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Abstract. A knowledge of the reserve strength of plates will result in more 
economical designs, practical load capacity limits, and retrofit decisions 
that increase the strength of a structure. However, plates do not readily 
lend themselves to an elasto-plastic solution. One plate model, the grid 
framework, is the exception. The grid framework finite element models a 
plate through the use of grid members with a proven elasto-plastic analyti- 
cal capability. The finite element mechanics of the grid-framework model 
are outlined with emphasis on the derivation process to generate the equiv- 
alent properties that force the grid-framework to conform to plate behavior. 
The concept of a limit analysis is introduced with a discussion of the 
elasto-plastic conversion procedure. An elasto-plastic solution to a plate 
structure is used to confirm the equivalent grid technique. 
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INTRODUCTION 

Elasto-plastic analysis of plates is a com- 
plex affair using standard finite elements. 
One or the other of two alternatives is 
typically used. In the first approach, the 
element is treated as an elastic continuum 
with its properties appropriately adjusted 
to yield levels to produce plastic action. 
This approach, although technically simple, 
requires a large number of elements to ade- 
quately define yield patterns. The second 
alternative is to establish the element as 
an elasto-plastic medium that simultaneously 
exhibits both elastic and plastic behavior 
thus, reducing the need for a large system. 
To produce this combination, however, re- 
quires a highly complicated mathematical 
formulation. 

The dilemma of complicated development ver- 
sus a large system is resolved with a non- 
standard alternative in the form of an 
equivalent grid or grid framework element 
first proposed by Yettram and Husain (1965) 
and later expanded by Traina (1968). The 
grid-framework element uses six grid members 
interconnected at four corners to model a 
plate element. This arrangement has several 
advantages over plate elements including 
faster convergence in many instances, multi- 
ple yield directions and potential yield 
points, and the ability to readily interface 
with plane grid structures. In addition. 
the grid framework element lends itself to a 
limit analysis and. in this capacity, a pre- 
viously defined (McCarthy, White, and Minor, 
1980) matrix modification process that intro- 

duces plasticity to grid structures. The 
grid framework limit analysis, developed 
through the Engineering Foundation (McCarthy, 
1982) follows a cyclical analysis procedure 
described by Wang (1970) where "hinges" are 
inserted into a structure to simulate yield- 
ing. 

MATRIX FORMULATION 

Plate behavior is simulated by the grid- 
framework element only when the grid member 
properties are suitably determined by estab- 
lishing moment equilibrium and modal compat- 
ibility between the equivalent grid and a 
plate element. Equilibrium and compatlbil- 
ity requires the use of the grid-framework 
stiffness matrix with the skewed grid frame- 
work element of Fig. 1 as the starting point 
in this matrix development. A single grid 
member has two bending moments and a tor- 
sional moment representing internal forces 
{F) and their corresponding displacements 
(e). External forces (P} and displacements 
{X) associated with an element act at the 
four corners referred to as nodes or joints. 
Flgure 2 illustrates the internal and exter- 
nal force layout. Static equilibrium be- 
tween the external and internal forces at 
the four nodes produces a statics matrix [A] 
and the matrix equation 

{PI = [Al IF) (1) 

For a typical member of the grid-framework 
element, defined by end nodes i and j, slope 
deflection and elastic torsion results in 
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I- I 

where: 0 =skewangle d=a+f 
h = bsin@ g=a+f 
f = bcosa 

s1 = 
v'a2 - ZabcosW + b2 

s2 = u'a 2 + ZabcosV + b2 

Fig. 1. Skewed grid-tramework model. 

J 

7 

Fig. 2. Internal and external forces 
and displacements. 

Equation 2 where ek represents torsional ro- 

tation and EI and GJ are the flexural and 

Fi=Fei+Te 
j 

F; = y ei + y e 

j (2) 

torsional stiffness, respectively. Equation 
2, when applied to the six grid members, 
generates the member stiffness matrix IS] 
and the matrix equation 

IF} = IS1 Ie1 (3) 

Now, conservation of energy or X TP = 

T 
F combines with equations 1 and 3 to 

obtain the key equation 

IP) = 1AJlSllAIT~X~ = lASATIfX) (4) 

where lASATl is the grid-tramework stiffness 
matrix of Table 1 (tables at end of text). 

