that a bounded abelian group G admits a non-discrete locally minimal and locally GTG group topology iff
|G| � c (and this occurs precisely when G admits a non-discrete locally compact group topology). Analogously, in another
small group (namely, Z), the non-discrete locally minimal and locally GTG group topologies are not much more than the
minimal ones (i.e., they are either UFSS or have an open minimal subgroup, see Example 5.16). This line will be pursued
further and in more detail in the forthcoming paper [4] where we study also the locally minimal groups that can be
obtained as extensions of a minimal group via a UFSS quotient group.

In the next diagram we collect all implications between all properties introduced so far:

discrete compact

locally compact loc.min. & loc.GTG minimal

loc. min.

countable

loc.GTG & loc.min. & NSS UFSS minimal & NSS

metrizable loc.min. & NSS normed spaces
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All the implications denoted by a solid arrow are true for arbitrary abelian groups, those that require some additional
condition on the group are given by dotted arrows accompanied by the additional condition in question. We give separately
in the next diagram only those arrows that are valid for all, not necessarily abelian, topological groups.

discrete compact

locally compact loc.min.

countable

minimal

metr. loc.min. & NSS??? UFSS

loc.min. & NSnS & precompact

We dedicate this paper to the memory of Ivan Prodanov, whose ideas and results form the core of the theory of minimal
groups.

1.1. Notation and terminology

The subgroup generated by a subset X of a group G is denoted by 〈X〉, and 〈x〉 is the cyclic subgroup of G generated by
an element x ∈ G . The order of x ∈ G is denoted by o(x). The abbreviation K � G is used to denote a subgroup K of G .

We use additive notation for a not necessarily abelian group, and denote by 0 its neutral element. We denote by N, N0
and P the sets of positive natural numbers, non-negative integers and primes, respectively; by Z the integers, by Q the
rationals, by R the reals, and by T the unit circle group which is identified with R/Z. The cyclic group of order n > 1 is
denoted by Z(n). For a prime p the symbol Z(p∞) stands for the quasicyclic p-group and Zp stands for the p-adic integers.

The torsion part t(G) of an abelian group G is the set {x ∈ G: nx = 0 for some n ∈ N}. Clearly, t(G) is a subgroup of G .
For any p ∈ P, the p-primary component G p of G is the subgroup of G that consists of all x ∈ G satisfying pnx = 0 for some
positive integer n. For every n ∈ N, we put G[n] = {x ∈ G: nx = 0}. We say that G is bounded if G[n] = G for some n ∈ N. If
p ∈ P, the p-rank of G , rp(G), is defined as the cardinality of a maximal independent subset of G[p] (see [32, Section 4.2]).
The group G is divisible if nG = G for every n ∈ N, and reduced, if it has no divisible subgroups beyond {0}. The free rank
r(G) of the group G is the cardinality of a maximal independent subset of G . The socle of G , Soc(G), is the subgroup of G
generated by all elements of prime order, i.e. Soc(G) = ⊕

p∈P
G[p].

We denote by Vτ (0) (or simply by V (0)) the filter of neighborhoods of the neutral element 0 in a topological group
(G, τ ). Neighborhoods are not necessarily open.

For a topological group G we denote by G̃ the Raı̆kov completion of G . We recall here that a group G is precompact if G̃
is compact (some authors prefer the term “totally bounded”).

We say a topological group G is linear or is linearly topologized if it has a neighborhood basis at 0 formed by open
subgroups.

The cardinality of the continuum 2ω will be also denoted by c. The weight of a topological space X is the minimal
cardinality of a basis for its topology; it will be denoted by w(X). The netweight of X is the minimal cardinality of a
network in X (that is, a family N of subsets of X such that for any x ∈ X and any open set U containing x there exists
N ∈ N with x ∈ N ⊆ U ). The netweight of a space X will be denoted by nw(X). The character χ(X, x) (resp. pseudocharacter
ψ(X, x)) of a space X at a point x is the minimal cardinality of a basis of neighborhoods of x (resp. a family of open
neighborhoods of x whose intersection is {x}); if X is a homogeneous space, it is the same at every point and we denote
it by χ(X) (resp. ψ(X)). The Lindelöf number l(X) of a space X is the minimal cardinal κ such that any open cover of X
admits a subcover of cardinality not greater than κ .

By a character on an abelian topological group G it is commonly understood a continuous homomorphism from G into
the unit circle group T.

Let U be a symmetric subset of a group (G,+) such that 0 ∈ U , and n ∈ N. We define (1/n)U := {x ∈ G: kx ∈ U ∀k ∈
{1,2, . . . ,n}} and U∞ := {x ∈ G: nx ∈ U ∀n ∈ N}.

Recall that a non-empty subset U of a real vector space is starlike whenever [0,1]U ⊆ U . Note that if U is starlike and
symmetric then (1/n)U = 1

n U ; in general, for symmetric U : (1/n)U = ⋂n
k=1

1
k U .

All unexplained topological terms can be found in [16]. For background on abelian groups, see [17] and [32].
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2. Local minimality

2.1. The notion of a locally minimal topological group

In this section we recall the definition and basic examples of locally minimal groups, and prove that for locally minimal
groups the weight and the netweight coincide.

Definition 2.1. A Hausdorff topological group (G, τ ) is locally minimal if there exists a neighborhood V of 0 such that
whenever σ � τ is a Hausdorff group topology on G such that V is a σ -neighborhood of 0, then σ = τ . If we want to point
out that the neighborhood V witnesses local minimality for (G, τ ) in this sense, we say that (G, τ ) is V -locally minimal.

Remark 2.2. As mentioned in [12], one obtains an equivalent definition replacing “V is a σ -neighborhood of 0” with “V has
a non-empty σ -interior” above.

It is easy to see that if local minimality of a group G is witnessed by some V ∈ Vτ (0), then every smaller U ∈ Vτ (0)

witnesses local minimality of G as well.

Example 2.3. Examples for locally minimal groups:

(a) If G is a minimal topological group, G is locally minimal [G witnesses local minimality of G].
(b) If G is a locally compact group, G is locally minimal [every compact neighborhood of zero witnesses local minimality

of G [12]].
(c) It is easy to check that a normed space (E, τ ) with unit ball B is B-locally minimal.

We start with some permanence properties of locally minimal groups.

Proposition 2.4. A group having an open locally minimal subgroup is locally minimal.

Proof. Let H be a locally minimal group witnessed by U ∈ V H (0) and suppose that H is an open subgroup of the Hausdorff
group (G, τ ). Then U is a neighborhood of 0 in G . Assume that σ is a Hausdorff group topology on G coarser than τ
such that U is a neighborhood of 0 in (G, σ ). Then τ |H � σ |H and since U is a neighborhood of 0 in (H, σ |H ), we obtain
τ |H = σ |H . Since U is a neighborhood of 0 in (G, σ ), the subgroup H is open in σ and hence σ = τ . �

In the other direction we can weaken the hypothesis “open subgroup” to the much weaker “closed subgroup”, but we
need to further impose the restraint on H to be central.

Proposition 2.5. Let G be a locally minimal group and let H be a closed central subgroup of G. Then H is locally minimal.

Proof. Let τ denote the topology of G and let V 0 ∈ V(G,τ )(0) witness local minimality of (G, τ ). Choose V 1 ∈ V(G,τ )(0) such
that V 1 + V 1 ⊆ V 0. We show that V 1 ∩ H witnesses local minimality of H . Suppose σ is a Hausdorff group topology on H
coarser than τ |H such that V 1 ∩ H is σ -neighborhood of 0. It is easy to verify that the family of sets (U + V ) where U
is a σ -neighborhood of 0 in H and V is a τ -neighborhood of 0, forms a neighborhood basis of a group topology τ ′ on G
which is coarser than τ . Let us prove that τ ′ is Hausdorff: Therefore, observe that for a subset A ⊆ H we have Aτ ⊆ Aσ ,
since H is closed in τ . Hence we obtain {0}τ ′ = ⋂{U + V : U ∈ V(H,σ )(0), V ∈ V(G,τ )} = ⋂

U∈V(H,σ )(0)

⋂
V ∈V(G,τ )(0) U + V =⋂

U∈V(H,σ )(0) U τ ⊆ ⋂
U∈V(H,σ )(0) Uσ = {0} since σ was assumed to be Hausdorff.

Moreover, if W ∈ Vσ (0) such that W ⊆ V 1 ∩ H , then W + V 1 ⊆ V 0 implies that V 0 ∈ V(G,τ ′)(0). By the choice of V 0 this
yields τ ′ = τ . Hence σ = τ . �
Corollary 2.6. An open central subgroup U of a topological group G is locally minimal iff G itself is locally minimal.

These results leave open the question on whether “central” can be omitted in the above corollary and Proposition 2.5
(see Question 6.8).

The question whether the product of two minimal (abelian) groups is again minimal was answered negatively by Doïtchi-
nov in [14] where he proved that (Z, τ2)×(Z, τ2) is not minimal although the 2-adic topology τ2 on the integers is minimal.
We will show in Proposition 5.17 that (Z, τ2) × (Z, τ2) is not even locally minimal.

Next we are going to see some cases where metrizability can be deduced from local minimality. We start with a gen-
eralization to locally minimal groups of the following theorem of Arhangel’skij: w(G) = nw(G) for every minimal group; in
particular, every minimal group with countable netweight is metrizable. For that we need the following result from [1]:

Lemma 2.7. Let κ be an infinite cardinal and let G be a topological group with
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(a) ψ(G) � κ ;
(b) G has a subset X with 〈X〉 = G and l(X) � κ .

Then for every family of neighborhoods B of the neutral element 0 of G with |B| � κ there exists a coarser group topology τ ′ on G
such that w(G, τ ′) � κ and every U ∈ B is a τ ′-neighborhood of 0.

Theorem 2.8. For a locally minimal group (G, τ ) one has w(G) = nw(G). In particular, every countable locally minimal group is
metrizable.

Proof. Let κ = nw(G) and let N be a network of G of size κ . Then also ψ(G) � κ as⋂
{G \ B: 0 /∈ B, B ∈ N } = {0}.

