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Fuzzy Topological Spaces 

HIJ CHENG-MING 

We start by discussing a class of special fuzzy topological spaces, that is, 
the product-induced spaces [S]. First, we show that every fuzzy 
topological space is topologically isomorphic with a certain topological 
space, and then proceed to prove every open fuzzy set is defined by some 
lower semicontinuous function. Taking this as the background, we 
introduce the concept of dual points [6]. and thus establish a kind of 
neighborhood structure of fuzzy points such that the Q-neighborhood [4], 
which is one of the important notions in fuzzy topology, and the 
neighborhood arc integrated in this structure. This neighborhood structure 
will be the core of our developing the theory of fuzzy topological spaces. 
We introduce the concept of strong quasi-discoincident [ 1 I]. and so give a 
group of fuzzy separation properties which is a most natural generalization 
of the usual separation properties. Next, we introduce a kind of fuzzy 
metrics and use this metrics directly to discuss the fuzzy metric space. By 
means of fuzzy points, WC define kinds of uniformities, discuss their fun- 
damental properties and extend Weil’s theorem on usual topology to fuzzy 
topological spaces, and hence obtain their separation character. Naturally, 
these fuzzy uniformities can still be characterized by a family of fuzzy 
metrics. Finally. we discuss the problem of fuzzy mctrization on fuzzy 
topological spaces and obtain a fuzzy metrization theorem which contains 
the Nagata-Smirnov theorem as a special example. 

I. PRELIMII\;ARIES 

Let X= (.v} be a set of points. A fuzzy set A is characterized by a mem- 
bership function A(X) from X to the unit interval I= [O, 11. In particular, 
X(X) = 1 and 0(x) E 0 are fuzzy sets in ,I’. The family of all fuzzy sets in X 
is denoted by Ix. 
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.J c- B 0 A ( .\’ ) < B( .\ ). .x E x’. 

.‘I = Bo.-l(.v)= B(.Y). .\’ E x. 

A = B’ 0 A (.Y ) = I - B( .\’ 1. .\- E x. 

where B’ is the complement of H. For a family of fuzzy sets 1 .,I, 5. E 11 i 

c= u A,oC’(.r)=sup.4,(.~). 
/‘: I t. I 

D = p, A; 0 fj(.r) = inf A,(.u). 
It I I‘ 1 

In particular. 

.v E x. 

.Y E x. 

C‘= A u Bo(‘(.\-) = max[A(.u), B(s)], .Y E x, 

D = A n HoI) = min[A(.u). B(.u)], s E x. 

If min[A(s), fI(.u)] # 0. for some .Y E X, then A is said to be intersecting 
with B and if A(s)+ B(s)> I. then A is quasi-coincident with B. 

DEFINITION 1.2. Suppose I‘: X --f Y is a mapping and A is a fuzzy set in 
X, then the image T,4 is a fuzzy set in Y whose membership function is 
defined by 

[ TA]( .r) = ,~-, ,,;,W. sup T ‘(~)#0. 

= 0, T ‘(~*)=a. 

If B is a fuzzy set in Y, then the inverse T ‘B is a fuzzy set in X defined by 

[7‘ ‘B](s)= B(~‘(s)). 

DEFINITIOS 1.3. A fuzzy point P in X is a special fuzzy set with mem- 
bership function 

P(.K) = 2. .v = .Y,,, 

= 0, .K # SC) , 

where 0 < x < I. I’ is said to have support sg value r and is denoted by P:,) 
or P(.u,,, r). 

Let A be a fuzzy set in X, then P:, c A OCI 6 A(x,) in particular, 
P?,, c P; 0 X” = J’, r < /I. A fuzzy point P:,, is said to be in A, denoted 
P:,E A iff r< A(.~,,). 
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A fuzzy set with membership function 

P(x) = 1, x = xc, ( 

= 0, .Y # .\‘,, , 

is called a crisp point, denoted Pk,,. For any fuzzy set A in X, we define the 
crisp point P!,c AoA(x,)= 1 and P~,,E AoA(x,)= 1. 

The fuzzy point and crisp point are often referred to as a point. 

DE~I~I~IOS 1.4. Let A be a fuzzy set in X, then the subset of X 

co,(A)= (x: A(.r)>xI, rE(O, 11, 

and 

a,(A)= (x: A(x)x.), r E [O, 1). 

is called the weak X-cut and strong r-cut of A, rcspcctively. 

DrrtI\;rrtoN 1.5. Suppose LF is a family of fuzzy sets in X. which satisfies 
the following axioms: 

(TI) 0. I E [r. 

(T2) if .4, BE F, then An RE IF, 

(T3) if,4;EF, SEA. then IJ,. , A;E[F, 

then B is called a fuzzy topology for X and the pair (X, F ) is a fuzzy 
topological space. 

Every member of i is called an F-open fuzzy set (or simply open fuzzy 
set) and its complement is an F-closed fuzzy set (or closed fuzzy set ). 

Let A bc a fuzzy set in fts (X. I~). The closure .4 and interior A” of A arc 
defined. respectively. by 

and 

DEJ:JKJTJOK 1.6. Let F be a fuzzy topology. A subfamily B of IF is a base 
for F iff each member of II can bc expressed as the union of some members 
of 8. A subfamily ZS of F is a subbase for lF iff the family of finite intersec- 
tions of members of s form a base for lF. 

DEFJNITJOK 1.7. A mapping T: (,I’, lF) -+ ( I’, I) is called fuzzy con- 
tinuous iff for each A E E implies 7‘ ‘A E [F. 
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DWI~I~IWN 1.X. A mapping 7‘: (X. J ) -+ ( Y. k) is called fuzzy open 
(closed) iff for each A E [F 1.4’ E iF) implies 7‘.4 E ‘: ( [ 7,4]’ E ! ). 

The foundational notions and the definitions mentioned above and other 
definitions used but not shown in this paper can be found in [ 1 -63. 

11. PRODUCT-INDLK‘EII SPACES 

In paper [S], we introduced a class of fts which is defined by a class of 
special product topologies JXH. This class of fts is very foundational and 
important. 

DEFINITION 2.1. Let .4 be a fuzzy set in X. Then the subset A.’ = (( .Y. 2): 
P:E A. YEI,,) in product set Xx I,, is called the shape of the fuzzy set A. 
The family (A”:AEI.~] of all shapes of fuzzy sets in X is denoted by 43. 
where I,, = (0. 1 ). 

Proof: It is evident that the operator .’ is I I. Let [A,.: s E A ) be a 
family of fuzzy sets in X, then 

iJ A)= u I(.u.r):.\-EX,O<X<.~;(S)] 
/.Y 1 ;- , 

= ~(.\-.x):.\-E.Y.o<r<sup.4,(.u)~~ 
IC I 

Similarly, we can prove 

, 
Q ,,; A?=[, c ,,,A/]” 

DEFINITION 2.2. A topology for the open interval I,, = (0. I ) is called a 
O-topology iff its open sets family consists of some open intervals (0. r). 
where r E [O. 11. 

It is easily seen that 

(I,,= (4. I,,)? 

o,= ((O,r):xE[O, I]) 

are 8-topologies. 



FUZZY TOPOLOGICAL SPACES 145 

DEFINITION 2.3. Let .T be a topology for X and 0 be a U-topology for 
I,,. The family of fuzzy sets in X 

[F p x 0 = (A:.~EI~~~A~~E.~xX~ , 

is a fuzzy topology for X, which is called a product-induced topology, and 
(.Y. !F i x ,,) is the product-induced space. 

(i) O.‘=@, I.‘=Xx I,,, 

(ii) (AnB)“= A”nB’, 

(iii) (lJ,< , Aj.).‘=lJjr , A,S. 

for tm~’ A, B, A; E F 7- x ,, . i E A. 

Prmf: By Theorem 2.1 is trivial. 
By the above theorem, it is easy for us to see that a statement involving 

only the topology and the operator “IJ” and finite “n” holds in (Xx IOr 
.P x U), then the corresponding statement holds in (X. F., x (,). For example, 
we have the followng. 

THEOREM 2.3. A product-induced space (X, F i x ,,) is fkz,v C,, C,, und 
wparuhlt~. w.spuctir:r!,~, lff’ l/w mpolopicul spuct~ (X, J) is C’,, C,, und 
.wpmrahle. 

Let (X. .‘/) be a topological space. The family of all lower semicon- 
tinuous functions from (X, .P) to [01 I ] forms a fuzzy topology for X and 
the corresponding fts is called semicontinuous fts or induced fts [3? 7, 81. 
By the properties of lower semicontinuous functions, it is easy to prove the 
following proposition. 

THEOREM 2.4. The product-induced spac~t~ (X, IF i * ,,,) is jusr the lowr 
st~nlit.onlinuous .ft.s n,hich is inducrd hi, toppologicul .sptm (X, .F ). 

DEFINITION 2.4. Let (X, I) be a fts, then the family of subsets in X 

{~,(A):AEF,zE[O, 111 

forms a subbase of some topology for X. This topology is called initial 
topology of k, denoted by I(E), and the corresponding topological space 
(A’, I(E)) is the initial topological space. 
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Obviously, the definition of I( I) mentioned above and the corresponding 
definition in (8) arc identical. Similarly. the topologies I,( S ). r E [O. I ]. for 
X induced in ( IO) can be defined b> 

1,(F)= ;“,(.4): AE t ;. 

It is evident that WC have 

I(f)= sup I,(F). 
lcrnl~ 

THEOREM 2.5. Et’er)’ open (clo.sed) jic~. Set in a jts (X, F) is u lower 

(upper) semicontinuous ,func~rion from (X, r(F)) to [0, I]. 

Ploof: It follows from the character of semicontinuous functions. 
Due to Theorems 2.4. and 2.5. we obtain immediately the following 

important results. 

THEORN 2.7. For cwr~~ /is ( X. 1 ) thrw e.vist.v u topological .spuw 
(XXI,,. ‘N). ticr(!t)xIl,. .such thut (X. ~)cind(Xxl,,. Yl ) urc topolo~~icrrll~~ 
ison7mrphic~. 

Proof; Trivial from Theorems 2.2 and 2.6. 
Let (X. F) be a fts and C:E .F = I(>), ;( E (0. 11. The fuzzy set with shape 

C! x (0. 2) is called a fundamental fuzzy set for (A’. !F), denoted by ,Y: If 
X; E F, then it is called a fundamental open fuzzy set. In particular. for 
product-induced space (X, [F i S,,), if (0, r)~0, then N; is a fundamental 
fuzzy open set, and the family (A’; : L’E .Ji. (0. r) E H) forms a base of 
F I- . ,, 

THEORFM 2.8. The skuppc A” of‘ cm open fir-- -J’ .srt A in ,/is is an oprt7 set 
in ( X. :P ) x [ 0, I 1. whew .Y = I( F ) und [0, I ] is tl7e .suh.spcrcu o/‘numtwr lint. 