Once the grid properties are known, a plate 
is analyzed due to external forces {P} and 
by solving Equation 4 for displacements {X}. 
Further manipulation of Equation 3 and the 
conservation of energy produces the second 
key equation 

IF} = iSllAJTtX~ = lSAT,{Xj (5) 

Thus, the internal forces are found through 
the substitution of {Xl from Equation 4 into 
Equation >. 

PLATE RELATIONSHIPS 

A standard rectangular plate element is act- 
ed upon by bending moments M and My and a 

X 

a twisting moment M 
xY 

along the edges. 

These moments are distributed to the adjoln- 
ing nodes as shown in Fig. 3. 

The plate displacements are a function of the 
modulus of elasticity, E, Poisson's ratio, IJ, 
and moment of inertia per unit width, 

J 
I = t3/12, where t is the plate thickness. 
The bending moments, taking into account the 
Poisson effect, cause rotations which may be 
determined by applying moment-area to the 
M/E1 diagrams of Fig. 4. The twisting moment 
causes both rotations and displacements nor- 
mal to the plane. The generalized forces 
and displacements at the corner nodes due to 
M 
x' MY and M 

are summarized in Table 2. 
xY 

GRID PROPERTIES 

Working with the plate relationships of 
Table i! and the grid-framework stiffness ma- 
trix of Table 1 and Equation 4, the correct 
grid propertles may be found. The moments 
in Table j! are substituted into- the left 
hand side of Equatlon 4 for (P} while the 
displacements are substituted for 1x1. This 
creates thirty six equations which, through 
repllcatlon, are reduced to the following 
twelve. 

0 = WEI, + 
[ 
$- - +$]EIb + [=$]G.lb 

+ [F - F]EId - [y + y]GJd ('~1 Fk=Fe 
k 



488 5th IC?M 

Fig. 3. Forces at the nodes-plate 
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Fig. 4. Rotations and displacements- 
plate element. 

O= 
[ 
-g+F]EIb - p$qGJb 

+ [qq]EI, -[F+y]GJd (‘I 

0 = +EIa - [+ + $qE,, + [$]GJb 
+ [F -qyEIc _[y$]GJf (8) 

0 = w - $F]EI, - [$qGJb 
+ [y? - qc]EIc _ [fy + @$]GJ, (y) 

y = [$ + F]EIb + [$]GJb 
+ [pqqEIc +[F+#,, (l”) 

y = EIa + [F + +],I, + [+I,,, 

+ [$ - y]EIc + [$ + F]GJc 'II) 

y = [$ -VI,,, +[$]GJ, 

+ [$qP]EId +[*+y]GJd (12) 

+ [~]GJ~ + [$ + y]RIc ' 

+ [$-ff!]GJc 

++ E1b 

1 
(16) 
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Now, by assuming that Jd = Jc = 0 as pro- 

posed by Yettram and Husain (lYb>), Equa- 
tions (b,) through (I/) are solved tar the 
remaining properties to get: : 

Ic= (1 
QISLV + PLj (18) 

- pL)[MV + pML + XR + PPXJ 

Id = (1 - p‘)[MV + pML + XR + pPX1 (19) 

- [AD-@X-CF-CX] I 
=b = 

c 

(A2 + ?dAB + BC- C2- CH] (20) 

GJb 
E 

tzlJ S + [(J!$+b] - [Y]Ic 
A(I+p) 

Ia 
=T_ LHIJ + pW]Ib + pWGJb - 

E 

GJ T 
a= 
E o+ 

lh'+Z-YJIb - WGJb 
E 

where 
h* 

A=F 3afh 
B=r 

F=bd2 
Y3 

H=z 
b* 

bl 
T=- 

2 

ahd X=-_ blah* 

s13 
Y=F 

P 
c=F 

bh* 
D=- 

s13 

RX& s=al 
s. 3 L 

?- 

"XC w= 

s13 

Z=llah 
b2 

Further, tor a right grid where s = s 
1 
= s. 

L' 
Ic = I d,andJ =J 

c 
d, Equations (b) to (11) 

are reduced to six equations which produce 
the Traina solution as tallows: 

1 a = Cb* - Pat)1 
'Lb(l-pL) - [ab2sz a3]> 

GJd 
+T 

-[ 
b3+a2b GJd 

S * 1 E 

ot the Traina solution 
are calculated depending on the properties 
ot a plate element, E. G and 1, and vary 
according to the torsional stittness ok the 

diagonal members 
ment. Thus, the 
diagonal members 

of the grid-framework ele- 
torsional stiffness of the 
is the dependent tactor. 