Moreover, the Lindelöf number l(G) of G is � κ . Indeed, if G = ⋃
i∈I Ui and each Ui is a non-empty open set, then by the

definition of a network for every x ∈ G there exist ix ∈ I and Bx ∈ N such that x ∈ Bx ⊆ Uix . [For z ∈ G we choose y ∈ Y such
that Bz = B y and obtain z ∈ Bz = B y ⊆ Ui y .] Let N1 = {Bx: x ∈ G} and Y ⊆ G such that the assignment Y → N1, defined by
Y � x → Bx , is bijective. Then |Y | � κ and G = ⋃

y∈Y Ui y . This proves l(G) � κ .
To end the proof of the theorem apply Lemma 2.7 taking X = G and any family B of size κ of τ -neighborhoods of 0

containing U as a member and witnessing ψ(G) � κ (i.e.,
⋂

B = {0}). This gives a Hausdorff topology τ ′ � τ on G satisfying
the conclusion of the lemma. By the local minimality of (G, τ ) we conclude τ ′ = τ . In particular, w(G, τ ) � κ . Since always
nw(G) � w(G), this proves the required equality w(G) = nw(G).

Now suppose that G is countable. Then nw(G) = ω, so the equality w(G) = nw(G) implies that G is second countable, in
particular metrizable. �
Remark 2.9.

(a) The fact that every countable locally minimal group (G, τ ) is metrizable admits also a straightforward proof. Indeed, let
{xn: n ∈ N} = G \ {0} and let U0 be a neighborhood of 0 such that G is U0-locally minimal. Then there exists a sequence
of symmetric neighborhoods of zero (Un) satisfying Un + Un ⊆ Un−1, xn /∈ Un , Un ⊆ ⋂n−1

k=1(xk + Un−1 − xk) for all n ∈ N.
Since

⋂∞
n=1 Un = {0}, the family (Un) forms a base of neighborhoods of 0 of a metrizable group topology σ � τ on G

with U0 ∈ σ . Hence τ = σ is metrizable.
(b) A similar direct proof shows that every locally minimal abelian group (G, τ ) of countable pseudocharacter is metrizable.

Here “abelian” cannot be removed, since examples of minimal (necessarily non-abelian) groups of countable pseu-
docharacter and arbitrarily high character (in particular, non-metrizable) were built by Shakhmatov [33].

2.2. Groups with no small (normal) subgroups

In this subsection we show that groups with no small (normal) subgroups are closely related to locally minimal groups
and study some of their properties.

Definition 2.10. A topological group (G, τ ) is called NSS group (No Small Subgroups) if a suitable neighborhood V ∈ V (0)

contains only the trivial subgroup.
A topological group (G, τ ) is called NSnS group (No Small normal Subgroups) if a suitable neighborhood V ∈ V (0) contains

only the trivial normal subgroup.

The distinction between NSS and NSnS will be necessary only when we consider non-abelian groups (or non-compact
groups, see Remark 3.6 below).

Example 2.11. Examples for NSS and non-NSS groups:

(a) The unit circle T is an NSS group.
(b) Montgomery and Zippin’s solution to Hilbert’s fifth problem asserts that every locally compact NSS group is a Lie group.
(c) Any free abelian topological group on a metric space is a NSS group [27].
(d) A dichotomy of Hausdorff group topologies on the integers: Any Hausdorff group topology τ on the integers is NSS if

and only if it is not linear. Indeed, suppose that τ is not NSS; let U be a closed neighborhood of 0. By assumption,
U contains a non-trivial closed subgroup H which is of the form nZ (n � 1). Since Z/nZ is a finite Hausdorff group, it
is discrete and hence nZ is open in Z. This shows that τ is linear.

(e) A group G is topologically simple if G has no proper closed normal subgroups. Every Hausdorff topologically simple
group is NSnS. [Suppose that G is topologically simple and Hausdorff and let U �= G be a closed neighborhood of 0.
Let N be a normal subgroup of G contained in U . Then N is also a closed subgroup of G contained in U and hence
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{0} = N = N . So G is an NSnS group. Actually a stronger property is true: if G is Hausdorff and every closed normal
subgroup of G is finite, then G is NSnS (this provides a proof of item (a)).] The infinite permutation group G = S(N) is
an example of a topologically simple group [13, 7.1.2].

We omit the easy proof of the next lemma:

Lemma 2.12.

(a) The classes of NSnS groups and NSS groups are stable under taking finite direct products and finer group topologies.
(b) The class of NSS groups is stable under taking subgroups.
(c) The class of NSnS groups is stable under taking dense subgroups.
(d) No infinite product of non-trivial groups is NSnS.

Recall that a SIN group (SIN stands for Small Invariant Neighborhoods) is a topological group G such that for every
U ∈ V (0) there exists V ∈ V (0) with −x + V + x ⊆ U for all x ∈ G .

Proposition 2.13. Every locally minimal SIN group G is metrizable provided it is NSnS.

Proof. Let us assume that (G, τ ) is V -locally minimal and NSnS, where V is a neighborhood of 0 in (G, τ ) containing
no non-trivial normal subgroups. Since τ is a group topology, it is possible to construct inductively a sequence (Vn) of
symmetric neighborhoods of 0 in τ which satisfy Vn + Vn ⊆ Vn−1 (where V 0 := V ) and −x + Vn + x ⊆ Vn−1 for all x ∈ G .

Let σ be the group topology generated by the neighborhood basis (Vn)n∈N . Obviously, σ is coarser than τ and V ∈
Vσ (0). In order to conclude that σ = τ , it only remains to show that σ is a Hausdorff topology, which is equivalent to⋂

n∈N
Vn = {0}. This is trivial, since the intersection is a normal subgroup contained in V . �

Example 2.14. One cannot relax the “SIN” condition even when G is minimal. Indeed, for every infinite set X the symmetric
group G = S(X) is minimal and NSnS. On the other hand, S(X) is metrizable only when X is countable [13, §7.1]. Note that
this group strongly fails to be NSS, as V (0) has a base consisting of open subgroups (namely, the pointwise stabilizers of
finite subsets of X ).

Remark 2.15. We gratefully acknowledge the referee’s remark that Theorem 2.8 and Proposition 2.13 can be generalized as
follows:

For a non-discrete locally minimal group G we have (the statements with prime hold under the additional assumption
that G is NSnS)

(a) χ(G) = ψ(G) · inv(G), (a′) χ(G)
NSnS= inv(G),

(b) w(G) = ψ(G) · ib(G), (b′) w(G)
NSnS= ib(G),

where inv(G) denotes the invariance number of G , which is the smallest infinite cardinal number κ such that for each
neighborhood U ∈ V(G,τ ) there exists a family W of neighborhoods of 0 of cardinality � κ such that for every x ∈ G there
exists W ∈ W such that x + W − x ⊆ U , and ib(G), the index of boundedness, is the smallest infinite cardinal κ such that for
every neighborhood U ∈ V(G,τ ) there exists a subset F ⊆ G of cardinality � κ such that G = F + U .

In all equalities “�” is easy to see. (a) and (a′) can be deduced from the following modification of (5.1.9) in [3]: Every
locally minimal group can be embedded into a product

∏
i∈I Gi of topological groups where the character of each Gi is

bounded by inv(G) and |I| � ψ(G). In case G is additionally NSnS, (5.1.23) in [3] allows to choose I finite.
(b) and (b′) are consequences of (a) and (a′) and the following facts: w(G) = χ(G) · ib(G) and inv(G) � ib(G).
As shown in the proof of Theorem 2.8, ψ(G) � nw(G) and l(G) � nw(G). In (5.1.3) in [3] it is shown that ib(G) � l(G).

Combining these results we obtain ψ(G) · ib(G) � nw(G) � w(G) so that (b) improves Theorem 2.8.

Remark 2.16.

(a) The completion of a NSS group is not NSS in general: For example the group TN is monothetic, i.e. it has a dense
subgroup H algebraically isomorphic to Z. Since the completion of a linear group topology is again linear, and the
product topology on TN is not linear, H is not linear either. So Example 2.11(d) implies that H is NSS. But H is dense
in TN which is not NSS.

(b) It was a problem of I. Kaplansky whether the NSS property is preserved under taking arbitrary quotients. A counter-
example was given by S. Morris [25] and Protasov [30]; the latter proved that NSS is preserved under taking quotients
with respect to discrete normal subgroups.
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(c) In contrast with the NSS property, a subgroup of an NSnS group need not be NSnS. Indeed, take the permutation group
G = S(N). Let N = ⋃

n Fn be a partition of the naturals into finite sets Fn such that each Fn has size 2n . Let σn be
a cyclic permutation of length 2n of the finite set Fn and let σ be the permutation of N that acts on each Fn as σn .
Obviously, σ is a non-torsion element of G , so it generates an infinite cyclic subgroup C ∼= Z. For convenience identify C
with Z. Then, while G is NSnS by Example 2.11(e), the induced topology of C coincides with the 2-adic topology of
C = Z, so it is linear and certainly non-NSnS. Indeed, a subbasic neighborhood of the identity element idN in C has
the form Ux = C ∩ Stabx , where Stabx is the stabilizer of the point x ∈ N. If x ∈ Fn , then obviously all powers of σ 2n

stabilize x, so Ux contains the subgroup Vn = 〈σ 2n 〉. This proves that the induced topology of C ∼= Z is coarser than the
2-adic topology. Since the latter is minimal [13, 2.5.6], we conclude that C has the 2-adic topology.

3. Groups uniformly free from small subgroups

3.1. Local minimality and the UFSS property

We have seen (Example 2.3(c)) that all normed spaces are locally minimal when regarded as topological abelian groups.
The following group analog of a normed space was introduced by Enflo [15]; we will show in Facts 3.3(a) that every such
group is locally minimal:

Definition 3.1. A Hausdorff topological group (G, τ ) is uniformly free from small subgroups (UFSS for short) if for some neigh-
borhood U of 0, the sets (1/n)U form a neighborhood basis at 0 for τ .

Neighborhoods U satisfying the condition described in Definition 3.1 will be said to be distinguished. It is easy to see
that any neighborhood of zero contained in a distinguished one is distinguished, as well.

Obviously, discrete groups are UFSS. Now we give some non-trivial examples.

Example 3.2.

(a) R is a UFSS group with respect to [−1,1].
(b) T = R/Z is a UFSS group with respect to T+ , the image of [−1/2,1/2] under the quotient map R → T.
(c) A topological vector space is UFSS as a topological abelian group if and only if it is locally bounded. In particular every

normed space is a UFSS group.
Recall that a subset B of a (real or complex) topological vector space E is usually referred to as bounded if for every
neighborhood of zero U in E there exists α > 0 with B ⊆ λU for every λ with |λ| > α, and balanced whenever λB ⊆ B
for every λ with |λ| � 1. The space E is locally bounded if it has a bounded neighborhood of zero. It is straightforward
that any locally bounded space is UFSS when regarded as a topological abelian group, and any of its bounded neighbor-
hoods of zero is a distinguished neighborhood. Conversely, if a topological vector space is UFSS as a topological abelian
group, then any distinguished balanced neighborhood of zero is bounded in this sense.
This, of course, includes unit balls of normed spaces, but there are some important non-locally-convex examples as well
(see Example 3.5(b)).