Proof: First, the shape Il x (0, Z) of X; is an open set in (X. .F ) x 
[O, I]. For any A E IF 7 * ,,,, hccause all N;. forms a base for [F ,- ,,,,. so 
A = UNf . Hence A is an open set in (A’, .F) x [0, 11. By Theorem 2.6. 
A E 1 implies A E k 7 1 (,,, therefore A \‘ is an open set in (A’, .I/) x [0, I 1, 
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DEFINITION 2.5. Let A be a fuzzy set in fts (A’. [F ). We deline its weak O- 
cut 

oJA)= n f W: (T,,(A)c W, WE/(F)) 

THEOREM 2.9. Let C he II closed jiiqv sef in .fi.v (X. F), then set 
Pv {(.Y, c(.r)): xE W,(I)} is u closed se1 in (X, 3) x [O. I], :F = I(F). 

Proof Obvious form Theorem 2.8. 

THEOREM 2.10. Ler U, I 0,. The mapping T: (X, F +- y (,,) + ( Y, F ,, x (,?) i.v 
fiirz~. conrinuous $jj the mapping T: (X. 3) + ( Y. /I’/) is continuous. 

ProqjI Sg&iencJ. Let N; be a fundamental fuzzy set in ( Y, [F, X ,,,). 
Obviously, we have 

Since T is continuous and 0, 3 f1, thus T ‘(U) E .y. (0, a) E 0, and so 
T- ‘Nf;E f,9- x,,,. 

Let BE F+ xl,2r then there exists a family {Np,: i. E A ] of fundamental 
fuzzy sets in lF ,, x (,: such that 

B= u N;:,. 
It .I 

Hence 

Necessity. For every U E ‘%, it is obvious that N:: E [F, x ,,?. By fuzzy con- 
tinuity of T, we have T IN:,= Nk-,,,.,E [F, )( ,,,, hence T- ‘(U)E .F. 

THEOREM 2. I 1. The mupping T: (X. % i x ,,) + ( Y, E #, x o) is fuz:~~ open 
(closed) l/f’ the mcrppitq 7‘: (X, .F ) + ( Y, Y) is open (clo.seri). 

Proof: Wc prove it in case of fuzzy open. 

Sufficienc:r~. If mapping 7‘ is fuzzy open, then for each fundamental 
open fuzzy set Nj,, E [FTT X0 the image TN:: E IF ,, xH. It is easily seen that 
TN:,= Ni.,,.,, thus N&,:,E [F,, rl, and so T( U)E&. Hence the mapping T is 
open. 

Necessify. Let A E IF ,5 X n and P: E TA, take note of 0 <x < TA( J), then 
there is an XE X such that T( P:) = P: and P”, E A. Hence there is a fun- 
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damental fuzzy open set ;Vy such that /‘: E !Vy c .4. Since mapping 7‘ is 
open. wc have T( I .) E /M and 7’.Yf = .L”j,, , E It ,, , ,,, By T.V;l,; c ‘I.,4 WC have 

T.4 = (1 Th:‘: E F ,, ,,. 
P* -I 

The mapping 7‘ is fuzzy open. 
Two fuzzy topological spaces arc said to be homcomorphic iff there exist 

a I I and fuzzy continuous open mapping such that the image of one is 
exactly the other. Obviously. product-induced spaces (I’. [F ,- * ,,) and 
( I’. F ,, ~ ,,) are homeomorphic which is equivalent to (X, 7) and ( Y, ‘N) 
being homeomorphic. 

111. FL7.7.Y k)ISTS AND bW.1. SETS 

The fuzzy points and level sets of fuzzy sets arc important tools for 
rcserach on fuzzy topologies because any fuzzy set can be resolved vcr- 
tically and levelly by means of them, respectively. 

The fuzzy point is a kind of most simple and basic fuzzy set. For it the 
relation “c” is natural. and the relation “E” has only subordinate status. 

DEIWITION 3. I, Let P:, 0 < x 6 I. be a point and A be a fuzzy set in fts 
(X. r ). ,4 is called a neighborhood of P: iff there is a open fuzzy set BE 0. 
such that P: E Bc l-1. 

DEFINITIOS 3.2. Let P: be a point and !N’/ a fundamental fuzzy set in fts 
(,I” J): If P: E NC then iuf is called a neighborhood germ of P:. 

Proof: Obviously. from Theorem 2.5 and the property of lower 
scmicontinuous function. 

DEFINITION 3.3. A fuzzy set A is called an S-neighborhood of point P: 
in fts (X, F) iff there is a neighborhood germ ,Vt of P: and an open fuzzy 
set B such that 

P’EN~ c BcA. \ 
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Note that for the crisp point the neighborhood and the S-neighborhood 
may bc different. 

DEFINITION 3.4. Fuzzy point P,t Z is called a dual point of P”,. For 
crisp point Pt, we define its dual point the support x’ of Pt, denoted by P”,. 

In our system, since the PT is not a point, the neighborhood has no 
meaning for P”,. However, it is convenient that we call the neighborhood of 
P:, 0 <r < I, a neighborhood of Pt. and define Py E A -A(x) > 0, 
Py c A ox E o,,(A). 

The notions of quasi-coincident and Q-neighborhood introduced by [4] 
arc very important, and can perfectly deal with the question: the shape of 
the complement of a fuzzy set has to turn in topological space Xx (0, I ), 
such that we can transplant various definitions of closure on usual 
topology to fuzzy topology and make these concepts compatible with each 
other. We introduce the concept of dual point for the same object. The Q- 
neighborhood of a point is exactly the neighborhood of its dual point. 
Hence in our system the Q-neighborhood system and the neighborhood 
system are dual each other. 

THEOREM 3.2. Lel A he u jk~* set in .flts (X, F). The poinr P: E 1 if;f 
cvx~h ncighhorhood of its duul point P t -. ’ is quasi-coinc+dtwl rc,irh A. Thr 
,fic:~~ point P: 6 A” $r its dual point Pi 1 ti 2. 

Proqf: The first half of the theorem is exactly Theorem 4.1. in [4]. Now 
we prove the second half. 

If Pi ’ ti z then there is a neighborhood B of P; quasi-coincident with 
A’, i.e., Bc A, and so P: E Bc A, hence PT. E A”. Inversely, if P’, E A” then 
there is BE [F such that P: E Bc A, i.e., B is not quasi-coincident with A’ 
(or B and A’ are quasi-discoincident), hence P: & z;. 

In [3], for induced fuzzy topological spaces, i.e., (A”, F ?- Xo,), Weiss 
proved the following proposition: 

In fts (X, [F 9 x !,,), the fuzzy set A is an open (or closed) fuzzy set iff the 
set a,(A) (or w,(A)) is 9-open (or .F-closed). 

By this result and Theorem 2.6, we have 

THEOREM 3.3. !f A is an open (or closed) ,I;(::)~ set in .fi.r (x, lF), [hen 
a,(.4) is m I(F)-opcw set (or w,(A) i.r un r(E)-closed set). 

DEFNITKN 3.5. Let a be a fuzzy set in ,ft.v (A’, F). The strong l-cut is 
defined by 

a,(A)=U {U:N:.cA}, 

where N:, are the fundamental fuzzy sets in (x, F). 
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THEOREM 3.4. Let A he un open .fuulzy set in ,fts (X, IF), then ,for each 

c( E [0, 1 ] M’IZ huoe 

G,(A) = U ( U:P”, E N$ c A ), 

where Nf: are the ,fundamental,fuzzy sets in (X, F). 

Proof: Obvious from the property of lower semicontinuous function. 

IV. FUZZY SEPARATION 

DEFINITION 4.1. A fts (X, IF) is a fuzzy T, space iff, for any two distinct 
points in (X, IF), at least one of them has a neighborhood which is not a 
neighborhood of the other. 

THEOREM 4.1. If,fts (X, F) is a fuzzy TO space, then the initiul spuce (X, 
t(5)) is a T,, space. 

Proqf: Let .Y and ~1 be two distinct points in X. Consider the fuzzy 
points P*, and P;, 0 < CI < 1. Due to (X, F) being a fuzzy T, space, we might 
as well suppose that P”, has an open neighborhood B such that P; k B. 
Thus x E (T,(B) E r(5) but y k a,(B) hence (X, r(E)) is a 7’0 space. 

DEFINITION 4.2. A fts(X, F) is a fuzzy T, space iff for any point P”, and 
’ P(’ & P; the dual point P, fi has a neighborhood which is not quasi-coin- 

cident with P”,. 

THEOREM 4.2. If’ fis (X, [F) is u ,fuzzy T, spuce, then the initial space 
(X, l( ff)) is a T, space. 

Proqf: Let x # y; Consider points P,:’ and P.!:” then P:” has a 
neighborhood A such that A and Pv’ are not quasi-coincident. Thus 
Pl!‘& A and so .Y & ol12(A). Hence (X, l(E)) is T,. 

THEOREM 4.3. A ,fts (X, F) is a T, spuce if f  every point P”, isfuzzy closed. 

Proqj: It is obvious from Theorem 3.2. 

THEOREM 4.4. A fis (X, F) is a fuzzy T, space @for any fuzzy set A, we 
have 

A=n {B:AcB&) 

Proqf: Sujficiency. For any P”, and Pt ~5 PC, we have 

Pi, [j=n {B:P; -kBES} 



FUZZY TOPOLOGICAL SPACES 151 

Thus PI. p has an open neighborhood B such that B and P”, are not quasi- 
coincident and so Pf d /i:. Hence 7;” = p” I ~. By Theorem 4.3, the fts (X, lF) is 
a fuzzy T,. 

Necessit~~. For any fuzzy set A and point P: c A, there is /I < r such 
that Pf ~5 A. Since (X. IF) is a fuzzy T, space and the point Pk..’ is a closed 
fuzzy set, then (Pt fl)’ is an open fuzzy set and A c (Pt “)‘, P: d (PL.-“)‘. 
Let B=(P!-.“)’ then 

A=n {B:AcBE~;. 

DEFINITION 4.3. A fts (X, F) is a fuzzy 7’, space iff for any point P: and 
Pi’ ti P”, there are neighborhoods of P: and PI fi, respectively, which are 
not quasi-coincident each other. 

The proof is straightforward (cf. Theorem 4.2). 

Prorjf S~~ficienq~. For any points P: and Pf ti P:, thcrc is a closed 
neighborhood C of P;. such that Pfr ti C’ hence Pt I’ E C’. Thus Co and C’ 
are the neighborhoods of P”, and Pt p, respectively, which are not quasi- 
coincident each other. Therefore the fts (.I’, %) is a fuzzy T, space. 