LIMIT ANALYSIS-MATRIX MODIFICATION 

Elasto-plasticity is introduced into an 
elastic analysis with "plastic hinges" or 
actual hinges placed in the structure to 
prevent the addition ot moment at that loca- 
tion. Hinge points occur where the struc- 
tural bending moment 1s at the level of the 
plastic moment capacity ot the grid-trame- 
work members and are inserted into the 
structure at the start ot an analysis cycle. 

The plastic moment capacity tar a square 
grid tramework element is determined by 
trial and error to be 0.293 times the ele- 
ment length times the moment ot a tully 
yielded plate ot unit width. This is veri- 
tied by taking moment equilibrium ot the 
interconnecting grid members at a tully 
yielded central node and dividing by the 
element length. The result, as expected, is 
the plastic moment per unlt width ot the 
plate being modelled. To date, this capac- 
ity is assumed valid tOr skewed and rectan- 
gular elements in lieu ot an anticipated 
value ot greater accuracy not yet known. 

Installation ok a hinge is a matter of the 
proper manipulation oi Equations 2 prior to 
building the LSJ matrix tor a new analysis. 
For example, a hinge at i would result in 
zero moment at 1 or F = 0. 

i 
The remaining 

bending moment Fj is written In terms ot 

its corresponding displacement e.. On the 
3 

other hand, torsion moditication cannot be 
so easily resolved. First, it is assumed 
that the torsional stittness is subject to 
a reduction when the bending moment is at 
the plastic level. The ASCE Guide to Plas- 
tic Design (1971) provides a tormula suit- 
able to estlmate the length ot a plastic 
hinge tar wide tlange sections and a second 
tormula to estimate the strain hardened shear 
modulus tor steel. Both quantities are need- 
ed to generate the torsional stittness by in- 
tegrating over the two assumed dlstlnct seg- 
ments, elastic and plastic. Thus, the member 
stlttness matrix 1s) Is changed to reflect a 
hinge at I according to the new relationships 
tor a typical member ij 

Fl = 0 

F 3EI 
e 

j=T j 

GJGST 
Fk = - 

L 

where: 

1 

CLPG + (l - ap'GST I 

ek 

G 
ST 

= strain hardened shear modulus 

aP 
= torsional reduction tactor 

The torsional reduction tactor is the ratio 
of the plastic hinge length to the grid mem- 
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ber length and may be set to zero if no re- 
duction in torsional stiffness is assumed. 
Similar modifications result for either a 
hinge at j or at both i and j. 

LIMIT ANALYSIS-PROCEDURES 

A grid-framework limit analysis is initiated 
with a solution to a plate structure by 
Equations 4 and 5 without matrix modifica- 
tion. The load proportion rather than mag- 
nitude is important and thus, the smallest 
load is normally taken to be unity with the 
remainder proportioned accordingly. A load 
tactor ot sutticient magnitude to cause at 
least one 01 the bending moments to attain a 
plastic moment level 1s determined. Moments 
and displacements are multiplied by the load 
tactor. Hinges are inserted into the struc- 
ture at the points where the moment has 
reached the plastic moment capacity. 

A second cycle is initiated with a repeat 
analysis by Equations 4 and 5 but this time 
with appropriate "plastic hinge" matrix mod- 
ifications. Again a load ractor is tound. 
moments and displacements adjusted, and 
hinge points identltied to conclude the cy- 
cle. The analysis 1s continued for a number 
ot cycles up to collapse or the structure. 
The cummulatlve load tactor is the collapse 
load. 

Two criteria are used to establish tailure 
ot the structure. Criteria one is a singu- 
lar stitrness matrix with a zero inversion 
pivot indicating a structure with a suffi- 
cient number ot hinges to cause instability. 
Criteria two is an excessive increase in 
displacement tram one cycle to the next. 
Typically without collapse, the analytical 
cycles are terminated at twenty due to time 
restrictions. 