(d) Every Banach–Lie group is UFSS [26, Theorem 2.7].

Facts 3.3.

(a) Every UFSS group with distinguished neighborhood U is U -locally minimal [26, Proposition 2.5]. Indeed, one can see
that a UFSS group (G, τ ) with distinguished neighborhood U has the following property, which trivially implies that
(G, τ ) is U -locally minimal: if T is a group topology on G such that U is a T -neighborhood of 0, then τ � T .

(b) All UFSS groups are NSS groups.

Next we give some examples of NSS groups that are not UFSS.

Example 3.4.

(a) Consider the group R(N) = {(xn) ∈ RN: xn = 0 for almost all n ∈ N}, endowed with the box topology, which admits as a
basis of neighborhoods of zero the following family of sets:

U (εn) := {
(xn) ∈ R(N): |xn| < εn ∀n ∈ N

}
, (εn)n∈N ∈ (0,∞)N.

This group is not metrizable, hence it cannot be a UFSS group. On the other hand, any of the neighborhoods U (εn)

contains only the trivial subgroup, so it is a NSS group.
(b) All free abelian topological groups on a metric space are NSS groups (see Example 2.11(c)).

Take a non-locally compact metric space X , then A(X) is NSS, but not UFSS (indeed, if A(X) is a k-space for some
metrizable X , then X is locally compact by [2, Proposition 2.8]).
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Example 2.3, Facts 3.3 and Example 3.2 give us a strong motivation to study locally minimal groups, which put under
the same umbrella three extremely relevant properties as minimality, UFSS and local compactness.

Example 3.2 shows that a locally minimal abelian group need not be precompact, in contrast with Prodanov–Stoyanov’s
theorem. We see in the following example that actually there exist abelian locally minimal groups without non-trivial
continuous characters.

Example 3.5.

(a) According to a result of W. Banaszczyk [6], every infinite-dimensional Banach space E has a discrete and free sub-
group H such that the quotient group E/H admits only the trivial character. E/H is locally isomorphic with E , hence it
is a Banach–Lie group and then UFSS.

(b) Fix any s ∈ (0,1) and consider the topological vector space Ls of all classes of Lebesgue measurable functions f on
[0,1] (modulo almost everywhere equality) such that

∫ 1
0 | f |s dλ is finite, with the topology given by the following basis

of neighborhoods of zero:

Ur =
{

f :

1∫
0

| f |s dλ � r

}
, r > 0.

(Following a customary abuse of notation, we use here (and in Example 5.4 and Remark 6.6) the same symbol to denote
both a function and its class under the equivalence relation of almost everywhere equality.) In [8] it was proved that
Ls has no non-trivial continuous linear functionals. It is known that every character defined on the topological abelian
group underlying a topological vector space can be lifted to a continuous linear functional on the space [35]. Thus as
a topological group, Ls has trivial dual. On the other hand Ls is a locally bounded space (note that for every r > 0 one
has U1 ⊆ r−1/sUr ), hence it is a UFSS group (Example 3.2(c)).

Remark 3.6. It is a well-known fact (see for instance [37, 32.1]) that for every compact group K and U ∈ V (0) there exists
a closed normal subgroup N of K contained in U such that K/N is a Lie group, hence UFSS. This implies that the following
assertions are equivalent:

(a) K is UFSS,
(b) K is NSS,
(c) K is NSnS,
(d) K is a Lie group.

In case K is abelian, they are equivalent to: K is a closed subgroup of a finite-dimensional torus.
(The same equivalences are known to be true for locally compact groups which are either connected or abelian.)

In order to extend the above equivalences to locally minimal precompact groups, we need the following lemma:

Lemma 3.7. Let (G, τ ) be a precompact group. Then the following are equivalent:

(a) (G, τ ) is NSnS.
(b) For every U ∈ V (0) there exists a continuous injective homomorphism f : G → L such that L is a compact Lie group and f (U ) is

a neighborhood of 0 in f (G).
(c) There exist a compact Lie group L and a continuous injective homomorphism f : G → L.
(d) G admits a coarser UFSS group topology.
(e) (G, τ ) is NSS.

In case G is abelian these conditions are equivalent to the existence of a continuous injective homomorphism G → Tk for some k ∈ N.

Proof. To prove that (a) implies (b) assume that (G, τ ) is NSnS and fix a U ∈ V (0). Let W be a neighborhood of 0 in the
completion K of G such that W ∩ G contains no non-trivial normal subgroups and (W + W )∩ G ⊆ U . As in Remark 3.6 there
exists a closed normal subgroup N of K contained in W such that L = K/N is a Lie group. As N ∩ G = {0} by our choice
of W , the canonical homomorphism q : K → L restricted to G gives a continuous injective homomorphism f = q �G : G → L.
Observe that

f (U ) ⊇ q
(
(W + W ) ∩ G

) ⊇ q(N + W ) ∩ q(G)

as N ⊆ W . Finally, the latter set is a neighborhood of 0 in f (G) as N + W ∈ V (0K ).
(b) ⇒ (c) is trivial. (c) ⇒ (d) is a consequence of the fact that every Lie group is UFSS. (d) ⇒ (e) and (e) ⇒ (a) are

trivial. �
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Proposition 3.8. For a locally minimal precompact group G the following are equivalent:

(a) G is NSnS;
(b) G is NSS;
(c) G is UFSS;
(d) G is isomorphic to a dense subgroup of a compact Lie group.

Proof. The implication (a) ⇒ (d) follows from (a) ⇒ (b) in Lemma 3.7, since the local minimality of G and (b) from
Lemma 3.7 imply that G → L is an embedding. Note that a compact subgroup of a compact Lie group is closed, so a
Lie group itself. (d) ⇒ (c) ⇒ (b) ⇒ (a) are trivial. �
Remark 3.9. For locally minimal precompact abelian groups, condition (d) of Proposition 3.8 can be replaced by: G is
isomorphic to a subgroup of a torus Tn , n ∈ N. Note that the class of locally minimal precompact abelian groups contains all
minimal abelian groups, due to the deep theorem of Prodanov and Stoyanov which states that such groups are precompact.

Remark 3.10. Proposition 3.8 shows very neatly the differences between minimality and UFSS. While all (dense) subgroups
of a torus Tn are UFSS, the minimal among the dense subgroups of Tn are those that contain the socle Soc(Tn).

Indeed, Soc(Tn) is dense and every closed non-trivial subgroup N of Tn is still a Lie group, so has non-trivial torsion
elements (i.e., meets Soc(Tn)). Therefore, by [13, Theorem 2.5.1] a dense subgroup H of Tn is minimal iff H contains Soc(Tn).
In particular, there is a smallest dense minimal subgroup of Tn , namely Soc(Tn).

Example 3.11. Let τ be a UFSS precompact topology on Z. Then (Z, τ ) is a dense subgroup of a group of the form Tk ×Z(m),
where k,m ∈ N, k > 0. Indeed, by Proposition 3.8 and Remark 3.9 (Z, τ ) is isomorphic to a subgroup of some finite-
dimensional torus Tn . Then the closure C of Z in Tn will be a monothetic compact abelian Lie group. So the connected
component c(C) ∼= Tk for some k ∈ N, k > 0 and C/c(C) is a discrete monothetic compact group, so C/c(C) ∼= Z(m) for some
m ∈ N, so C ∼= Tk × Z(m) since c(C) splits as a divisible subgroup of C .

3.2. Permanence properties of UFSS groups

In the next proposition we collect all permanence properties of UFSS groups we can verify.

Proposition 3.12. The class of UFSS groups has the following permanence properties:

(a) If G is a dense subgroup of G̃ and G is UFSS, then G̃ is UFSS.
(b) Every subgroup of a UFSS group is UFSS.
(c) Every finite product of UFSS groups is UFSS.
(d) Every group locally isomorphic to a UFSS group is UFSS.
(e) If an abelian topological group G has a closed subgroup H such that both H and G/H are UFSS, then G is UFSS as well.

Proof. (a) Let G be a UFSS group with distinguished neighborhood U . Note that closures in G̃ of the neighborhoods of 0 in G
form a basis of the neighborhoods of 0 in G̃ . Let W be a symmetric neighborhood of 0 in G which satisfies G ∩(W +W ) ⊆ U .

Let us prove that

(1/n)W ⊆ (1/n)U ∀n ∈ N.

To this end fix x ∈ (1/n)W . This means x,2x, . . . ,nx ∈ W . Hence there exists a sequence (xk) in W which tends to x and
the sequences ( jxk) converge to jx ∈ W for j ∈ {1, . . . ,n}. We may assume that jxk − jx ∈ W for all j ∈ {1, . . . ,n} and all
k ∈ N, which implies jxk ∈ G ∩ (W + W ) ⊆ U for all k ∈ N and j ∈ {1, . . . ,n}. This implies xk ∈ (1/n)U for all k ∈ N and
hence x ∈ (1/n)U .

The inclusion (1/n)W ⊆ (1/n)U assures that the sets (1/n)W form a neighborhood basis of 0 in G̃; i.e. W is a distin-
guished neighborhood for G̃ .

(b) to (d) are easy to see.
(e) By assumption, there exists a neighborhood W of 0 in G such that π(W + W ), and (W + W ) ∩ H , are distinguished

neighborhoods of zero in G/H and H , respectively, where π : G → G/H denotes the canonical projection.
According to a result of Graev ([18] or (5.38)(e) in [21]), G is first countable, since H and G/H have this property.
Let us show that

∀(xn) with xn ∈ (1/n)W �⇒ xn
τ−→ 0, (1)

where τ is the original topology on G . Since π((1/n)W ) ⊆ (1/n)π(W ), π(W ) is a distinguished neighborhood of zero in
G/H and G is first countable, there exists a sequence (hn) in H such that xn − hn → 0.
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For n0 ∈ N, there exists n1 � n0 such that for all n � n1 we have

hn = xn + (hn − xn) ∈ (
(1/n)W + (1/n0)W

) ∩ H ⊆ (
(1/n0)W + (1/n0)W

) ∩ H ⊆ (1/n0)
(
(W + W ) ∩ H

)
.

Since the sets (1/n)((W + W ) ∩ H) form a basis of zero neighborhoods in H , the sequence (hn) tends to 0 and hence
(xn) tends to 0 as well.