Xecessif~~. Let Pf ti P:, then P: and PI fi have neighborhoods A and 
11. respectively. which arc not quasi-coincident each other. That is, 
P: E A c B’ and Pr ti B’. Let C= B’. then C is a closed neighborhood of 
PT.. we have 

P:=n {C P:EC”.C’EF). 

It is evident that fuzzy T, implies fuzzy T, and fuzzy T, implies fuzzy T,,. 

DEFINITION 4.4. A fts (X, tF) is fuzzy regular iff, for any point P: and its 
any open neighborhood A. there is a fuzzy set B such that 

P: E B”c EC A, 

and A is a neighborhood of B. 
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A fuzzy set A is said to bc neighborhood of H iff .4 is a neighborhood of 
every point PC\-. H(Y)). B(.v) > 0. .Y E .I~. 

PWC$ Since the family I ci,( .4 ): A E F. r E (0. I ): forms a base of I(F) we 
must only show that, for any .VE .I’ and its any open neighborhood 

(‘= n, I ,I ;a,,(tl,): .4,E c. I,E (0. I ) /. thcrc exists an open set I’ and 
closed set W’ in (X. I( F I) such that 

In fact. by the fuzzy regular of (X, F). for any fuzzy point P:, and its any 
open neighborhood A, there is an open fuzzy set H, such that 

P: E B,cB’c- .‘I,. 

and .4, is a neighborhood of ,. so WC have 

.~~(7,(B,)ccr,,,(U,)c~rr.(.,I,). 

Let I,‘= r-j-, ,,, (T,,( B,) and I+‘= 0, , ,,, W,.(B). Obviously, they arc open 
and closed sets in (X. I( F )). respectively. and we have 

.YE L’c WC I’. 

Therefore, (X. I( lF)) is regular. 

Proof: Suf~icicvic~~~. Let B be an open fuzzy set in (X, 1) and P: E B. It 
is clear that P: ’ C+ B’. Let .4 = B’, then there is a closed neighborhood C’ 
of A such that Pi 1 d C‘. and we have 

P: E c” c c’“‘c B. 

and B is a neighborhood of Cl”. Hence (X, tF) is fuzzy regular. 

Neccssit~~. Let A bc a closed fuzzy set in (X, F) and P: ~5 A, then 

PI ‘E A’ and there is an open fuzzy set H such that 
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and A’ is a neighborhood of B. Let C= B’, obviously C is a closed 
neighborhood of A and P: ti C, hence we have 

A=n {C:P(.~,A(.U))EC”..YEX,C’E[F} 

DEFINITION 4.5. The fuzzy sets A and B in (X, lF) are said to be strong 
non-quasi-coincident (or strong quasi-discoincident) iff, for any s E X, 
A(r) + B(x) d 1. and if A(x) + B(.u) = I, then either A(x) = 1 or B(x) = I. 

THEOREM 4.9. A jis (X, IF) is fuz:~~ regulur # .jbr any point P: und un!. 
closed jii;z~, set C which is strong non-yuasi-~oin~idenr \l*irh P:. , there ure 
neighborhoods A und B of‘ PT. and C, respectiw!,: such that A und B are not 
quasi-coincident. 

ProoJ S@cienc;v. Let C be a closed fuzzy set and point P’, E C’E F. 
obviously P: and C’ are strong quasi-discoincident. then there exist 
neighborhoods A and B of P: and C‘, respectively, such that A and B arc 
not quasi-coincident and so 

P: E A c B’ c C’. 

and C’ is a neighborhood of B’. Hence (X, lF) is fuzzy regular. 

Necessity.. Suppose point P: and closed fuzzy set C are strong quasi- 
discoincident. i.e., P’, E C’, then, by the fuzzy regular property, there is an 
open fuzzy set A such that 

P:EAL&C’, 

and C’ is a neighborhood of B’. Let B= ;i’, then A and B are 
neighborhoods of P: and C, respectively, and they are quasi-discoincident. 

A fuzzy regular T,, space is called a fuzzy T, space. It is easy to show that 
a fuzzy 7‘? space is a fuzzy Tz space. Indeed, let (X, F) be a fuzzy T, space. 
give any Pi! u! P:, of course they are different by fuzzy T, property, we 
might as well let A E & and P: E A, Pf k A. then there exists an open fuzzy 
set B such that 

Let c’= B’, then C is a neighborhood of PI p and is not quasi-coincident 
with B. That is. fts (X, lF) is a fuzzy T, space. 

DEFINITION 4.6. A fts (X. F) is fuzzy normal iff for any closed fuzzy set 
C and its any open neighborhood B in (X, tF) there is a fuzzy set A such 
that 

and A” is a neighborhood of C’, B is a neighborhood of ;i. 
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We can easily prove the following statement (cf. Theorem 4.0 1. 

b3WITIoN 4.7. Let (A’, % ) be a fts and /I a dense subset of the interval 
[O. I]. The family 10d,:t/~ /I) of open fuzzy sets in (A’. 1 ) is called a scale 
of fuzzy open sets iff Of, c O,,. and O,,: is a neighborhood of O,,, for any 
pair tl, CC/, in II. 

Now we generaIke Uryshon’s lemma on usual topology to the fuzzy 
topology. 

ProoJ Su~~i’cicw~~. Obvious. 

Ncwssit~~. Given any closed fuzzy set B and its open neighborhood A 

in (X, IF). Since (X. lF) is fuzzy normal there is an open fuzzy set 0,, such 
that 

BCO,,CO,,CA. 

moreover (I,, and A arc the neighborhoods of H and o,,, respectively. 
Let II be the set of diadic rationals and I),, = :~7/2”: HI < 2”, tn = 2/i - I. 

k = I, 2 . . . . . ) then II = U,! _ ,,:, D,,. We construct a scale of fuzzy open sets 
as follows: Let 0, = A. we can choose an open set 0, 2 such that 

and 0, >, 0, are the neighborhoods of O,,. 8, ?, respectively. Suppose for 
every member tl in I>, u D, cj u D,, the O,, is already defined such that 
o,, c OrT and O,/ is a neighborhood of fi,, for any pair d’ c tl”. For any 
11~ D,, 1 , there are adjacent elements tl’ and tl” of D, G ... u D,, such that 
d= (d’ + d”)/2. Using the fuzzy normal we can choose an open fuzzy set 0,, 
satisfying 

ii<, c- O<,C o,,c O‘/ . 

moreover 0,. 06,. are the neighborhoods of Oi,., O,,, respectively. By the 
induction, we obtain a scale of fuzzy open sets {O,,: dE D) such that 
Rc O,,C A, moreover 0,, and A arc the neighborhoods of B and (5,,. 

A fuzzy normal and fuzzy T, space is called a fuzzy Tj space. Obviously, 
fuzzy T, implies fuzzy T,. 



FUZZYTOPOLOGICALSPACES 155 

DEFINITION 4.8. A fts (X, F) is fuzzy completely normal iff for any set A 
and its any neighborhood B satisfying the condition P(s, A(.v)) E B, there is 
an open fuzzy set 0 such that 

moreover 0 is a neighborhood of A and P(.u, 0(.x)) E B, ,v E X. 
Fuzzy sets A and B are said to be fuzzy separated iff A and B, and at the 

same time 1 and B, are strong quasi-discoincident. 

THEOREM 4.12. A1i.s (X, I!) Is c~ompletel~ normal $jflf:fbr an?* pair ef.fu:zj. 
separutrti.fk:~~ .WIS A und B, there exist quasi-ciiscoinci~i~~nt open jiu;z~* .set.s 
0, and 0, being lhr neighborhoods of A und B, respectice!,*. 

Proof: Sg/ji:ciency. Let fuzzy set B be a neighborhood of A satisfying 
the condition P(x, A(x))E B, then 2 and B’ and at the same time A and F 
arc strong quasi-discoincident. Thus the fuzzy sets A and B’ have, respec- 
tively, quasi-discoincident open neighborhoods O,,, and O,., and so 
0, c Oh.. Observe that 0;. c B is a closed fuzzy set, we have oa c 0;. 
and A c 0, c (5, c B, moreover 0,, is a neighborhood of A and 
P(.u, (5,,(x)) E B. 

Necexsit~~. Let fuzzy sets A and B be fuzzy separated, then A c B’, 
P(x, A(s)) E B’ and AC B’, P(x, A(x)) E B’, .YE X. Since (,I”, F) is com- 
pletely normal there exists an open fuzzy set 0 such that 

A c 0 c c-i c B’. 

0 is a neighborhood of A and P(.v, o(s)) E B’. Let 0 ,, = 0 and 0, = 8’ 
then O,, and 0, are quasi-discoincident neighborhoods of A and B, respec- 
tively. Theorem 4.12 is proved. 

Fuzzy completely normal T, space is called fuzzy T, space. Obviously. 
fuzzy T, space is fuzzy T, space. 

So far, we have given a group of increasing fuzzy separation axioms: 
fuzzy T,, i = 0, I, 2, 3, 4, 5. 

THEOREM 4.13. Product-induced space (X, l ?- x ,,,) po.s.sc.s.se.s an?* one CI/ 
the separate properties mentioned ahoce $1 rhr topological space (X, .Y- ) bus 
corresponding properties. 

Proof. As an example, we only give the proof of fuzzy completely nor- 
mal space. 

Suffi’cienc:,*. Suppose fuzzy sets A and B satisfying the condition of 
Detinition 4.8, then for each 0 < r < 1 we have w,,(A) c a,( B”), 
(u,(l) c w,(B). Let A, = o,(A), B, = o,(B), then it is easy to show that 
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A,c B’:. 11, c B,. Since (.Y. .F ) is completely normal there exists an open 
set C‘, such that 

A, c I:, c c, c B, 

Let 0 = u ,,.: 1. , ‘VT 1 then (5 = IJ,,. 1. , .V; ~ (cf. [6]). It is evident that 

moreover 0 is a neighborhood of A and P(.\-, c-i(.r)) E B. Hence (X, IF F r ,,,) 
is fuzzy completely normal. 

~Vece.ssi~~~. Obvious. 
The fts ( Y. E) is a subspace of fts (X. [F) if Y is a subset of X and IE is the 

family of all restriction of members of IF to Y [ 131. 
It is easy to prove that the subspace of a fuzzy completely normal space 

is also fuzzy completely normal. By Theorem 4.13. it is easy to show the 
following: 

In every fuzzy separate axiom discussed above instead of the 
neighborhood by S-neighborhood we shall obtain a group of S-separate 
axioms [I43 denoted by SI.,,. ST,. S-regular...ctc. Generally, the S- 
separation is stronger than the corresponding fuzzy separation. 

v. FrJzzY METKIC SPA(TS 

For convenience, we denote PO = ( P: : .Y E X, r E (0. I ) ), P = P,, u 
(P::.~EX) and P,=Pu(PO,:XEX~. 