EXAMPLE PROBLEM 

The grid tramework limit analysis was in- 
serted into the bridge analysis computer 
program BRANDE IV (McCarthy, White, and 
Minor. IYoU) to reduce the work requirements 
involved in this type of analysis. Subse- 
quently, a number ot plate structures were 
BRANDE IV elasto-plastically analyzed in- 
cluding the present example. STRUDL II 
(MIT, lY7U) was used to check the elastic or 
rirst cycle solution and yield line theory 
(Woods and Jones, 1957) to check the ulti- 
mate behavior. 

The example problem is the 54 element /U 
node simply supported plate of Figure 5. 
The plate 1s steel with a modulus or elas- 

ticity E = 30 x lo6 psi, shear modulus 

G = 12 x lU6 psi, thickness t = 2 in., and 
Poisson's ratio I-1 = 0.25. Loads are unit 1 
kip magnitudes at each of the interior nodes 
to represent a unitorm load over the plate. 
No reduction in torsional stittness is as- 
sumed in a bending moment plastic hinge. 

Fig. 5. Plate with a simulated 
uniform load. 

'An equivalent grid BRANDE IV limit analysis 
produced a twenty cycle load of 15.0 kips 
per internal node. A P-A plot ot the node 
associated with maximum displacement, in 
Fig. 6. is consistent with curves ot similar 

Yield Line Solution 
I 

Elastic Solution 

Deflection, A (ft.) 

Fig. 6. Force-Displacement Curve. 

type. An extrapolation ot the curve indi- 
cates a collapse load that approaches the 18 
kip level. A yield line analysis ot the 
structure with a true unitorm load produced 
a collapse load ot LI kips. 

A comparison between the two techniques in- 
dicates a limit analysis collapse load that 
is approximately 6X above the yield line 
prediction. This is not unexpected tor two 
reasons. First, the equivalent concentrated 
loads neglected the unltorm load acting 
along the boundaries. Second, a nodal con- 
centrated load is equal to the unitorm load 
times the element area which necessarily ne- 
glects some ot the distributed ettect in 
much the same way as concentrated equlva- 
lents ror a unitorm beam load. 

Having established that the ultimate load is 
consistent with the expected magnitude, the 
same consis.Lancy must occur in the yield 
pattern to insure analytical contidence. 

The yield line solution produced an over- 
turned back-Lo-back Y yield pattern also re- 
vealed by the grid framework yield pattern 
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of Fig. 7. There is scatter in the hinges 
but this is representative of true plate 
yielding. The hinge pattern progression 
started, as anticipated, toward the center 
or the plate moving generally outward to-the 
corners. 

CONCLUSIONS 

A limit analysis by the grid tramework 
method is a highly practical and proven ap- 
proach. As with all new techniques, there 
are needed retlnements like a concise deti- 
nition oi the plastic moment capacity tar 
skewed and rectangular grids substantiated 
by further testing. 

Fig. 7. Plastic hinge tormation- 
twenty cycles. 

TABLE 1 The [ASAL] or Element Stittness Matrix-Grid Framework 

I EE+AB+AC . r An-AC -AZ-AG 
+AD+AE 

;g; i+.J+AK Ty 

2 where: AA+AL+AMAP-AQ IAF-AG 
1 

_.AJ $?-A' AI!+AI 
‘z- 

-t-K _K“ A, c 0 

AL-AM 
+AH+AO +AR 1 AQ , L ,L I I I L I 

3 
4r,I - A^..". 

->-?A I 
Bl ,A,, I AJ 

I I I I I I 
&z-,-2- A&n2B! T 

4;1 bz 
II I I -AQ I -AT 1 AK I Ar. I I I I i -AU I C I AP I -AS 1 I I --- I __- 

4 
a BI~=~ 

--__ IEE+AB+Ad -AF+AG I-A3 1 __ 
n n 

g-AW -A&A:' 
I 

Case P 

i)ue Force 

to 

M x Displ. 

Due 
Force 

to 

h 
Y Displ. 

he 
Force 

LO 

ki 
xY Displ. 

TABLE 2 Force-Displacement Relationships-Plate Element 
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Limit analysis applications are varied and 
many. For the most immediate, overweight 
trucks are a consistent problem to the in- 
tegrity ot bridge structures. The reserve 
strength ot bridges may be identitled‘.with a 
limit analysis. Those structures incapable 
ot handling sustained overweight may be eco- 
nomically strengthened with the limit analy- 
sis plastic flow pattern as a guideline or 
simply be restricted in use. 
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