Condition (3) implies that the family ((1/n)W ) is a basis of zero neighborhoods for G . Indeed, fix U ∈ Vτ (0) and suppose
(1/n)W � U for every n ∈ N. Select xn ∈ (1/n)W , xn /∈ U . According to (3) the sequence (xn) converges to zero, which
contradicts xn /∈ U ∀n ∈ N. �
Remark 3.13.

(a) Items (b) and (c) imply that finite suprema of UFSS group topologies are still UFSS. In the next section we will introduce
the locally GTG topologies which, at least in the NSS case, can be characterized as arbitrary suprema of UFSS group
topologies (see Definition 5.1 and Theorem 5.7).

(b) Item (c) follows also from (e). Let us note, that it cannot be strengthened to countably infinite products. Indeed, any
infinite product of non-indiscrete groups (e.g., copies of T) fails to be NSS, so cannot be UFSS either.

The rest of the subsection is dedicated to a very natural property that was missing in Proposition 3.12, namely stability
under taking quotients and continuous homomorphic images. It follows from item (d) of this proposition that a quotient of
a UFSS group with respect to a discrete subgroup is UFSS. Actually it has been shown in [28] (Proposition 4.5) that every
Hausdorff abelian UFSS group is a quotient group of a subgroup of a Banach space. However, as we see in the next example,
a Hausdorff quotient of a UFSS group need not be UFSS.

Example 3.14. Let {en: n ∈ N} denote the canonical basis of the Hilbert space �2. Consider the closed subgroup H :=
〈{ 1

n en: n ∈ N}〉 of �2. Let us denote by B the unit ball in �2 and by π : �2 → �2/H the canonical projection. For an arbitrary
ε > 0, we will show that π(εB) contains a non-trivial subgroup. This will imply that the quotient �2/H is not NSS and, in
particular, is not UFSS.

Let k0 ∈ N such that
∑

k>k0
1

k2 < 4ε2. Let S be the linear hull of the set {ek: k > k0}. We will obtain

π(S) ⊆ π(εB).

Indeed, fix x = (xn) ∈ S . For n > k0, there exists kn ∈ Z such that |xn − kn
n | � 1

2n . Since h := ∑
n>k0

kn
n en ∈ H and ‖x − h‖ �√∑

n>k0
( 1

2n )2 < ε, we obtain: π(x) = π(h + (x − h)) = π(x − h) ∈ π(εB) and hence π(S) ⊆ π(εB).

The next corollary shows that the class of precompact UFSS groups is closed under taking arbitrary quotients.

Corollary 3.15. If G is a precompact UFSS group, then every continuous homomorphic image of G is UFSS.

Proof. Let f : G → G1 be a continuous surjective homomorphism. It can be extended to the respective compact completions
f ′ : G̃ → G̃1 of G and G1 respectively. Since f is surjective and each group is dense in its completion, the compactness of G̃
yields that f ′ is surjective. Moreover, f ′ is open by the open mapping theorem. Hence G̃1 is isomorphic to a quotient of G̃ .
By Proposition 3.12(a) G̃ is UFSS, hence (Remark 3.6) G̃ is a Lie group. Then G̃1 is a Lie group as well, so UFSS. This proves
that G1 is UFSS. �
4. GTG sets and UFSS topologies

4.1. General properties of GTG subsets

Vilenkin [40] introduced locally quasi-convex groups while generalizing the notion of a locally convex space. His defini-
tion is inspired on the description of closed symmetric subsets of vector spaces given by the Hahn–Banach theorem.

Next we present a new generalization of locally convex spaces in the setting of topological groups which we will call
locally GTG groups where GTG abbreviates group topology generating (set). Similarly to the notion of a convex set (that
depends only on the linear structure of the topological vector space structure, but not on its topology), the notion of a GTG
set depends only on the algebraic structure of the group. In particular, it does not use any dual object at all, whereas the
notion of quasi-convex set of a topological group G depends on the topology of G via the continuity of the characters to be
used for the definition of the polar.

The class of locally GTG groups will be shown to contain all locally quasi-convex groups, all locally pseudoconvex spaces
and all UFSS groups. As we will see, it fits very well in the setting of locally minimal groups as it gives a connection between
locally minimal groups and minimal groups (Theorem 5.12). Moreover, we are not aware of any locally minimal group not
having this property (see Question 6.2).
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Recall that a subset A of a vector space E is called pseudoconvex if [0,1]A ⊆ A and A + A ⊆ c A for suitable c > 0. One
may assume that c ∈ N. (Indeed, choose N � n > c, then c A ⊆ nA as ca = (c/n)na ∈ [0,1]nA ⊆ nA for all a ∈ A.) Hence the
set A is pseudoconvex iff [0,1]A ⊆ A and for some n ∈ N, 1

n A + 1
n A ⊆ A. If A is symmetric, this already implies that ( 1

n A)

forms a neighborhood basis of a not necessarily Hausdorff group topology: 1
nm A + 1

nm A = 1
m ( 1

n A + 1
n A) ⊆ 1

m A. A standard
argument shows that scalar multiplication is also continuous.

It is well known that the unit balls of the vector spaces �s where 0 < s < 1 are pseudoconvex but not convex. The same
can be said of their natural finite-dimensional counterparts �s

n , with n � 2. Nevertheless, by far not all symmetric subsets of
a vector space are pseudoconvex, as we see in the next example.

Example 4.1. The subsets of R2: U = ([−1,1] × {0}) ∪ ({0} × [−1,1]) and V = (R × {0}) ∪ ({0} × R) are symmetric and not
pseudoconvex. Observe that [0,1]U ⊆ U ; 1

n U = ([−1/n,1/n] × {0}) ∪ ({0} × [−1/n,1/n]); [0,1]V ⊆ V and 1
n V = V .

Definition 4.2. Let G be an abelian group and let U be a symmetric subset of G such that 0 ∈ U . We say that U is a
group topology generating subset of G (“GTG subset of G” for short) if the sequence of subsets {(1/n)U : n ∈ N} is a basis of
neighborhoods of zero for a (not necessarily Hausdorff) group topology TU on G .

In case U is a GTG set in G , TU is the coarsest group topology on G such that U is a neighborhood.
We do not know whether the following natural converse is true: Let G be an abelian group and U a symmetric subset

of G which contains zero and such that there exists the coarsest group topology on G for which U is a neighborhood of
zero. Then U is a GTG set.

Example 4.3.

(a) Every symmetric distinguished neighborhood of zero in a UFSS group is a GTG set.
(b) Every subgroup of a group G is a GTG subset of G .

Proposition 4.4. A symmetric subset U ⊆ G of an abelian group G is a GTG subset if and only if

∃m ∈ N with (1/m)U + (1/m)U ⊆ U . (∗)

Moreover, if U is a GTG set, U∞ = ⋂∞
n=1(1/n)U is the TU -closure of {0} and in particular, it is a closed subgroup and a Gδ subset

of (G, TU ).

Proof. The given condition is obviously necessary. Conversely, to prove that addition is continuous, we are going to see that
(1/mn)U + (1/mn)U ⊆ (1/n)U ∀n ∈ N. Fix x, y ∈ (1/mn)U and observe that jx, jy ∈ (1/m)U for all 1 � j � n. This implies
j(x + y) = jx + jy ∈ (1/m)U + (1/m)U ⊆ U for all 1 � j � n and hence x + y ∈ (1/n)U .

If U is a GTG set, then TU is a group topology of G , hence U∞ = {0} TU is a subgroup of G . �
Proposition 4.4 gives the possibility to define a GTG set in a more precise way. Namely, one can introduce the following

invariant for a symmetric subset U ⊆ G of an abelian group G with 0 ∈ U

γ (U ) := min
{
m ∈: (1/m)U + (1/m)U ⊆ U

}
with the usual convention γ (U ) = ∞ when no such m exists. According to Proposition 4.4, U is a GTG set iff γ (U ) < ∞. Let
us call γ (U ) the GTG-degree of U , it obviously measures the GTG-ness of the symmetric set U containing 0. Clearly, U has
GTG-degree 1 precisely when U is a subgroup. (Compare this with the modulus of concavity defined in [31, 3.1].)

Proposition 4.5. A symmetric subset A of a vector space E which satisfies [0,1]A ⊆ A is GTG iff it is pseudoconvex.

Proof. By assumption, [0,1]A ⊆ A. This implies that (1/n)A = 1
n A. In the introduction to this section we have already shown

that a symmetric set A is pseudoconvex if and only if it satisfies 1
n A + 1

n A ⊆ A for some n ∈ N. Since (1/n)A = 1
n A, it is a

consequence of Proposition 4.4 that A is pseudoconvex iff it is GTG. �
Example 4.6. The subsets of U = ([−1,1] × {0}) ∪ ({0} × [−1,1]) and V = (R × {0}) ∪ ({0} × R) of Example 4.1 are not GTG
sets.

Remark 4.7. Let U be a symmetric subset of an abelian group G with 0 ∈ U . We analyze the behavior of the sequence
(1/n)U in the following cases of interest:

(a) If U∞ = {0}, then U is a GTG set iff (G, TU ) is UFSS.
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(b) Now assume that (1/m)U = U∞ for some m. Then U is GTG iff U∞ is a subgroup. It is clear that (1/m)U = U∞ is a
union of cyclic subgroups.
We know (Proposition 4.4) that if U is a GTG set, then U∞ must be a subgroup. But in this circumstance, we can invert
the implication. Indeed, if U∞ = (1/m)U is a subgroup, then obviously (1/m)U + (1/m)U ⊆ (1/m)U ⊆ U holds true, so
that U is a GTG set. This fact explains once more why the subset V = V∞ from Example 4.1 is not a GTG set (simply it
is not a subgroup).

(Note that we are not considering here the third possibility: U∞ �= {0} yet the chain (1/m)U does not stabilize.)

Remark 4.8. Let U be a symmetric subset of a group G . Then the following holds true:

(a) (1/n)((1/m)U ) = (1/m)((1/n)U ) for all n,m ∈ N.
(b) For symmetric subsets A and B of G and k ∈ N we have: (1/k)A + (1/k)B ⊆ (1/k)(A + B).
(c) The following assertions are equivalent:

(i) U is a GTG set in G .
(ii) For every k ∈ N the set (1/k)U is a GTG set in G .

(iii) There exists k ∈ N such that (1/k)U is a GTG set in G .
In this case TU = T(1/k)U for every k ∈ N.