DEFINITION 5.1. A fuzzy metric for a set X is a mapping e : P, x P, -+ 
[0, XC) which is continuous for membership grade and satisfies, for all P:, 
Pe, Pi E P,, the following axioms: 

(Ml) If Pf’cP;., then c(P:. Pf’)=O. 

(M2) e(P:, P;)<e(P:. ft)+,(Pf. P;). 

(M3) r(P” P”)=r(P’ “,P’ “). 

(M4) IfP~~‘~‘P:.thelle(P:,‘Pi’)>O. 

A mapping is called continuous for membership grade iff for every fuzzy 
point P”, E P, and E > 0 there exists a 6 > 0 such that I/j - c(( < 6 implies 
e(y, Pf)<E. 
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This definition is a little different from that given in [ 151. 
Essentially, the fuzzy metrics is a kind of special quasi-metrics. It is easy 

to verify that the mapping e(P:, Pr)= max[d(.r..r), /I-x], which is given 
in [14], satisfies these axioms. 

In the definition mentioned above, if (M4) (or (M3). (M4)) is omitted, 
then LJ is called a fuzzy pseudo-metrics (or fuzzy quasi-metric). 

Let c be a fuzzy quasi-metrics for X. then, for any P: E P, and I: > 0, the 

B,(P:)=U (Pf’:r(P:, P{‘)<E;. 

is a fuzzy set, which is called an s-open ball of PT. Correspondingly, we call 

B,.(P’:)=U {PV:e(P:, Pf’)bc) 

a fuzzy closed ball of PT. 
It is easy to verify that the family of all fuzzy open balls, corresponding 

to fuzzy (quasi-, pseudo-) metric e, 

forms a base of some fuzzy topology [F,. for X. We call it fuzzy (quasi-, 
pseudo-) metric topology and (X. [F,.) fuzzy (quasi-, pseudo-) metric space. 

Proof: It is sufficient to show P: E B,(P:). Indeed, if x = 1, then e(Pi., 
Pt) cc, i.e., Pt c B,:(PL) and hence Pt E B,,( P:). And if 0 <r < 1, since c is 
continuous for membership grade, then there is /j > r such that c(P:, 
Pf) cc, i.e.. P’,‘c II,( Hence P: E B,(P:). 

If we strengthen a little the condition of continuity for membership 
grade, just as we gave in [IS]. then one can further prove B,( P:) to be an 
S-neighborhood of Pt. 

Proof: Let /I,,, n = I, 2,.... be a strictly increasing sequcncc and con- 
vergent to /I. For any n’ < n”. by axiom (M2), we have P( P:, PI’!; ) 6 
P( P:. P(Y ) < c. Therefore 

lim U( P:, Pp) = c* < c. 
,I --1 I 
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First WC show that e( P:, PI’) = I:*. Since 1’ is continuous for membership 
grade and 11~ I and remarked axiom (M3 ). we have 

lim e( P+, Pf’) = 0. 
,I * I 

By axiom (M2), we have 

for any n. Hence P( PT., PI’) = c*. 
And then, we prove I:=E*. If not, then I:>E*. Remember that P con- 

tinuous for membership grade. there exists ci >O such that /?* - /j< 6 
implies e( P, . ” P”‘) <K-I:* for c -E* > 0 and point Pt. Choose b* satisfying 
/I < fl* c /j + h ;hen 

and SO I’:’ E B,,( I’:). This fact contradicts with the definition of /j. Therefore 
I: = c*. i.e., e(P:, Pt) = c. 

Generally. 4 I’:, PI’) = I: does not imply Pf c B,.( P;.) and PI’ c B,,( P:). 

THEOREM 5.3. Let (A’, Fe) he a jiuzz~ pseudo-metric .pxe, (f Py. = 
U;, F n P”,.’ then B,( P:) = U; F .1 B,:( PTA) .fiv any I: > 0. 

Pro~/!f: Given any J E X and let /I = B,.( I’;.)( JS), /I, = B,(P;)( .v), X E A, we 
prove /? = sup;, ,, /I;,. Suppose SUP;,, ,,, /I,. = /I*, WC have Bi, </I and SO 

sup,,,, /j,. < /I, i.e., /I* </I because P: E B,,(P:). But the inequality cannot 
hold. Otherwise /I* < [j then c>(P:. Pfl’) < l:. On the other side, e(P:, Pr’) >, 
V( P:, Pr*) for any i E A. And 

inf e( P;,, PT.) = 0, 
I c .I 

because e is continuous for membership grade. By axiom (M2) and 
Theorem 5.2. we have 

and 

Hence suple n e( P;, P$) = c and so E( P:, Pf’) 3 c:. This is in contradiction 
to e( p’,. py’) < c. Therefore /I* = /I. 

THEOREM 5.4. Let (A’, F,,) he u jik~ pseudo-metric space. then jbr un~’ 
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P”, and .s* > E > 0 we have B,,( P:) c B,.( P”,) and B,.( P”,) is a neighborhood oj 

MP”,). 

Proof Given any p:! c B,(P;), then each neighborhood of Pi--i’ and 
B,(P:) are quasi-coincident. If 0 <‘J < 1, then B,(Pi y) is quasi-coincident 
with B,:(P:) for any 6 >O. That is, there is a point PC c B6( Pi 7) and 
Pe v! B,(P:)‘, so that e(Pi 7, Pf)<6 and e(Pr, Pt “)=e(Pt., Pt. fi)<c. 
Hence 

e(PT., P;)<e(Pi Y, PC)+e(Pt, Pt-“)<E+6. 

Since 6 > 0 is arbitrary, we have e( P:, P;) <c. If y = 1, instead of P! 7 by 
any Pi, c > 0 in the above discussion, we have e(P”,, Pi ;) 6 t: and so 
e(Pf, Pi) ,<E. This shows P:E B,.( P:) hence B,( P:) c B,:.(P”,), moreover 
B,..(P”,) is a neighborhood of B,,(P;.). 

THEOREM 5.5. In jiuzz~ pseudo-metric space, an?’ jiu~~~ E-closed hall 
B,(P:)=U {Pfl:e(PT, P~)<E} is a closedfkzy set and 

WY)= n 444 
,  l > t .  

Proof: Given any P; c B,( P”,), by the proof of Theorem 5.4, we have 
e(P:, P;)<c, i.e., pit B,(P:). Hence B,(P;)cB,(P:) and so B,(P:) is a 
closed fuzzy set. 

If P!c n,..,,: B,:.(P”,) then e( P:, Pf,) < E* for any I:* > c so that e(P:, 
Pf) <c. i.e.. Pf c Bi( P:), hence n,.. z ,: B,..( P;.) c B,:( P:). Thus we have 

BAP:)= n BAP:) 
I  l > 1. 

Since B,:( P”,) c B,( P”,) and B,( P”,) is a closed fuzzy set, we have 

B,(P:) c B,(P”,), 

but they may be different. 

THEOREM 5.6. Every jii;zy pseudo-metric space is a jiuzzy C, space. 

Proofi Obvious. 

THEOREM 5.7. Every fuzzy pseudo-metric space (X, F,) is fuzzy regular. 

Proof: Given any open fuzzy set A and point P”, E A, by Theorems 5.1 
and 5.4, we have 

P~,E &(I’:,= B,/,(P:)= UP:)= A, 
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moreover R, ?( P’; ) and .4 arc the neighborhoods of P: and B, 2( 1’: ). rcspcc- 
tivcly. Hence (A’. !JG ) is funny regular. 

Proqf: Let A be a fuzzy set in (A’. F,.) and 11 its neighborhood satisfying 
condition P(.\-. .4(.u)) E B. .Y E X. We must prove that there is an open fuzzy 
set 0 such that 

.4cOcOcB. 

moreover 0 is a neighborhood of A and P(s. (~(.Y))E H. .VE X. 
Since B is a neighborhood of .4, there is an E = c(P:.) such that 

B,(P:)cB”foranypoint PTEA. Let O.,=L’IB,z(P:):P:~A,r:=c(P:)). 
then 0 1 is an open neighborhood of .4. Since P(.u, A(.Y))E B. SE X. the j’ 
is an open neighborhood of B’. and so WC can define an open 
neighborhood 0,. of B’ similarly. 

Now we prove the fuzrq sets 0, and Cl,< arc quasi-discoincident. In fact. 
if 0 .1 and 0,. arc quasi-coincident. then there exists a fuzzy point P:E .4 
such that P, and O,3 arc‘ quasi-coincident. i.e.. P’ I E O,j.. That is. thcrc 
arc points P: E A and P,’ ti B satisfying CJ( PT. P:) < >:( P:)::Z and 
c( PI /{. PI ) < c( 1’: ),:2. By axioms (M2) and (M3). we have 

f’(P:. P!‘)<fj(P:. /‘f)+c~(P.. P(‘)<max[r;(l’:).i:(PI I’)]. 

On the other side, since P’ E .4 I”’ d B * / then 
“) 3 r:(f! “) and so’we have 

P( y . P{! ) 3 
I:( P:). c( PI ‘I. P! 

4 I’:. I’?) 3 max[c( P;). 41’1 I’)]. 

This is a contradiction. So that O,, andAB are quasi-discoincident. i.e.. 
O,, c Oh.. hence A c 0 I c O;, c B, P(.\-. 0;J.v)) E B. .Y E X. Remarked that 
O;, is a closed fuzzy set. WC‘ have 

A c 0 ., c Ci , c B. 

moreover 0 ,, is a neighborhood of ,4 and P(s, fi,,(.~)) E B. .Y E X. 

TFCOREM 5.9. !/’ ( X, k,. ) is (I ,/icz~~ p.sclu(kt-t?letric, spucc~. then the initicll 
topolo~icul spuw ( X. I( E (, ) ) is N pswdo-nwtric~ spucr. 

Proof: For any x E 10. I]. we define a mapping d,: Xx X + [O. ;I_ ) 

d,(.u.~~)=v(P~, P:)+c(Pl I. PI 7). 

obviously d, is a pseudo-metrics for .Y 
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Let {x,: i= I. 2 ,..., 1 be a dense subset of [0, l] and ,< the metric 
topologies for X induced by d,,. WC can prove that 

l(F,.) = sup .c. 
! = 1.2. 

hence (A’, I([F,.)) is a pseudo-metric space. 
In fact, let U,(.Y, E) = ( 1’: n,,(.~, J,) <cl then one can easily show that 

and 

c:,(.u, c)c a,,[B,(P:‘)l no, .,[B,# ‘,,I 

Therefore (~,(.\-,r:):s~X,~>0. i= 1,2 ,...,: and (a,,,[B,:(Pt)]:/?,=x, or 
I -I,, i= 1, 2 ,..., .YE A’, c > 0) are equivalent. Moreover they arc all the 
subbases of r([F,,), because { 2,: i = 1. 2 ,..., ) is dense in [O, 11. 

From the proof mentioned above, we can easily see that, if (A’, T,.) is a 
fuzzy pseudo-metric space, then (A’, I, ?(E,.)) is a pseudo-metric space. 

THEOREM 5.10. Er:er~~fic:~~ metric space (X, lF,.) is a ,firzz~~ 7‘, spucc. 

Proof: Let A = (Pe)’ be the complement of Pf, then 

A(x)= I -p, % = .I‘, 

=I j! # j’. 

point 7’: E A. then PI ” Q? P:. By 
)>O. Hence there exists c>O such tha 

Given any 
c(P:) PI ” 

axiom (M4), we have 
.t Pi ” ti B,(P:) and so 

A = (J B,(PT). 
I:‘< 1 

Therefore A is an open fuzzy set. It follows that any point 7’:’ is a closed 
fuzzy set. By Theorem 4.3. the fuzzy metric space (A’, lF#.) is a fuzzy I‘, 
space. 

Pro?J: Obvious from Theorems 5.8 and 5.10. 
Let (X, lF,,) be a fuzzy metric space. If each c-open ball B,( P :) in (A’, F,,) 

is an S-neighborhood of point P:, then we call (A’, t?,,) S-metric space. 
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VI. FUZZY UNIFOKM %‘A(73 

In [ 17) WC introduced a kind of fuzzy uniformity. Consider a class of 
nonvoid family % of subsets C: of product set IF, x P, satisfying the follow- 
ing conditions: 

(cl) If (P:, Pr)E C:. then (PT., P;)E 5 for every 06;*</1. 

(~2) If P: = IJ, P:, then Pfi’ = Uj, P$ for every ,t’~ X, where 
\~*=supj/I:(P:, p+Lq. /j”=sup(fi;:(P:‘. Pf’f)EL’\. 

For any L:E%. AeIY and P;E~ we define 

U(P?)= u {Pf’: (P?. P1’)E c’) 

and 

U(A,=U :Pf:(P:. Pl’)EL:? P:cAj. 

Obviously, U(P: ) E I.‘. Ci( A) E 1’ and 

C:(A)= u V(P(.r, A(s))). 
IC k 

Generally, for a family (A,.: A, E Ix. i E A ) we can prove that 

c: L’A, 
c 1 

= u C(A;). 
;, .I I< I 

For any U, V E % the composition operator is defined by 

v C’= {(PT, Pi): 3PI’EP*: s.t. (P:, Pf’)E u. (Pfr, P;)E v;. 

obviously, V C/(A) = V[ U(A)] for any A F I’. 
The inverse of I? E 5% is defined by 

I: ’ = ((pt. p”). (P’--” p’ b. I 1, l)E U} 

IfU ’ = C’, then ti is said to be symmetric. It is easy to verify that 

(V L:) ’ = c: ’ v ‘. 

DEFINITION 6.1. The nonvoid family 9 c % of subsets of P, x P, is 
called a fuzzy uniformity for X iff the following axioms are satisfied: 
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(Ul) IfUE%then(P”,,P:)EUforanyP”,E[P*,moreover,ifP”,EFDo 
then there exists 6 = fi(P;) > 0 such that (P”,, P: + “) E U. 

(U2) If UE%, then there is a VE% such that V, Vc U. 

(U3) If UE@‘, then U-‘E%. 

(U4) If U, VE%, then Un VE%. 

(US) If LIE@ and UC V then VE%. 

This definition is different from all definitions given in [ 171 and [ 181. 
Next we shall see that any fuzzy metric space defines a compatible fuzzy 

uniformity. 
The nonvoid subfamily $9 of a fuzzy uniformity % is called a base of -& iff 

for any U E 9 there is a YE .9? such that V c U. 
The nonvoid subfamily .9Y of V is a base of some fuzzy uniformity ilY it 

satisfies axioms (U I)-( U3 ) and 

(U4)’ If Cl, VEX? then there is a WE&? such that WcUn V. 
All symmetric members of a fuzzy uniformity % form a base of @. 
A nonvoid subfamily S of a fuzzy uniformity g&’ is called a subbase of W 

iff all finite intersections of members of S form a base of W. 
If the nonvoid subfamily SE V? satisfies axioms (U 1) (U3), then it forms 

a subbase for some fuzzy uniformity for X. In particular, the union of any 
collection of fuzzy uniformities for X is the subbase for a fuzzy uniformity 
for X. 

DEFINITION 6.2. Let $ be a fuzzy uniformity for X, then a family of 
fuzzy sets 

F,,= {A: ~IP:E A, xwk, s.t. U(P:)C A) 

is a fuzzy topology of X, which is called fuzzy uniform topology. 

It is easy to verify that F, is really a fuzzy topology for X. 

THEOREM 6.1. Ler A he (I ,fu;z): WI in .fuz;y un(fi7rm lopologid space 
(X. F,), then its interior 

A”=U {P::X+Y,s.t. U(P;.)eA). 

Prooj: Let A*=U{P”,:~UE~&,S.~.U(P:)CA}, then A*cA. Since for 
any open fuzzy set B c A implies B c A*, it is sufficient to prove A* E !F,. 
Indeed, given any point PIE A*, there is a C’E% such that C’(P:) c A. By 
axiom (U2), we can choose VE “a such that Vc Vc U. If PC c V( P:), then 
V(P!!)c V: V(P”,)c U(P:)c A, that is, P(‘c A*. Hence V(P;.)c A and so 
A*EIF,,. 



Proqf: Choose C’E /N such that c’ C’c l.‘. By Theorem 6.1 and axiom 
( II I ), we have V( P: ) c I,.‘( P: )” and P: E I’( I’: ) c L:( P: )“. Hence c( P: )” is a 
neighborhood of point P:. 

Generally, C!( P:) is not an S-neighborhood of PT. If C:( P:) is an S- 
neighborhood of P: for every k’~ ~7 and P: E P. then J/’ is said to have 
property S and (X. 1 I) is an S-uniform topological space. 

TI~EORESI 6.3. l~r (A’, !F ?,) hc a jir::~~ un~fitm topologicul .spuw und A. 

BE I.‘. I/’ L!(A) c B ,/Or .somc~ I,’ E J#. then A = B” und B” is u neighborhood 
of‘ A. 

Proof: For any point P: c A. I:( PT.) is a neighborhood of I’:, i.e., 
I”; E b’( I’: )” c ti( A )” = B”. hence A c H” and H” is a neighborhood of A. 

THEOREM 6.4. Let (X, It ,,) he u jiuz;~, un[fbrttz topologicui .spuce und A. 

B E I’. I f  U( A ) c H ,/iv .sotw C E //( then A c B” und B” is a neighborhood 
qf A. 

Proof: Given any point I’: c ,q. then every neighborhood of Pt ’ is 
quasi-coincident with A. Let VE $/ be symmetric and V Vc C:. If 
O<r<l. then V(P[ “) and .d are quasi-coincident. Hence there is PI’ E A 
such that (Pi ?I, PI “)E V and so (I’$, P:)E C’. i.e.. P:c V(Pf’)c V(A). If  
x= I, then for any 0 <I: < I, by the above discussion, we have 

PI ’ c C:(A). Note that 1: > 0 is arbitrary, so that Pt c V(A). Therefore 
A c_ V(A). Recall C’[ V(A)] c C.( A ) c B, by Theorem 6.3, we have 
C’( A ) c R” and B” is a neighborhood of I’( A 1. Hence Ac B” and B” is a 
neighborhood of 2. 

THEOREM 6.5. Lcr (x’, ll +,) he u fkzy unijitrm ropologicul spuw und L:, 
V. WE I//. ! f  W C’c L:. rhrn m C! LJ’( A)” und U(A)’ is a nrighhorhood of 
V( A ) jhr urz>’ A E I-‘. 

Proc$ Obvious from Theorem 6.4. 

THM)REM 6.6. Jf (X, F +,) is u jUzzy un[form topological .spuw, then (x, 
f  ( [F v, ) ) is u im$wtn lopological .spucc. 

ProoJ Let D be the set of all rationals in (0, 1 ). For any de D, lie I// 
and .V E X, by Theorem 6.2 and axiom (U I ), we have u( P$)” (x) > d, hence 
C:“(x) = a,( t’(P:)) is a neighborhood of x in (A’, I([F*)). 

Consider the subset of Xx X 
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then 

forms a subbase for some uniformity. Indeed, we easily verify that for J&,, 
the axioms (a) -(c) [20] are satisfied. 

(a) If C:“E ///,,. then A c I/“‘. 

By the definition of ci? obvious. 

(b) For each U”E ‘a,), then set (U’) ’ contains a member of &,) 

Let VE%? and V,a Vc L’, then 

(V ‘)‘-“(x)=(T, ,,[V ‘(PL “)I 

=(T , ,(Pl -8: (P(‘, P<)E V} 

= (y: I -/I> I -d, (Pfl, P‘J)E V} 

= (y:/l<d, p;c V(Pf)j 

c (y: p;c V(P:‘)) 

c {,v: P?E U(p:‘,) 

= (J’:xEv’()‘)) =(Ud) -‘(s). 

Hence 

(W ‘3(V- ‘,‘-+a,,. 

(c) For each U’E ‘)//, there is V’E j&n such that Vds. V“c U’. 
Let C:E,+“, then there is VE J& such that V. Vc C: and so (V 1 V)Jc c”‘. 

It is easy to prove that V” V“c ( VO V)” hence V’ V’C U”. 
The uniformity I(%) generated by tin induces a uniform topology K+,,. 

We shall prove &, = I( lF ,,). 
By general topology [20]. we know f U“(X): V’E I&,} forming a subbase 

for the neighborhood system of x relative to .Y$,. Remember v”(.u) = 
a2[U(P:)], the strong d*-cut a,,.[ C’(Pt)] is a neighborhood of x and 
od.[ U( P:)] c L“‘(x) for any d* E D, d < d* < I/( P:)(x). Hence all 
a,,.[ ZJ( P:)], c’ E I)/, also constitutes a subbase for the neighborhood system 
of .r relative to .“r,. On the other hand (a,[ ci( P:)] : x E (0, I ), c’ E J//) is a 
subbase for the neighborhood system of x relative to l([F,,). Therefore we 
need only to show that each o,[ L’( Pf)] contains some CJ,,.[ U( Pt)] in order 
to prove .YS = r((F#,). Indeed, by (C2) and the density of D, we can choose 
de D such that d < sl, U( P:)(x) > ~1. Hence there is cf* E D, ct < d* < 
U( P”,)(x) such that a,.[ U( Pf)] c a,[ U( P;)]. 

From the proof mentioned above we can easily see that: 
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If 4’ has countable. base. then /l/,, has countable base and so I( ‘//) also 
has countable base. 

The topological space (x’. I, :( [F ?,)) is a uniform topological space. 

THEOREM 6.7. Lc! /1/ hc a ,firzz,. un~fiwt~it~,~jor X, then the closure 

for cm]’ A E I ‘. 