Proof. (a) and (b) are straightforward.
(c)

(i) ⇒ (ii): Suppose that (1/m)U + (1/m)U ⊆ U . This yields (1/m)(1/k)U + (1/m)(1/k)U
(a)= (1/k)(1/m)U +

(1/k)(1/m)U
(b)⊆ (1/k)[(1/m)U + (1/m)U ] ⊆ (1/k)U and hence the assertion follows from Proposition 4.4.

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i): Let m be such that (1/m)((1/k)U ) + (1/m)((1/k)U ) ⊆ (1/k)U . Since (1/mk)U ⊆ (1/m)((1/k)U ) we deduce

(1/mk)U + (1/mk)U ⊆ (1/k)U ⊆ U

and the assertion is a consequence of Proposition 4.4.
Finally, assume that U is a GTG set. From (1/mk)U ⊆ (1/m)((1/k)U ) ⊆ (1/m)U , we obtain the equality of the topologies

TU = T(1/k)U . �
Next we give investigate under which conditions intersections and products of GTG sets are GTG.

Lemma 4.9.

(a) Inverse images of GTG sets by group homomorphisms are GTG. More precisely, if φ : G → H is a homomorphism and A � 0 is a
symmetric subset of H, then γ (φ−1(A)) � γ (A). If A ⊆ φ(G) then γ (φ−1(A)) = γ (A).

(b) If {Ai: i ∈ I} is a family of GTG sets of a group G and the subset {γ (Ai): i ∈ I} of N is bounded, then also
⋂

i∈I Ai is a GTG subset
of G. In particular, the intersection of any finite family of GTG sets of G is a GTG set of G.

(c) Let (Gi)i∈I be a family of groups and let Ai be a subset of Gi for every i ∈ I . The set A := ∏
i∈I Ai ⊆ ∏

i∈I Gi is a GTG set of
G := ∏

i∈I Gi iff all Ai are GTG sets and the subset {γ (Ai): i ∈ I} of N is bounded. In particular,
(c1) if I is finite then

∏
i∈I Ai is GTG iff all the sets Ai are GTG,

(c2) for an arbitrary index set I , U is a GTG set of a group G iff U I is a GTG set of G I .

Proof. (a) is a consequence of the identity (1/m)φ−1(A) = φ−1((1/m)A).
(b) It is straightforward to prove that (1/m)

⋂
i∈I Ai = ⋂

i∈I (1/m)Ai . By our hypothesis we may choose m so large that
(1/m)Ai + (1/m)Ai ⊆ Ai for all i ∈ I and obtain (1/m)

⋂
i∈I Ai + (1/m)

⋂
i∈I Ai ⊆ ⋂

i∈I Ai . The assertion follows from Propo-
sition 4.4.

(c) follows easily from (a), Proposition 4.4 and the equality (1/n)
∏

i∈I Ai = ∏
i∈I (1/n)Ai . �

Example 4.10.

(a) Let P be the set of all positive primes. For each p ∈ P we define the symmetric subset of Z

U p = {0} ∪ {±2n2 3n3 · · · pnp : n2,n3, . . . ,np ∈ N ∪ {0}}.
Note that for p, q ∈ P, we have (1/q)U p = U p for q � p and (1/q)U p = {0} otherwise. This implies that for every p ∈ P,
U p is a GTG set, (U p)∞ = {0} and U p + U p � U p . Hence p < γ (U p). The subset U = ∏

p∈P
U p ⊆ ZP is symmetric and

satisfies U∞ = ∏
p∈P

(U p)∞ = {0}, but it is not a GTG set by Lemma 4.9(c).
Define V p := U p × ∏

q∈P,q �=p Z. Then for every p ∈ P the sets V p are GTG, however, their intersection
⋂

p∈P
V p = U is

not GTG as shown above.
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(b) A simpler example of a non-GTG intersection of GTG sets can be obtained from the set U of Example 4.1: it is the
intersection of all ‖ · ‖1/n-unit balls Un in R2, for n ∈ N.

(c) If Un is the subset of Gn = R2, as in (b), then γ (Un) → +∞. Therefore, U = ∏
n∈N

Un is not a GTG set in G = (R2)N ,
according to item (c) of Lemma 4.9.

The next proposition gives an intuitive idea about GTG sets:

Proposition 4.11. If G is a compact connected abelian group and U is a GTG set of G with Haar measure 1, then U = G.

Proof. For every positive n the map fn : G → G defined by fn(x) = nx is a surjective continuous endomorphism (such a
group G is always divisible, see e.g. [21, 24.25]). Since every surjective continuous endomorphism is measure preserving
[19], one has μ( f −1

n (U )) = μ(U ) = 1. Therefore, also

U∞ =
⋂

n

f −1
n (U )

has measure 1. Since U∞ is a subgroup, this is possible only when U∞ = G . This yields U = G . �
4.2. Construction of GTG sets and UFSS topologies

Now we shall propose a general construction for building infinite GTG sets in abelian groups. In case the group is
complete metric, the GTG set can be chosen compact and totally disconnected.

Remark 4.12. In the construction we shall need the following sets of sequences of integers:

Z = ZN0 , Km =
{

(k j) ∈ Z:
∞∑
j=0

|k j|
2 j

� 1

2m

}
for m ∈ Z, and P =

∞∏
j=0

{
0,±1,±2,±3, . . . ,±2 j+2}.

(a) Obviously, Km ⊆ P when m � −2, and Km + Km ⊆ Km−1, for m ∈ Z.
(b) We use also the direct sum Z0 = ⊕

N0
Z. For (an) ∈ Z0 and any sequence (xn) of elements of G the sum

∑∞
j=0 a j x j

makes sense and will be used in the sequel. In this way, every element x = (xn) ∈ GN0 gives rise to a group homomor-
phism ϕx : Z0 → G defined by ϕx((an)) := ∑∞

j=0 a j x j for (an) ∈ Z0.
(c) Z will be equipped with the product topology, where Z has the discrete topology with basic open neighborhoods of 0

the subgroups

Wn = {
(k j) ∈ Z: k0 = k1 = · · · = kn = 0

}
,

n ∈ N0. Thus, P is a compact zero-dimensional subspace of Z. Let us see that Km is closed in P for m � −2, hence

a compact zero-dimensional space on its own account. Indeed, pick ξ = (k j) j�0 ∈ P \ Km . Then
∑

j�0
|k j |
2 j > 1

2m , so∑n
j=0

|k j |
2 j > 1

2m for some index n. Hence the neighborhood (ξ + Wn) ∩ P of ξ misses the set Km .

A sequence (xn)n�0 in G will be called nearly independent, if it satisfies

∞∑
j=0

a jx j = 0 �⇒ (an) = 0 for all (an) ∈ P ∩ Z0. (4)

This term is motivated by the fact, that usually a sequence (xn)n�0 in G is called independent, if kerϕx = 0.

Claim 4.13. If G is an abelian group and x = (xn) is a nearly independent sequence of G, then ϕx �K−1∩Z0 : K−1 ∩ Z0 → G is injective.

Proof. Assume that ϕx((k j)) = ϕx((l j)) for (k j) ∈ K−1 and (l j) ∈ K−1. Then 0 = ∑n
j=0(k j − l j)x j and |k j − l j | � 2 j+2, com-

bined with near independence, imply k j = l j for all j. �
The following lemma reveals a sufficient condition under which an abelian group G admits a non-discrete UFSS group

topology, namely the existence of a nearly independent sequence. The necessity of this condition will be established at a
later stage (see Corollary 4.25).
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Lemma 4.14. Let G be an abelian group and let x = (xn) be a nearly independent sequence of G. Then the set X := ϕx(K0 ∩ Z0) is a
GTG subset of G with γ (X) = 2. More precisely,

(
1/2m)

X = ϕx(Km ∩ Z0)

(
=

{
n∑

j=0

k j x j: n ∈ N, k j ∈ Z,

n∑
j=0

|k j |
2 j

� 1

2m

})
, (5)

X∞ = {0} and (xn) tends to 0 in T X , so T X is a non-discrete UFSS topology.

Proof. The inclusion ⊇ in (5) is obvious. We prove the following stronger version of the reverse inclusion by induction:

if x =
n∑

j=0

k jx j ∈ X with (k j) ∈ K0, then x ∈ (
1/2m)

X �⇒ (k j) ∈ Km. (6)

For m = 0 the assertion is trivial. So suppose (6) holds true for m and let x = ∑n
j=0 k j x j ∈ (1/2m+1)X , with (k j) ∈ K0.

Since x,2x ∈ (1/2m)X , the induction hypothesis gives (k j) ∈ Km . Moreover, there exists a representation 2x = ∑n
j=0 l j x j

with (l j) ∈ Km , i.e.,
∑n

j=0
|l j |
2 j � 1

2m . (Observe that without loss of generality we may assume that the upper index for the
summation is equal for x and 2x.) Then ϕx((2k j)) = ϕx((l j)) with (2k j), (l j) ∈ K−1, so Claim 4.13 gives 2k j = l j for all j and

hence
∑n

j=0
|k j |
2 j = ∑n

j=0
|l j |

2 j+1 � 1
2m+1 . This proves (6), and consequently also (5). Obviously, (6) yields also X∞ = {0}.

For m = 1 Eq. (5) and K1 + K1 ⊆ K0 give (1/2)X + (1/2)X ⊆ X . Hence γ (X) � 2, and consequently X is a GTG set and
T X is a UFSS topology.

For a fixed N ∈ N the definition of X and (5) give xn ∈ (1/2N )X for all n � N , so {xn: n � N} ⊆ (1/2N )X . This shows that
xn → 0 in T X and so T X is not discrete.

Finally, to prove that γ (X) � 2 it suffices to observe that γ (X) = 1 would imply that X is a subgroup, so X = X∞ . Now
X∞ = {0} contradicts the non-discreteness of T X . �

Let (G,d) be a metric abelian group, let v be the group seminorm associated to the metric d (i.e., v(x) = d(x,0) for
x ∈ G) and let Bε = {x ∈ G: v(x) � ε} be the closed disk with radius ε around 0. For a nearly independent sequence (xn)

of G and a non-negative n ∈ Z let

εn := min

{
v

(
n∑

j=0

a jx j

)
: |a j| � 2 j+2, (a j) �= (0)

}
> 0. (7)

We call the sequence (xn) almost independent, if the inequality

2n+3 v(xn+1) < εn � v(xn) (8)

holds. Note that εn � v(xn) obviously follows from the definition of εn . Moreover, every almost independent sequence
(rapidly) converges to 0 in (G,d).