A= n G:(A) 
1 t 9, 

Proof: First. we prove ;i c n I.* r, L!(A). Given any point P: c A then 
each neighborhood of Pt 1 is quasi-coincident with A. Let C’E jll be sym- 
metrical. If 0 < r < 1. then U( P I ‘) and A are quasi-coincident, hence there 
is P! E A such that P’ Ir c U( P’ ‘) and so 7’:~ C:(Py)c U(A). If r= I, by 
the ‘above discussion. we havb 7’: ’ cU(A) for any O<c<l and so 
P’, c C:(A). Since all symmetric members of ‘U form its base, therefore P: c 

n (,C ,, U(A) and SO AC n, E @, c;(A). 
Next. we prove r\( (. ,, U(A)c 2. If P: c n, c ,, U(A), then there is a 

point PI1 c A such that (Pf. P:) E C for any symmetrical UE ‘lI, and so 
(PI ‘.PI “)~C:.IfO<r<l.thenC/‘(Pt ‘) and Pf are quasi-coincident. If 
CY = I. then L:( P’;) and PF are quasi-coincident for all 0 < E -C 1. Therefore 
every neighborhood of 7’: ’ is quasi-coincident with A, that is, 
n, (- $, C!(A)cA. 

THEOREM 6.8. A ,/U::.I’ unifbrtn topological spocc~ (A’, F g,) is a fu;:~ T, 
space $f,for utt.1’ point P: e P \tx’ harc 

n LT(P:) = P:. 
I E ,, 

Proof: If (X. k +,) is a fuzzy T, space. then F =p:. By Theorem 6.7. we 
have fh c7, ci(P:)=p”,= PT. On the contrary, if n,, ,, UP;.)= P:, then 
F = Pt, that is, (X, IF r,) is a fuzzy T, space. 

A fuzzy uniformity I// is called separate iff n,.,.c= 
{(P:,P:):P:E~*]. F rom Theorem 6.8, 9 is separate iff [F, is fuzzy 7‘, 
topology. 

VII. CHARACTERIZATION OF FUZZY UNIFORM SPA<:FS 

In this section, first, we introduce the fuzzy separation axiom (T) [21] 
and show that it is the character of fuzzy uniform space. Then we give a 
fuzzy metrization theorem and prove that every uniformity is characterized 
by a family of fuzzy pseudo-metrics. 
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DEFINITION 7. I. A fts (X, lF) is called a fuzzy (T) space [21] iff for any 
A E lF and any point PLEA, there exists a scale of fuzzy open sets 
{ 0,: t/c D} such that Pi; E Ode A for every de D. 

It is easy to show that the particular choice of the index set D is of no 
importance for fuzzy (T) space. 

Let { OJ: do D} be a scale of fuzzy open sets and Of = Oi; r/. It is easy 
to prove that {Of : do D} is also a scale of fuzzy open sets which is called a 
dual scale of {O,,: do D). 

THEOREM 7.1. A fts (X, IF ) is a fuzz), uniform topological spaw # it is u 
fuzz!, (T ) space. 

Proqf Suf’jcienc~~. Suppose (X, F) is a fuzzy (T) space then for every 
fuzzy set A E F and point PC E A there exists a scale of fuzzy open sets 
{Od: dE D} such that Pi; E 0,~ A for every dE D. 

Consider the functi0n.c pp* -+ [0, I] 

j’( P:) = inf{d: P: E 0,). P;.Eo,, 
= I. p:cfo,, 

and the function e: P, x [P, + [0, 1 ] 

c(P:, P,f)=max[.f(Py)-/(P:),O]. 

It is easy to verify that c is a fuzzy quasi-metric for X. Similarly, for the 
dual scale {Of : dE D} we can define the corresponding functionJ* and e*. 
And e* is also a fuzzy quasi-metric for X. 

WC now prove that 

e*(p’ PP)=p(P’ 8) ! 0 p’ “) , 7 \ * 

for every P:? P~E~F’.+. In fact, if P:EO:, then 

f*(P:)=infjd: P:EO:) 

= inf{d: P: E @, ,,} 

=I-sup{I-d:Pt ‘q! (5, ,} 

= 1 - inf{ 1 - tf: Pt ‘EO,-,) = I-1‘(PL ‘), 

and if P;k O:, then f*(P;) = I and Pt. ‘C Oo, f (Pb ‘) =O. Hence 
.1‘*( P”,) = 1 -.f‘( Pi - “). Thus 

e*( P:, PC) = max [f*(Pf’) -J*( P”,), 0] 

=max[f(Pt- “)-.f(PI--“),O]=P(P~. “, Pb-“). 
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k‘or cvcry c > 0. WC consider the subset of r)* x ? * 

B, = ;(P:. P1’):fqy. Py)<r.;. 

and 

B,*= ;(P:. Py):C’*(P:. P’;‘)<r:). 

It is easy to see that H, ’ = B*. Next. we shall prove that all B,, lI,*, I: > 0. 
form a base of some fuzzy uniformity for X. 

First, verify S, and ,!I,* satisfying conditions (Cl ). (C2). 

(Cl) If (Pt. P~)EB: and 06/Y</k then e(P;, Py)<c(P:, P~)<I:. 
hence (P’ P”)EH. 

(C2)“ Let r:l J; r:,, we have to prove Pr’ = ‘J, Py:. denoted by 
sup /IT = [I”; if p” > /j*. then there is a i. such that /I” > /j* and so there is 
/I, > /I*. Hence we have P( PT. Pfr’) 6 c( P;, f’,? ) < I:. This contradicts with 
the delinition of p*. If B” < /j*. then e( Pt. I’ll”) CC. On the other hand, for 
any i, C( I’:. I’(‘“) 3 e( PT. P (c ). By axiom (M2), WC have 

e(P:,, P(‘:)-fqP:J. P:)<c(P:. P!‘:)<fqP:,. Fy’:). 

From the definition of e. it follows immediately that 

and for every i. /jj+ > 0, WC have 

P( P:, . PI’: I = I:. 

Therefore 

and so c( P:, fv) > I:, which is in contradiction with the hypothesis 
C( I’;, Pt”) < 0, so that /I* = /Y’ = sup; /if. 

Similarly, WC can prove B* satisfying (Cl ) and (C2). 
Afterward, we verify B, , B,*, E>O, satisfying axioms (Ul)-(U3) and 

(U4)‘. 

(Ul ) Obvious. 

(U2) For every R,, we have B, z B,, z c B,,; indeed, if (PT. P;)E 
B,.? ‘II<,, then there is PI’ such that (f:, fr)~B,:~, (ft, P:)E B,:,, hence 
e(f:, fL)<e(fT., fe)+e(ff’, f:)<c, i.e., (P:, P!)E B,, so B,?, R, >c B,. 

(LJ3) Obvious. 
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(U4)’ For any B,., and BC2 we have B, c B,:, n B,,:, E = min(e,, .Q). For 
Bf , a similar result can bc obtained. 

Thus all B, , B,*, c > 0. form a base of some fuzzy uniformity ,+‘/(A, 5, 7) 
for X. 

For all pair (Pi, A), P; E A, the union of &(A, <, y) forms a subbase of a 
fuzzy uniformity. This fuzzy uniformity 

‘I/ = sup (‘&( A, ii, ;’ ):AE[F,P;En. P,EP) 

is exactly what WC want to find. Now WC need only to show F,, = F, where 
lF, is a fuzzy topology for A’ induced by //1. 

(a) rFcE,. 

Indeed, for every A E IF WC have 

A=U {O,,: P{EO,CA. P+p;. 

Given any do D and 0 <E <d we can find a point P: such that .1‘( P:) = 
tl- c. thus 

B,(P:)= (Pr:max[.1‘(Pf)-,/‘(P:).O]<cJ 

=iJ (O,,:d<.f(P:)+c) 

=u jO‘Jdktl) CO‘,. 
Since B, (P: ) E F ,, and P’; E B, (P: ), A E lF +, hence F c [F ,,,. 

It is sufJicient to show that for any Pi E A E lk, P: E P and E > 0 the fuzzy 
sets B,.(P:) and B,y(P:) are the members of [F. Since B,( P:) = 
U(O,,:c/<.I‘(P:)+c] and O,,E B. thus B,(P:)E F. Similarly, WC have 
B,*( P:) E [F. hence !F+, c 1. 

iVecr.s.sit~. Suppose (A’, F ,,) is a fuzzy uniform topological space. For 
any A E F ,‘, and point Pi E A. we have to construct a scale of fuzzy open set 
(O,,: tin 13) such that Py E O,,c .4 for every C/E D. 

If AE F7,, then there is IKE /// such that 

Let C, E J/! bc symmetric and l!, L:, c C:, by Theorem 6.7. we have 

G’,(P$)c V(P.:)“c A. 
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and C‘( P:)” is a neighborhood of L,( P:’ ). WC can select ;1 scqucnce : I:, .: 
)I = I. 2.... ; of symmetric members of I// such that C,‘> ,,I, II (.‘? I, ‘. c i.: 
and C:? I C,‘? , c C,‘, . For every diadic rational tl= 3 ” + “. + 
2 ‘IA9 0 < II, < < tll,, WC define 

If 0 < ti, CC c/, < I then WC‘ can prove 

l.‘,,, d, l..<,, = L,,. 

By Theorem 6.7. for any point f’{. WC have 

1 ‘<,,( PL ) c I,‘,,,( Pi )“. . . 

and V,,>( P< ) is a neighborhood of C:,,( P’;). Let O,, = C’,,( I’;)“, then for any 
pair of positive diadic rational c/, < tlz, we have o,,: c O,,: and 0, is a 
neighborhood of (5,,, Thus : O,,: (16 fI) is a scale of fuzzy open sets and for 
any do LI we have Pi E O,,c A hcncc (,I’. b ,,) is a fuzzy (T) space. The 
theorem is proved. 

A fuzzy (T) space is fuzzy regular and so a fuzzy uniform space is also 
fuzzy regular. 

Let c be a fuzzy pseudo-metric, by the proof of the above theorem. WC 
see that the family {H, ,,: II = I. 2 ,.... ) of subsets of ?* x P, forms a coun- 
table base of some fuzzy uniformity for X. so that each fuzzy pseudo-metric 
induces a fuzzy uniformity ti,,. Conversely. we shall ask what is the con- 
dition of a fully uniformity being a fuzzy pseudo-metric uniformity’? The 
following theorem is exactly the answer to the question. 

THEOREM 7.2. A fir:z,~, utlj/otw ~apologiwl .spacc ( X. :F ,, ) is u ,/id::!. 
pswdo-wwlric .sprm~ $f +V bus (I cwunlcrhlc~ hrrsc. 

Prooj: SuJ]i’cienc:)*. If /lc has a countable base, then WC can select a 
monotonous decreasing base [ C,‘? ,,: n = 0, I. 2,... I such that C, II/. 
L, ;I: c C!? II (cf. Theorem 7. I ). Denoted by II the all diadic rational in 

we can dcline C:‘,E ?/ for every de L> such that for any d, , ti, E II 
and point I’:, we have C’,,,( P:) c L’,,:(P: )‘I, and U,,,( P:)” is a neighborhood 
of U,,( P: ). 

Define a mapping e: P, x P, + [0, l] 

c(P:. Py)=infId: Pyc C:,,(P:)t (PT. PY)E L’,. 

= I. (P?. P(‘)$ c:,. 

We shall prove that it is a fuzzy pseudo-metric for X. 
First, the mapping c’ is continuous for membership grade. Indeed, for any 
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I: > 0 there is tin D such that 0 < d < c. Consider Ude &, by axiom (U 1 ), 
there exists ii > 0 such that (I’“,, P: + “) E Lid for any fuzzy point P: E P,,. 
Hence, if p-z<6 then (P:, Pf)E li, and so e(P2,, PC)<d<c, that is, the 
mapping e is continuous for membership grade. 

Now we are going to verify c satisfying the fuzzy pseudo-metric axioms: 

(Ml) Let Pf’c P:, by axiom (111) and property (C2), we have (P:, 
P:) E tid for any 0 < d< D and (Pf , Py ) E iYd. Since n> 0 is arbitrary, 
e(P’ P”)=O 13, . 

(M2) Given any PC, Pf, P;EP*. If e(Px P!)+e(P” Pi)>, 1, then I ’ 
e( P:, Pi) d e( P:, Pf) + CJ( PI!, P!). If e( P:, Pr) +‘b($!, P;) < 1, then we can 
select the suitable positive - real numbers ci, and 6? such that 
e(P’ P”)+d,=d,, e(P” P!)+d,=d,, d,+d,c 1, d,, rl, E D. 
( P::‘P~\E Cl,,, (Pr, P!‘)E i;+ and so (P:, P;)E L:<,! Lid, c c’,,, , ‘I!, 

Thus 
that is, 

P(P:, P;)<e(P:, Pf’)+e(P(‘, P;)+b, +d,. 

Since 6,, bz can be selected arbitrarily, hence 

c(PX I’ P;)<c>(P’ P’l)+e(P” P!) 1’ I I’ _. 

(M3) Since C’,= E; It dE D, then (P:, P~)E L:, is cquivalcnt with 
(P( 0, Pt 1)~ U,,. hence 

e(P” p”) = CJ(P’ /’ p’ ‘) I’ I 1’1. 

Finally, WC show F,,= [F,,. In fact, they have the same base 
(U? JP:): PTEP, n= 1,2 ,... ), so ff,,=!.. 

Newssit)*. Obvious. 
From the above theorem, we obtain the following important result: 

lF,. = sup { lF ,,,, : n = 1, 2 ,..., ) 

THEOREM 7.4. Lrt t@ he u fuzzy unlformit,, jbr X, then there e.ui.sts a 
fbmil! offuzzy pseudo-metric such fhat 

+Y=suP{w,.). 

ProoJ Given any I/ E /u we can select a sequence { c’,. “: !I = 1, 2,..., ) of 
symmetric members of & such that C:, n c I? and Uz In, I, x. C, ,“. I) c c’, “. 
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It is easy to see that i L’, ,,: 17 = I. 7.. i is a base of fuzzy uniformity ‘I/( ( ‘I 
for .Y. Since C:? I c ( ’ WC have I .E ‘//( 1:). By Theorem 7.2. them is a furzy 
pseudo-metric (J = 4 (,/) for x’. such that the corresponding fuzzy pseudo- 
metric uniformity ///,. = ‘//( Ci). Obviously #,.c ?/. hence sup i ‘//,.I = 4/. 
Conversely. for any GE ti. there exists o = it I:) such that L.E ql<. and so 
C’ E sup { +Y‘. 1, i.e.. q/ c sup : #,. I. Therefore ‘/I = sup i +!!,. ) and the theorem 
is proved. 

In Thcorcm 7.2. if. in addition. i// is separated. then the following fuzzy 
metrkttion condition is easily obtained. 

A fuzzy uniform space (X. i $,) is fuzzy metrirable iff 4/ is separated and 
has countable base. 

D~+IXIIION 8.1. A family A of fuzzy sets in (X. J ) is said to be fuzzy 
locally finite iff every point P: E F has a neighborhood C: which is quasi- 
coincident with at most a finite number of the members of A. The family ‘4 
is a-fuzzy locally finite iff it is the countable union of fuzzy locally finite 
families. 

Proof: It is sufficient to show that U,e , A, c UjL , 2;. Given any 
point P: c fJ;, , Aj then every neighborhood of PI ’ is quasi-coincident 
with ‘cjt,,,4,,. When O<r< I. PI z is a fuzzy point. and by the fuzzy 
locally finite property of {A, : i. E A ). P( 1 has a neighborhood V which is 
quasi-coincident with at most a linite number of A,,,. i= I..... n. But P’ is 
quasi-coincident with u, L ,, A,,, hence I’ is certainly quasi-coincident with 
IJ, ,, ,,, ,4;,. We now prove that every neighborhood of Pi 1 is quasi-coin- 
cident with U,- ,, ,,, A, It is sufficient to show that its every neighborhood 
which satisfies the condition k’c V is quasi-coincident with 0, ,, ,,, A,,. 
Indeed, if L’c L’, then ci is probably only quasi-coincident with A,.,. 
i = l,.... II. But E and tJ,( ., A, arc quasi-coincident, hence L’ and 
u, I. ,,,4,, are certainly quasi-coincident. Thus we have proved every 
neighborhood of P! f is quasi-coincident with (J, ,, .,, A,, and so we have 

P: c u A,,= ‘0 A;,,c u j;. 
,=I. .,I ! I. ,I /t 1 
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When a = 1, instead of Pi-” by P”,, 0 <c < 1 in the above discussion, we 
have Pt-“c lJLsn Rj., therefore P:c UiEn A,, and SO Uj,~n c uj.En ~j.. 

THEOREM 8.2. Suppose (X, IT) is .fux.r rqulur und has a-fuzzy locwl~~~ 
finite base, rhen it is fuzzy, norm& 

Proqf!f: Suppose closed fuzzy sets C and D are strong quasi-discoin- 
cident, A”, n = 1, 2..... are locally finite families of open fuzzy sets and 
A = IJ { A” : n = 1, 2 ,..., } forms a base of (I’, IF). By the fuzzy regular of (X, 
F), for any X, 1’~ X, there are AYE A and AYE A” such that 

- 
P~““E A’: c AT c D’, 

P”“‘EA”c+C:‘, 

and D’ and C’ are the neighborhoods of 2 and 7, respectively. Denoted 
by 

A$=U{AT:tn=k), 

A;=U(A’,‘:n=kJ, 

and let 
- 

O(.= A,.n A;,‘n ... I+. I k 

- 
Of,=Ak,nA:‘n ... nz.‘, 

then the open fuzzy sets 0, = Uk; ,,?. 0:. and 0,) = Up. ,,>,. Of, are 
quasi-discoincident, moreover 0, and O,, are the neighborhoods of C and 
D, respectively. As a result of Theorem 4.10 the fts (X. E) is fuzzy normal. 

THEOREM 8.3. [f.fis (X, F) is fizz), tygular and has a,fu::J* lo~uIly ,finite 
hasr, then it is u fuzzy pseudo-metrizahle spice. 

Proyf: We construct a countable family of fuzzy pseudo-metric and 
prove that the topology, which is generated by this family, is equal to [F. 

Let the natural numbers m and n be lixed. Given any A; E A”, we con- 
sider the open fuzzy set 

A, = u {A”‘: A”‘EA”‘, ~(.~,A”‘(.u))EA:‘..~EX}. 

since A” is fuzzy locally finite, A, c A: and A; is a neighborhood of A,. 
Since (X, IF) is fuzzy regular and has a-fuzzy locally finite base, by 

Theorem 8.2, it is also fuzzy normal. From Theorem 4.1, it follows that 
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there exists a scale of fuzzy open sets IO,,,,: do II) such that ;i,c O,,,,c A: 

for any de D. We define mapping j; : P, + [O. I ) 

/;( 1’: ) = inf ) (t: P: E (I,,,,). p: E (I,., 9 

= I. p: 6 O,,’ * 

and mapping g,: P, x P, + [0, l] 

g,( P:. Pf) = max [.f,( Pf’) - /;( P: ), 01. 

By the same reasoning as in the proof of Theorem 7.1, the mapping g, is a 
fuzzy quasi-metric for A’. Similarly, we can define,f;* and K,* corresponding 
to the dual scale I O$: rl~ II ). Of course, K,* is also a fuzzy quasi-metric for 
x. 

Consider the mapping P, : !P’* x P, --t [O. I ] 

e,(P:, Pf)= Lg,(P:. Py)+g,*(P:, Pf)]/2, 

note that 

q*(P” P”)CK(P’ fl P’ ‘) s I \‘\ II ‘, 7 

we easily verify that the mapping (1, is a fuzzy pseudo-metric for A’. Let 

o,,,.,, (P:, Pf ) = sup ; P,( P: . Py) A:’ E A” ) , 

we now prove that it is a fuzzy pseudo-metric for A’. 
When Y < I and /j < I we consider points Pt ‘. P[ I’. and by the fuzzy 

locally finiteness of A”, there arc. respectively, neighborhoods 6, and li,. of 
PI ’ and P’ P such that CT, and E, are quasi-coincident with at most a 
finite number of A:. Thus there are at most finite members of A; such that 
P:cA; or PfcA;, that is, for only finitely many indices i we have 
/j P:) < 1 of,h( P(‘) < 1. Hence only for these i the inequalities K,( PT., P(‘) # 0 
possibly hold. 

When a = 1 or /I = 1. we choose I: > 0 suitably small and substitute P’; or 
P; for PI 1 or PI Ii. and the above discussion is still effective. Therefore 
there are at most finitely many indices such that R,( P:, P(‘) # 0. 

Note that g*(P’ P!)=g (P’ 0, P’ ‘) once again for any pair P’ 
P’lE P 
~,i P” 

there ’ are“only a; most fi‘nitely many indices i such tha; 
;L’) # 0. This shows that e is a fuzzy pseudo-metric for X. 

Ngw ‘we have obtained a ccktable family of fuzzy pseudo-metric 
((J “,,,) : m = 1, 2 ,..., n = 1, 2 ,... ). Denote by [F r,n,~ the fuzzy pseudo-metric 
topology which is generated by em,,,. By Theorem 7.3, the fuzzy topology 

F,, = sup ( [F ,,“, n: m = I, 2 ,..., n = 1, 2 ,..., } 

is a fuzzy pseudo-metric topology for X. So we need only show ff ,, = IF. 
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(a) F,,c F. 