It is straightforward to prove that a subsequence of a nearly (respectively almost) independent sequence is again nearly
(respectively almost) independent. The motivation to introduce the sharper notion of almost independent sequence is given
in the lemma below. First we need to isolate a property that will be frequently used in the sequel:

Claim 4.15. If (G,d) is a metric group and (xn) is an almost independent sequence of G, then ϕx(Km ∩ Wn ∩ Z0) ⊆ B v(xn)

2m+2
for any

m ∈ Z and n � 0.

Proof. We have to prove that v(
∑k

j=n+1 k j x j) < 1
2m+2 v(xn), whenever (k j) ∈ Km . This follows applying (8) to the term

2 j v(x j) in

v

(
k∑

j=n+1

k jx j

)
�

k∑
j=n+1

|k j |v(x j) =
k∑

j=n+1

|k j|
2 j

2 j v(x j) <

k∑
j=n+1

|k j|
2 j

1

4
v(x j−1) � 1

4
v(xn)

k∑
j=n+1

|k j|
2 j

� 1

2m+2
v(xn).

�
Lemma 4.16. Let (G,d) be a metric group and let (xn) be an almost independent sequence of G. Then

(a) the non-discrete UFSS topology T X generated by the GTG set X of G corresponding to (xn) as in Lemma 4.14, is finer than the
original topology of G;

(b) the subsequence (x2n) is still almost independent, and for the GTG set Y of G corresponding to (x2n) as in Lemma 4.14, T X < TY .



L. Außenhofer et al. / J. Math. Anal. Appl. 370 (2010) 431–452 445
Proof. (a) We have to prove that for a given ε > 0, there exists m ∈ N such that (1/2m)X ⊆ Bε . Since xn → 0 in the metric
topology, there exists m ∈ N such that v(xm−1)

2m+2 < ε. As Km ⊆ Wm−1 and (1/2m)X = ϕx(Km ∩ Z0), from Claim 4.15 we obtain
(1/2m)X = ϕx(Km ∩ Z0) = ϕx(Km ∩ Wm−1 ∩ Z0) ⊆ Bε .

(b) By Lemma 4.14, TY is a UFSS topology on G . Since Y ⊆ X , we trivially have TY ⊇ T X . It remains to be shown that TY

is strictly finer than T X . Let us prove that the T X null-sequence (x2n+1) does not converge to 0 in TY . It is enough to show
that {x2n+1: n ∈ N} ∩ Y = ∅. So assume x2m+1 = ∑n

j=0 k j x2 j for some m ∈ N and (k j) ∈ K0. As x2m+1 ∈ ϕx(K0) as well, this
contradicts Claim 4.13. �

In the next theorem we show that the set X from the previous lemmas, corresponding to an almost independent se-
quence of G , has a compact totally disconnected closure when G is complete.

Theorem 4.17. Let (G,d) be a complete metric group and let (xn) be an almost independent sequence of G. Then the closure X̃ of the
GTG set X corresponding to (xn) as in Lemma 4.14, is compact and totally disconnected. Moreover, X̃ is a GTG set with γ ( X̃) = 2, so
T X̃ is a non-discrete UFSS topology finer than the original topology of G.

Proof. We intend to extend the map ϕx defined in item (b) of Remark 4.12 to a map ϕ : ⋃m∈Z
Km → G by setting ϕ((k j)) =∑

j�0 k j x j (the correctness of this definition is checked below). Furthermore, we show that ϕ �Km is continuous for each m,

while ϕ �K0 is injective. Since each Km is a compact zero-dimensional space (Remark 4.12(c)), this will prove that X̃ = ϕ(K0)

itself is a compact zero-dimensional space, while the subspaces ϕ(Km) with m < 0 are just compact.
For a fixed (k j) j�0 ∈ Km let yn = ∑n

j=0 k j x j ∈ G . To see that (yn) is a Cauchy sequence in G apply Claim 4.15 to get

v(yk − yn) � 1
2m+2 v(xn) for every pair n � k. Since xn → 0, this proves that (yn) is a Cauchy sequence in G . Since G is

complete, the limit lim yn exists and ϕ((k j)) = ∑
j�0 k j x j and X̃ := ϕ(K0) make sense.

Since the norm function v : G → R is continuous, we obtain from Claim 4.15, after passing to the limit:

ϕ(Km ∩ Wn) ⊆ B v(xn)

2m+2
. (9)

Even if ϕ is not a homomorphism, one has

ϕ(ξ + η) = ϕ(ξ) + ϕ(η), whenever ξ = (k j), η = (l j) ∈ Km, (10)

where ξ + η = (k j + l j) ∈ Km−1.
Fix m ∈ Z. In order to show that ϕ �Km is continuous, fix (k j) ∈ Km and ε > 0. There exists n ∈ N such that 1

2m+1 v(xn) < ε.
For (l j) ∈ (k j) + Wn we have ϕ((l j)) ∈ ϕ((k j)) + Bε(0) by (9), which shows that ϕ is continuous.

In order to show that ϕ is injective, we show the following stronger statement, that will be necessary below:

Claim 4.18. If (k j) ∈ K−1 and (l j) ∈ K0 with (k j) �= (l j), then ϕ((k j)) �= ϕ((l j)).

Proof. Assume for a contradiction that ϕ((k j)) = ϕ((l j)) with (k j) �= (l j). Fix m minimal with km �= lm . Then

(lm − km)xm =
∑
j>m

k j x j −
∑
j>m

l jx j

with |k j − l j | � 3 · 2 j < 2 j+2 for all j � m (as k j � 2 j+1 and l j � 2 j ). Hence the definition of εm gives

εm � v
(
(lm − km)xm

)
� |km+1 − lm+1|v(xm+1) + v

( ∑
j>m+1

k j x j

)
+ v

( ∑
j>m+1

l jx j

)
. (11)

To the second and the third term in the right hand side of (11) we may apply (9) with m = 0 (respectively m = −1) and
n = m + 1 and obtain

v

( ∑
j>m+1

k j x j

)
+ v

( ∑
j>m+1

l jx j

)
� 1

2
v(xm+1) + 1

4
v(xm+1) = 3

4
v(xm+1). (12)

Since |km+1 −lm+1| � 3 ·2m+1 yields |km+1 −lm+1|v(xm+1) � 3 ·2m+1 v(xm+1), by (11) and (12), we get εm � 3 ·2m+1 v(xm+1)+
3
4 v(xm+1). Along with (8), applied with n = m, we get εm � 3 · 2m+1 v(xm+1) + 3

4 v(xm+1) < 2m+3 v(xm+1) < εm , a contradic-
tion. This proves Claim 4.18. �

From Claim 4.18 we conclude that ϕ �K0 is a continuous bijective mapping. Since K0 is compact, ϕ �K0 : K0 → X̃ = ϕ(K0)

is a homeomorphism which implies in particular that X̃ is compact and totally disconnected. Since ϕ is an extension of ϕx
and since Z0 ∩ K0 is dense in K0, we deduce that X = ϕx(Z0 ∩ K0) = ϕ(Z0 ∩ K0) is dense in X̃ = ϕ(K0). Since the latter set
is compact, it must be closed in G . Therefore, X̃ coincides with the closure of X .
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Next we claim that(
1/2m)

X̃ = ϕ(Km)

(
=

{ ∞∑
j=0

k j x j: k j ∈ Z,

∞∑
j=0

|k j|
2 j

� 1

2m

})
, (13)

as in the case of the set X in Lemma 4.14.
The inclusion ⊇ in (13) is obvious. We prove the following stronger version of the reverse inclusion by induction:

if x =
∞∑
j=0

k jx j, with (k j) ∈ K0, then x ∈ (
1/2m)

X̃ �⇒ (k j) ∈ Km. (14)

For m = 0 the assertion is trivial. So suppose (14) holds true for m and let x = ϕ((k j)), with (k j) ∈ K0 belong to (1/2m+1) X̃ .
Since x,2x ∈ (1/2m) X̃ , by the induction hypothesis, (k j) ∈ Km . Moreover, there exists a representation 2x = ϕ((l j)) with
(l j) ∈ Km . Then ϕ((2k j)) = ϕ((l j)). Since (2k j) ∈ K−1 and (l j) ∈ K0, from Claim 4.18 we conclude that 2k j = l j for all j and

hence
∑∞

j=0
|k j |
2 j � 1

2m+1 . This proves (14), and consequently also (13).

In particular, from (13) we get (1/2) X̃ = ϕ(K1). Since K1 + K1 ⊆ K0 from Remark 4.12(a), this combined with (13), gives
(1/2) X̃ + (1/2) X̃ ⊆ X̃ . Hence γ ( X̃) � 2.

It remains to note that (14) implies also X̃∞ = {0}. Hence T X̃ is a UFSS topology coarser than T X (as X ⊆ X̃), so it is
non-discrete. In particular, X̃ �= {0} = X̃∞ , so γ ( X̃) = 2. From (9) and (13) we conclude that T X̃ is finer than the original
topology of G . �

In order to characterize those abelian metrizable groups which admit a (strictly) finer UFSS group topology, we need the
following definition which will characterize these groups.

Definition 4.19. An abelian topological group G is called locally bounded if there exists some n ∈ N such that the subgroup
G[n] = {x ∈ G: nx = 0} is open.

Remark 4.20. G is locally bounded iff it has a neighborhood U in which all elements are of bounded order. Obviously,
a metric abelian topological group G is not locally bounded iff there exists a null-sequence xn → 0 such that o(xn) → ∞.

A locally compact abelian group G is locally bounded iff it has an open compact subgroup of finite exponent. Indeed,
assume that G is a locally compact, locally bounded abelian group. For suitable n ∈ N the subgroup G[n] is open. By the
structure theorem for locally compact abelian groups, G[n] contains a compact open subgroup K . It is clear that K is open
in G and of finite exponent. The converse implication is trivial.

Theorem 4.21. Let (G,d) be an abelian, metrizable, non-discrete group. The following assertions are equivalent:

(i) G is not locally bounded;
(ii) there exists a finer non-discrete UFSS group topology T X on G;

(iii) there exists a strictly finer non-discrete UFSS group topology TY on G;
(iv) there exists an almost independent sequence in G.

Proof. (iii) ⇒ (ii) is trivial.
(ii) ⇒ (i): Let G be locally bounded, this means there exists n � 1 such that the subgroup G[n] is open. Suppose there

exists a UFSS topology T X on G with distinguished neighborhood X which is finer than the topology τ induced by the
metric. We may assume that X ⊆ G[n], because otherwise we can replace X by X ∩ G[n]. Then (1/n)X = X∞ . Since we
assumed T X to be finer than the original topology and hence Hausdorff, {0} = X∞ = (1/n)X . This implies that T X is discrete.
So the only finer UFSS group topology on G is the discrete one.