For this reason we must show that every s-open ball 

B,,(P:)=U (P::c> n,.,, (P:, Pf)<t:) 

is an E-neighborhood of point P”, for any m, n. That is, we have to choose 
an F-neighborhood N(P:) of P: such that N(P:) c B,(P:). 

We know that there exist at most tinitely many indices i, ,..., i, such that 
J,(P:) < l,...,f,,(P:) < I. In scales of fuzzy open sets, which have indices i,, 
l= l,..., k, respectively, we select 0 ,,.‘,, c A; such that g,,( P:., Pf) < E for every 
Pi’E 0 I ,,.<,,, I = 1 ,..., k. 

And there is an [F-open neighborhood I: of P: such that at most tinite 
numbers of A:, + , ,..., A:: -, are quasi-coincident U. Let 0: , ,(,& , , c (A,, ,)’ such 
that gz ~ ,( P:. Pf) c t for every Pf E 0:. ,.d, ,, I= ! ,..., J. 

Since 0 ,,,,,,,..., 0 ,‘,‘,,, 0:. ,,d6, ,,..., Oz,,,J,,, are contained in [F, the fuzzy 
set 

is an [F-open neighborhood of P”, and for every POE N( P:) we have 
c,,~,,,( P:, Pf) < E. Hence N( P”,) c B,( P”,), i.c., B,( P:) is an IF-neighborhood of 
PT. Therefore [F,, c F. 

(b) ff cF, 

Given any BE [F and P’, E B. Since (X, IF) is fuzzy regular and has o-fuzzy 
locally finite base A = U { A”: n = 1, 2 ,...I there exist A:,, E A’“. A: E 14’ such 
that 

- 
P:EA~cA:‘cB. 

It follows that 
- 

~yA:‘d,cO,,~~A:ld, 

for every do D. If Pf 4 B, thenl;( Pf) = 1, hence e,,,,,(P;., PC) = I. This shows 
that, if e,,,,(P:, Pt)< 1, then POE B and so B,(P”,)c B. Therefore BEIF, 
and so IF c IF,,. 

THEOREM 8.4. !f fts (A’, F ) is u fuzzy T, space and has a7jiizz.v locally 
,finite base, then it is a ficxy metric spucr. 

Proclf: Since fuzzy T, space is fuzzy regular, by Theorem 8.3, the fts 
(X, IF) is a fuzzy pseudo-metric space. Hence we need only show the 
corresponding fuzzy pseudo-metric e satisfying axiom (M4). 
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For any point r: E P by Theorem 4.4 on fuzzy 7, space. we have 

r:=rj fB,(y):i:>o[. 

Therefore for any point Pf & P: there is /I,( I’:) such that PI’ d B,,( P:) and 
so e(P1 P!)>O. For any POEP *, J # x. consider (Pf.)‘, it is an open fuzzy 
set an;’ Pie (I’:.)‘. Thus tiere is I: > 0 such that II,. c (P!)‘. and it 
follows c( PT. P<:) 3 6 > 0. Similarly. we can prove c( P’: , PC) > 0 for any P’:. 
.r E X, and Pf’ E P, Pr # P’(. This shows that e satisfies axiom (M4). 

Corresponding to S-neighborhood. we have introduced the concept of S- 
cover and S-compact [6]. 

A family C of fuzzy sets in (X. F) is called an S-cover of fuzzy set A iff 
every P(s. A(.Y 1) E P, has a neighborhood germ NT and there is a (‘E G: 
such that 

P(s. A(.V))G iv; c c.. 

A fuzzy set A is said to be S-compact iff each of its S-covers has finite S- 
subcover. A fts (X, IF) is said to be S-compact if the fuzzy set 1, is S-com- 
pact. 

A family D of fuzzy sets is called a refinement of an S-cover C iff D is 
also S-cover and for any DE D there exists CE C such that D c C‘. 

DEFINITION 8.2. A fts (X, F ) is called S-paracompact iff its every S- 
cover has a fuzzy locally finite refinement. 

Pro?/: Suppose ///= {U: UEI([F)~ is an open cover of (X, I(F)), then 
(N:.: C’EJL!] i. s an S-cover of (X, !F) and it has a fuzzy locally finite 
refinement jA,:i~Ai.Let W,=~,(A;)then iW;:ieA) isalocallyfinite 
refinement of #. 

A fts (X, IF) is called a product-induced S-paracompact 7‘3 space if it is a 
product-induced space (X. I,,- x ,,,) and its initial topological space (X. t(E)) 
is a paracompact T, space. 

THEOREM 8.6. A fis (X, [t ) is u product-imiucrd S-parucompuct T, spuce 
i!T ir is on S-parucompucl and ST, spuce. 

Proc$ Sg~fi:cirnc.v. We need only to prove that for any fundamental 
fuzzy set NT. and point PT, E N;. there exists an open fuzzy set BE F such 
that P”‘E Bc B” w (,, i.e., .N;.E [F, because all N;. forms a base of E., Xl,,. 

Since (X, [F) is an ST, space. there are open fuzzy sets D and G such that 
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r. < D(.u,) < sl, P:“, E G c G c D and D is an S-neighborhood of G. Given 
any real number 7 satisfying inequality G (.x0) < ;’ < D(x,,). Since G is an 
upper semicontinuous function in (A’, r(ff )), there is a neighborhood W of 
.x0 such that G(s) < 7 for every I E W. Let V= C/n W, then the points P.t, 
and Pt, .Y E X- V, are strong quasi-discoincident. Using a similar way of 
proof as for Theorem 4.9, we can prove that there exist quasi-discoincident 
open fuzzy sets B, and A, such that P~,,E Nt., c A, and P: EN:;, c B,, 
where Nb, and NI,, are the neighborhood germs of Pt,) and Pt. respectively. 
Since open fuzzy sets B, and A, are not quasi-coincident, for any XE A’- V 
we have B,(.u,) = 0. Obviously, the family B = {B,: XE ,I’- V} is an S- 
cover of fuzzy set l._,,. Since (A’, lF) is .r-paracompact and X- V is a 
closed subset of X, we can prove that the S-cover B of 1 X-I has fuzzy 
locally finite refinement {A j, : i E A ). By Theorem 8.1, WC have 

,F, A;.= u 1,. 
i c .I 

Since for any A; there exists B, such that .4; c B, it follows that A;(.u)=O 
and so 

C u A,lt-~) = () J;(zo)=O. 
/:E .1 ; c A 

Let A =iU,c.~ A,)‘, then co(A)c V and A(s,)= 1. 
Let B= A n G, then we have P;;E Bc N;, and this shows F = [F,, X,I,, 

.P = r(F). By Theorem 8.5, the fts (X, F) is a product-induced S-paracom- 
pact T, space (X, [F,i x (,,). 

Necessity. If (A’, IF) is a product-induced S-paracompact T, space, then 
(A”, I( F )) is a paracompact T, space. By Theorems 4.13 and 8.5. (A’, lF) is an 
ST, and S-paracompact space. 

THEOREM 8.7. A fis (X, lF) is u product-inducrd,/irxy rnrtric spuce (X, 

IF.9 ,* 0, ) iff it is an ST,, S-parucompacf ji.r und the inifiul topology I( F ) = ,Fd 
has a-locull~ finite base. 

Proof: S~~~icienc:,~. Since fts (A’, ff) is S-paracompact and ST,, by 
Theorem 8.6, it is a product-induced S-paracompact space. From (A’. F) 
being an ST, space it follows that the (X, r(F)) is a T, space. Therefore (A’, 
r(B)) is a metric space and so (A’, lF) is a product-induces fuzzy metric space 
ix, ~.r.,.o,), .?I,= l(F). 

Nmwi!)*. Obvious. 



178 III: (‘HENG-MING; 

The author v+tshes to c\prch\ his hcartl’elt thanks to Professor Kwan C‘hao-chlh. Professor 

Pu Pao-ming and Professor Chcn lie for their enthusiastic support and encouragement durmg 

the period of research. 

I. C. L. CttA%. F urzy topological space, J. .Ifo//x .Intr/. .4pp/. 24 ( 1968 J. 182. 

2. c‘. K. WONG. Fury point and local properties of furzy topology. J. Murh. Ad .4p[1(. 46 

(lY74). 316. 

3. M. D. WEISS. l%.cd pomts. separation and induced topology for fu+ sets. J. .lftr~lr. .Atrtr/ 

.App/. 50 (1975). 142. 

4. PL, P,u)-MIYG AU) LIU YIV;-MIX. Fuzzy topology. I. hctghborhood structure of :I fw7! 

point and Moore-Smith convergence. J. .Mrrr/t. .&Iu/. .4pp/. 76 (19X0). S?l. 

5. tlu C‘IG SGMIV;. A class ol fuzzy topological space 1. .I’c~inw~~gu I1tr.w~ .~~ccrhtr~~ 1 ( IYXO ). 

101. 

7. C. K. Wow;. C‘owrlng properties of fu//.y topological spaces. J. .WUC/T. .Amrl. App/. 43 

( 1973 1. 697. 

9. J DICI. t)os\;i:, “Trcatw on Analysis.” Vol. II. 

IO. R. Lcww. A compartson of different compactness notions In fuzzy topological spaces. J. 

.Murh. .4m/. Appl. 64 ( lY7X ). 446. 

I I. I II CHANI;-WIX. l-‘uuy TychonofT spaces. .Vwwn~gu I)~.\-UC ,%‘rtrhao I ( IYXO I. 106. 

12. s. A. GAAL. “Point Set Topology.” Academic Press. New York. 1964. 

13. [It: CHESG-MING. An embedding theorem in the fury topology. Xihcwhuuc .Yuehar~ 2 
I 10x0 ). 03. 

14. Hu CIIIING-WNG, A metrication of fuzzy topological spaces. Naruw J. 4 (7)( IYXI ). S54. 

15. Ht: CIIENG-MING. Fuzzy metrics. .Vcrruw J. 5 (12) (1982). 947. 

16. W J. PHTVIS. “Foundation of General Topology.” Acadcmtc Press. New York. 1964. 

17. lit. C‘twv;-bttw. Fuzzy uniform spaceb. 1. I~u:z,. .Wtrrh. 2 I 19X’). 

IX. R. Low N. Topologies tloues. C‘. H. Aad. So. /bx 278 (1974). 925. 

19. H. W. HI -~IOS. Cnilormities on ruuy topologtcal spaces. .I. ,Murh. .4~1l. .,I/J~/. 511 (1977 I. 

20. J. 1.. KFI.I.I.~ “General .I apology.” \‘an Nostrand. Princeton. Ii. J.. 1955. 

‘I. III. ~‘lirLi(~-wlhG. Fu7zy (.I‘) spaces, FUZZ>. .&fur/i. 4 (19X2). 33. 