(iv) ⇒ (iii): this is covered by Lemma 4.16.
(i) ⇒ (iv): Assume now that G is not locally bounded. We have to show that there exists an almost independent sequence

(xn) of elements in G . This will be done by induction. For n = 0 condition (4) is equivalent to 3x0 �= 0 �= 4x0. So fix an
element x0 ∈ G of order greater than 4. Assume that x0, . . . , xn have already been chosen to satisfy (4). Define εn by (7).
Then choose xn+1 with v(xn+1) < εn/2n+3 and o(xn+1) > 2n+3. To check that this works, let x = ∑n+1

j=0 a j x j with (a j) �= (0)

and |a j | � 2 j+2 for j = 0,1, . . . ,n + 1. If a0 = · · · = an = 0 then x �= 0, since |an+1| � 2n+3 < o(xn+1). Otherwise, we have
v(x) � v(

∑n
j=0 a j x j) − v(an+1xn+1) � εn − 2n+3 v(xn+1) > 0, so x �= 0. By the choice of each xn , the sequence is almost

independent. �
Remark 4.22. Let us note that for the set Y constructed in the proof, the strictly finer non-discrete UFSS topology TY is still
locally unbounded. So to the group (G, TY ) the same construction can be applied to provide an infinite strictly increasing
chain of non-discrete UFSS topologies TY = TY0 < TY1 < · · · < TYn < · · · . Hence in the theorem one can also add a stronger
property (v) claiming the existence of such a chain.
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Corollary 4.23. Let (G,d) be a complete abelian, metrizable non-locally-bounded group. Then there exists a compact totally discon-
nected GTG set X of G, such that T X is a finer non-discrete UFSS group topology on G.

Proof. According to the above theorem G admits an almost independent sequence (xn). �
E. Hewitt [20] observed that the group T and the group R have the property that the only stronger locally compact group

topologies are the discrete topologies. Since locally minimal topologies generalize the locally compact group topologies,
this suggests the following question: Do the groups T and R admit stronger non-discrete locally minimal topologies? The next
corollary answers this question in a strongly positive way: for the class of all non-totally disconnected locally compact
metrizable abelian groups (in place of T and R only) and for the smaller class of UFSS topologies (in place of locally
minimal topologies).

Corollary 4.24. A locally compact abelian metrizable group G has a strict UFSS refinement iff G contains no open compact subgroup
of finite exponent.

This happens for example, if G is not totally disconnected.

Proof. The first assertion is obvious when G is discrete, so we assume that G is non-discrete in the sequel.
According to Theorem 4.21, G has a strict, non-discrete UFSS refinement iff G is not locally bounded, which, by Re-

mark 4.20, is equivalent to the fact that G contains no open compact subgroup of finite exponent.
In order to prove the second statement it is sufficient to show that every group H which has an open compact sub-

group K of finite exponent is totally disconnected. The connected component C of H is contained in K and hence bounded.
On the other hand, as every compact abelian connected group, C is divisible. This implies that C is trivial and hence H is
totally disconnected. �

Now the topology-free version of Theorem 4.21 follows:

Corollary 4.25. For an abelian group G TFAE:

(i) G is not bounded;
(ii) G admits a non-discrete UFSS group topology;

(iii) there exists a nearly independent sequence in G.

Proof. The implication (iii) ⇒ (ii) was proved in Lemma 4.14.
To prove the implication (ii) ⇒ (i) assume G admits a non-discrete UFSS group topology T with distinguished neighbor-

hood U of 0. Then for every n ∈ N the set (1/n)U is a T -neighborhood of 0, hence (1/n)U �= {0}. If nG were {0} for some
n ∈ N, then (1/n)U = U∞ = {0} which is a contradiction. So G is unbounded.

To prove the implication (i) ⇒ (iii) pick a countable subgroup H of G that is still not bounded. Since H is countable,
there exists an injective homomorphism j : H → TN . Denote by d the metric induced on H by this embedding. Then (H,d)

is an infinite metric precompact group, hence it is not discrete. Moreover, for no n ∈ N the subgroup H[n] is open. Indeed,
if H[n] were open, then by the precompactness of H it would have finite index in H . Hence mH ⊆ H[n] for some m ∈ N.
Therefore, mnH = 0, a contradiction. This argument proves that no subgroup H[n] (n ∈ N) is open in H . Hence, (H,d) is not
locally bounded. Then H contains an almost independent sequence (xn) by the above theorem. Clearly, this is also a nearly
independent sequence in H , and consequently, also in G . �
5. Locally GTG groups

5.1. Locally GTG groups and their properties

Definition 5.1 (V. Tarieladze, oral communication). We say that a Hausdorff topological abelian group G is locally GTG if it
admits a basis of neighborhoods of the identity formed by GTG subsets of G .

Example 5.2.

(a) Every UFSS group is locally GTG. In particular R and T are locally GTG.
(b) Every locally convex space is locally GTG.
(c) Assume that G is a bounded abelian group with exponent m. If U is a GTG neighborhood of 0 in some group topology τ

of G , then U∞ = (1/m)U is a τ -neighborhood of 0. Therefore,
(c1) (G, τ ) is locally GTG precisely when (G, τ ) is linearly topologized;
(c2) (G, τ ) is UFSS precisely when (G, τ ) is discrete.
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Example 5.3. A topological vector space is said to be locally pseudoconvex if it has a basis of pseudoconvex neighborhoods
of zero. A topological vector space is locally GTG as a topological abelian group if and only if it is locally pseudoconvex.

Proof. Applying Proposition 4.5, it suffices to show that a topological vector space which is locally GTG has a neighborhood
basis consisting of balanced GTG sets. So fix a GTG neighborhood A and define B := {a ∈ A: [0,1]a ⊆ A}. It is straightforward
to prove that [0,1]B ⊆ B and it is a well-known fact that B is a neighborhood of zero. Let us prove that B is GTG. Since
A was assumed to be GTG, there exists n ∈ N such that (1/n)A + (1/n)A ⊆ A. Observe that (1/n)B = 1

n B . We shall show
that 1

n B + 1
n B ⊆ B . So fix a,b ∈ 1

n B and t ∈ [0,1]. Let us see that t(a + b) belongs to A: t(a + b) = ta + tb ∈ 1
n B + 1

n B ⊆
(1/n)A + (1/n)A ⊆ A. �
Example 5.4. Local GTG-ness may seem to be a too mild property, but there exist natural examples of abelian topological
groups lacking it. Consider the topological vector space G = L0 of all classes of Lebesgue measurable functions f on [0,1]
(modulo almost everywhere equality) with the topology of convergence in measure. This topology can be defined by the
invariant metric

d( f , g) =
1∫

0

min
{

1,
∣∣ f (t) − g(t)

∣∣}dt

(for details see for instance [22, Ch. 2]). It is known that L0 is not locally pseudoconvex and hence, by Example 5.3, it is not
locally GTG as a topological group.

Here we collect several properties of locally GTG groups.

Proposition 5.5.

(a) Every subgroup of a locally GTG group is locally GTG.
(b) A group with an open locally GTG subgroup is locally GTG.
(c) The product of locally GTG groups is locally GTG.
(d) Quotient groups of locally GTG groups need not be locally GTG.
(e) Every group locally isomorphic to a locally GTG group is locally GTG. In particular, if a topological group G admits a non-trivial

locally GTG open subgroup, then G is locally GTG.

Proof. (a) is a consequence of Lemma 4.9(a) and Example 4.3(b). (b) follows from the fact that any basis of neighborhoods
of zero in the open subgroup is a basis of neighborhoods of zero in the whole group. (c) is a consequence of Lemma 4.9(c).
(d) Let G be a Hausdorff group which is not locally GTG. G is a quotient of the free abelian topological group A(G) [23]. The
free locally convex space L(G) is locally GTG according to Example 5.2(b). According to a result of Uspenskij and Tkachenko
([38] and [39]) the free abelian topological group A(G) is a subgroup of L(G) and hence, due to (a), also locally GTG. This
proves (d). (e) is straightforward using Lemma 4.9(a). �

Now we obtain another large class of examples:

Example 5.6.

(a) Every precompact abelian group is locally GTG. Indeed, every precompact abelian group is (isomorphic to) a subgroup
of a power of T, so items (a) and (c) of Proposition 5.5 and item (a) of Example 5.2 apply.

(b) Every locally compact abelian group is locally GTG. Indeed, every locally compact abelian group has the form G =
Rn × G0, where n ∈ N and G0 contains an open compact subgroup. Then G0 is locally GTG by item (a) and item (e) of
Proposition 5.5, while Rn is UFSS, so locally GTG. Now item (c) of Proposition 5.5 applies.

The connection between locally GTG and UFSS groups is the following:

Theorem 5.7.

(a) If U is a GTG subset of an abelian group G, the quotient group GU := (G, TU )/U∞ is UFSS when equipped with the quotient
topology of TU .

(b) Every locally GTG group G can be embedded into a product of UFSS groups.
(c) A group topology τ on an abelian group G is a supremum of UFSS topologies on G iff τ is NSS and locally GTG.
(d) If a group topology τ on an abelian group G is a supremum of a family T = {τi: i ∈ I} of UFSS topologies on G, then τ is UFSS iff

τ coincides with the supremum of a finite subfamily of T.
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Proof. (a) Let U be a GTG subset of G . Since U∞ is the TU -closure of {0}, we can consider the Hausdorff quotient group
GU = (G, TU )/U∞ , and the canonical epimorphism ϕU : G → GU .

Let m ∈ N be such that (1/m)U + (1/m)U ⊆ U . Let us show that for every n ∈ N

(1/n)ϕU
(
(1/m)U

) ⊆ ϕU
(
(1/n)U

)
.

Indeed, fix an element ϕU (x) ∈ (1/n)ϕU ((1/m)U ). Then for every k ∈ {1, . . . ,n}, kx ∈ (1/m)U + U∞ ⊆ U , hence ϕU (x) ∈
ϕU ((1/n)U ).

This shows that GU is a UFSS group with distinguished neighborhood ϕU ((1/m)U ).
(b) Let U be a basis of neighborhoods of zero in G formed by GTG sets. The homomorphism

Φ : G →
∏

U∈U
GU , Φ(x) = (

ϕU (x)
)

U∈U

is injective and continuous. Fix U ∈ U , and let m ∈ N be such that (1/m)U + (1/m)U ⊆ U . Then (1/m)U + U∞ ⊆ U , from
which we deduce

Φ(U ) ⊃ Φ(G) ∩
(( ∏

U ′∈U \{U }
GU ′

)
× ϕU

(
(1/m)U

))
.

This implies that Φ is open onto its image.
(c) It is clear that every supremum of UFSS topologies is both NSS and locally GTG. Conversely, if G is locally GTG, its

topology is the supremum of the family of topologies {TU }U∈U where U is a basis of neighborhoods of zero. If moreover G
is NSS, we may assume that no neighborhood in U contains non-trivial subgroups, and in particular the topologies TU are
UFSS.

(d) The sufficiency is obvious from Remark 3.13(a). To prove the necessity let us assume that τ = supτi is UFSS.
Then there exists a distinguished τ -neighborhood W of 0 such that τ = TW . There exist a finite subset J ⊆ I and
τ j-neighborhoods U j of 0 for each j ∈ J such that

⋂
j∈ J U j ⊆ W . We can assume without loss of generality that U j is

a distinguished neighborhood of 0 in τ j for each j ∈ J . Then (1/n)W ∈ sup j∈ J τ j for every n. Hence τ = TW � sup j∈ J τ j .
The inequality τ = sup j∈I � sup j∈ J τ j is trivial. This proves that τ = sup j∈I τ j . �
Remark 5.8. Note that “NSS” is needed in (c) above; any non-metrizable compact abelian group is locally GTG (see Exam-
ple 5.6(a)) but its topology is not a supremum of UFSS topologies.

Corollary 5.9. The class of locally GTG abelian groups is stable under taking completions.

Proof. By Theorem 5.7(b), every locally GTG group G can be embedded into a product
∏

i Gi of UFSS groups Gi . By Proposi-
tion 3.12(a), the completion G̃ i of the UFSS group Gi is UFSS. So the completion G̃ of G embeds into the product P = ∏

i G̃ i
of UFSS groups. By Proposition 5.5(c) P is locally GTG, so G̃ is locally GTG by Proposition 5.5(a). �
Theorem 5.10. A Hausdorff abelian topological group (G, τ ) is a UFSS group if and only if (G, τ ) is locally minimal, locally GTG and
NSS.

Proof. Suppose that (G, τ ) is a UFSS group with distinguished neighborhood U . Then (G, τ ) is U -locally minimal according
to Facts 3.3(a), locally GTG according to Example 5.2(a) and U does not contain any non-trivial subgroup.

Conversely, let (G, τ ) be locally minimal, locally GTG and NSS. There exists a neighborhood of zero U which is a GTG set,
witnesses local minimality and does not contain non-trivial subgroups. The group topology TU generated by U is Hausdorff
and coarser than τ ; since U is one of its zero neighborhoods, it coincides with τ . �
5.2. Locally minimal, locally GTG groups

In this section we will give various properties of locally minimal locally GTG groups. Most of our results are based on
the following proposition which allows us to find large, in appropriate sense, minimal subgroups in a locally minimal group.

Proposition 5.11. (See [12].) Let G be a U -locally minimal group and let H be a closed central subgroup of G such that H + V ⊆ U for
some neighborhood V of 0 in G. Then H is minimal.

Theorem 5.12. If G is a U -locally minimal abelian group where U is a GTG set, then U∞ is a minimal subgroup.

Proof. Proposition 4.4 implies U∞ + (1/m)U ⊆ U for some m ∈ N. Then, Proposition 5.11 immediately gives us that U∞ is
a minimal subgroup. �
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One may ask whether GTG is needed in the above corollary (see Question 6.2). The problem is that without this as-
sumption, the intersection U∞ need not be a subgroup (although it is always a union of cyclic subgroups), as it happens in
Example 5.4.

It easily follows from Theorem 5.12 that every locally minimal locally GTG abelian group contains a minimal, hence
precompact, Gδ-subgroup (note that the subgroup U∞ in Theorem 5.12 is a Gδ-set). Now we provide a different proof of
this fact, that makes no recourse to local GTG-ness.

Proposition 5.13. Every locally minimal abelian group contains a minimal, hence precompact, Gδ-subgroup.

Proof. Let U witness local minimality of the group G . As in the proof of Proposition 2.13, it is possible to construct induc-
tively a sequence (Vn) of symmetric neighborhoods of 0 in τ which satisfy Vn + Vn ⊆ Vn−1 (where V 0 := U ∩−U ). It is easy
to see that H = ⋂

n∈N
Vn is a subgroup of G , contained in each Vn . In particular, H + V 1 ⊆ V 0 ⊆ U . Now Proposition 5.11

immediately gives us that H is a minimal subgroup. �
Let us note that the minimal Gδ-subgroup obtained in this proof is certainly contained in the subgroup U∞ , provided

U is a GTG set (as H ⊆ U and U∞ is the largest subgroup contained in U ). However, this argument has the advantage to
require weaker hypotheses.

The next corollary shows that non-metrizable complete locally minimal abelian groups contain large compact subgroups.

Corollary 5.14. Every complete locally minimal abelian group contains a compact Gδ-subgroup.

Proof. Follows directly from Proposition 5.13. �
Corollary 5.15. Let (G, τ ) be either

(a) a linearly topologized abelian group, or
(b) a bounded locally GTG abelian group.

Then G is locally minimal iff G has an open minimal subgroup.

Proof. If G has an open minimal subgroup, then G is locally minimal (Proposition 2.4). Conversely, suppose that G is locally
minimal.

(a) Let V be an open subgroup of G witnessing local minimality of G . Then V + V ⊆ V , so V is minimal by Proposi-
tion 5.11.

(b) Let G be U -locally minimal for a GTG neighborhood U . According to Theorem 5.12, U∞ is a minimal subgroup of G .
For the exponent m of G , we obtain (1/m)U = U∞ and hence U∞ is open. �

If the algebraic structure of a group is sufficiently well understood, Theorem 5.12 helps to characterize locally minimal
group topologies. As an example we describe the locally minimal locally GTG topologies on Z. Let us recall that the minimal
topologies on Z are precisely the p-adic ones (Prodanov [29]).

Example 5.16. Let (Z, τ ) be a locally minimal locally GTG group topology. Then either

(a) it is UFSS; or
(b) (Z, τ ) has an open minimal subgroup; more precisely, there exists a prime number p and n ∈ Z such that (npmZ)m∈N

forms a neighborhood basis of the neutral element.

Indeed, if τ is not UFSS Theorem 5.10 gives that it is not NSS, and then, Example 2.11(d) says that τ is a non-discrete
linear topology. We apply now Corollary 5.15 and we obtain that G contains an open minimal subgroup N . Let N = nZ for
some n �= 0. Then the minimality of N implies that for a suitable prime p, a neighborhood basis of 0 in nZ is given by the
sequence of subgroups (npmZ)m∈N ((2.5.6) in [13]).

Proposition 5.17. Products of locally minimal (abelian precompact) groups are in general not locally minimal, namely the group of
integers with the 2-adic topology (Z, τ2) is minimal and hence locally minimal, but the product (Z, τ2)×(Z, τ2) is not locally minimal.

Proof. Suppose that (Z, τ2) × (Z, τ2) is U -locally minimal. We may assume that U = 2nZ × 2nZ. By Proposition 5.11, the
closed subgroup U is minimal. But U is topologically isomorphic to (Z, τ2) × (Z, τ2), which yields a contradiction. �
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According to Corollary 5.15(b) the bounded locally minimal locally GTG abelian groups have an open minimal subgroup.
Now we use this fact to describe the bounded abelian groups that support a non-discrete locally minimal and locally GTG
group topology:

Theorem 5.18. Let G be a bounded abelian group. Then the following assertions are equivalent:

(a) |G| � c;
(b) G admits a non-discrete locally minimal and locally GTG group topology;
(c) G admits a non-discrete locally compact metrizable group topology.

Proof. To prove the implication (a) ⇒ (c) use Prüfer’s theorem to deduce that G is a direct sum of cyclic subgroups. Since
G is bounded, there exists an m > 1 such that G has as a direct summand a subgroup H ∼= ⊕

c Z(m) ∼= Z(m)ω . Since Z(m)ω

carries a metrizable compact group topology, one can build a non-discrete locally compact metrizable group topology on G
by putting on H the topology transported by the isomorphism H ∼= Z(m)ω and letting H to be an open subgroup of G .

(c) ⇒ (b) Let τ be a non-discrete locally compact group topology on the group G . According to Examples 2.3(b) and 5.6,
τ is locally minimal and locally GTG.

(b) ⇒ (a) Assume that |G| < c. By Corollary 5.15 there exists an open minimal subgroup H of G . As |H| < c, we conclude
that rp(H) < ∞ for all primes p (see [13, Cor. 5.1.5]). Since H is a bounded abelian group we conclude that H is finite.
Since H is open in G , G is discrete, a contradiction. �
6. Open questions

Question 6.1. Is the closure of every GTG set in a topological group again a GTG set?

Question 6.2. Is every locally minimal abelian group necessarily locally GTG?

According to Theorem 5.18, for a negative answer to Question 6.2 it suffices to build a non-discrete locally minimal group
topology on an infinite bounded abelian group of size < c. To emphasize better the situation let us formulate this question
in the following very specific case:

Question 6.3. Does the infinite Boolean group
⊕

ω Z(2) admit a non-discrete locally minimal group topology? A positive
answer to this question implies a negative answer to Question 6.2.

Actually, the following weaker version of Question 6.2 will still be useful for Theorem 5.12:

Question 6.4. If G is a U -locally minimal abelian group for some U ∈ V (0), does there exist a GTG neighborhood of 0
contained in U ?

Theorem 5.10 suggests also another weaker version of Question 6.2:

Question 6.5. Is every locally minimal NSS abelian group necessarily locally GTG?

A positive answer to this question will modify the equivalence proved in Theorem 5.10 to equivalence between UFSS and
the conjunction of local minimality and NSS.

Remark 6.6. Proposition 5.11 shows that the space in Example 5.4 cannot provide an answer to Question 6.2, since actually
it is not locally minimal. [Suppose that for some ε ∈ (0,1), Wε witnesses local minimality of L0. Let h be the characteristic
function of [0, ε/2], and H the subgroup 〈h〉 of L0. H is discrete, hence it cannot be minimal; however, H ⊆ Wε/2 and thus
H + Wε/2 ⊂ Wε , which contradicts Proposition 5.11.]

Question 6.7. Is every locally minimal NSS group metrizable? According to Proposition 2.13, this is true for abelian groups.

The next question is related to Proposition 2.5 and Corollary 2.6:

Question 6.8. Let H be a closed subgroup of a (locally) minimal group G . Is then H necessarily locally minimal?
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