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We start by discussing a class of special fuzzy topological spaces, that is,
the product-induced spaces [5] First, we show that every fuzzy
topological space is topologically isomorphic with a certain topological
space, and then proceed to prove cvery open fuzzy set is defined by some
lower semicontinuous function. Taking this as the background, we
introduce the concept of dual points [6], and thus establish a kind of
ncighborhood structure of fuzzy points such that the Q-neighborhood [4],
which is onc of the important notions in fuzzy topology, and the
neighborhood are integrated in this structure. This neighborhood structure
will be the corc of our developing the theory of fuzzy topological spaces.
We introduce the concept of strong quasi-discoincident [11], and so give a
group of fuzzy separation properties which is a most natural generalization
of the usual separation properties. Next, we introduce a kind of fuzzy
metrics and use this metrics directly to discuss the fuzzy metric space. By
means of fuzzy points, we define kinds of uniformities, discuss their fun-
damental properties and extend Weil's theorem on usual topology to fuzzy
topological spaces, and hence obtain their separation character. Naturally,
these fuzzy uniformities can still be characterized by a family of fuzzy
metrics. Finally, we discuss the problem of fuzzy metrization on fuzzy
topological spaces and obtain a fuzzy metrization theorem which contains
the Nagata -Smirnov theorem as a special exampic.

I. PRELIMINARIES

Let XY= {x} be a set of points. A fuzzy set A is characterized by a mem-
bership function A(x) from X to the unit interval /= [0, 1]. In particular,
X(x)=1 and &(x)=0 are fuzzy sets in X. The family of all fuzzy sets in X
is denoted by 7.
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DerintmioN L1, Let A and B be fuzzy sets in X, then

AT B A< Bix). XEX.
4 =B« A(x)= B(x). e X,
A=B < A(x)=1- Bix). xeX.

where B’ is the complement of B. For a family of fuzzy sets {A,:12€ A

c=

A, = Cl{x)=sup 4,(x), xeX.
R |

D=\ A,< D(x)= inf A,(x), xeX.
e 1

se 1
In particular,
C=AuBe (C(x)=max[A(x), B(x)], xelX,
D=AnB< D(x)=min[ A(x), B(x)]. xe X

If min[A(x), B(x)]+#0. for some xe X, then A is said to be intersecting
with B and if A(x)+ B(x)> 1. then A is quasi-coincident with B.

DeFiNITION 1.2, Suppose T2 X — Y is a mapping and A is a fuzzy set in
X, then the image T4 is a fuzzy set in Y whose membership function is
defined by

[TAl(y)= sup Ax), T '(M#3.
ve e
=0, T '(»i=g.
If Bis a fuzzy set in Y, then the inverse T 'Bis a fuzzy set in X defined by

[7 'Bl(x)=B(T(x)).

DerFiNITION 1.3. A fuzzy point P in X is a special fuzzy set with mem-
bership function

P(x) =2, X = Xg,
=0, X # Xg,

where 0 <x < 1. P is said to have support x, value x and is denoted by P}
or P(x,, 2). ‘

Let A be a fuzzy set in X, then P} < A<>x< A(x,) in particular,
P c PPexo=y, a<f. A fuzzy point P% is said to be in 4, denoted

P e Al a < A(x,)
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A fuzzy set with membership function

P(x})=1, X =X,
=0, X # Xg,

is called a crisp point, denoted P\ . For any fuzzy sct 4 in X, we define the
crisp point P} c A<= A(xo)=1 and P, € A<= A(x,) = L.

The fuzzy point and crisp point are often referred to as a point.

DerINITION 1.4, Let 4 be a fuzzy set in X, then the subset of X

w (A)={x:1A(x)=a}, 2€(0, 1],
and

o(A)={x:A(x)>a}, ae[0,1),

is called the weak x-cut and strong x-cut of A, respectively.

DeriniTION 1.5 Suppose F is a family of fuzzy sets in X, which satisfics
the following axioms:

(Tl) 0.1lekF.
(T2) if A, Be}, then AnBek,

(T3) f4,eF, r.eA. then,, ,4,¢F,

then F is called a fuzzy topology for X and the pair (X, F) is a fuzzy
topological space.

Every member of T is called an F-open fuzzy set (or simply open fuzzy
set) and its complement is an F-closed fuzzy set (or closed fuzzy set).

Let A be a fuzzy set in fts (X, €). The closure 4 and interior A" of A are
defined. respectively, by

A=) {B:B>A,B€F|
and
A’={) {B:Bc A4, BeF}.
DEFINITION 1.6.  Let F be a fuzzy topology. A subfamily B of F is a base
for F iff each member of I can be expressed as the union of some members

of B. A subfamily S of F is a subbase for F iff the family of finite intersec-
tions of members of S form a base for F.

DeriNITION 1.7. A mapping T: (X, F)— (Y, I) is called fuzzy con-
tinuous iff for each A e[ implies T "'4eF.
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DeriNimion 1.8, A mapping T2 (X. F)—> (Y. k) is called fuzzy open
{closed) iff for each AelF (4 eF) implies T4e ([TA] e%).

The foundational notions and the definitions mentioned above and other
definitions used but not shown in this paper can be found in [1 6]

II. PRODUCT-INDUCED SPACES

In paper [5], we introduced a class of fts which is defined by a class of
special product topologies JX6. This class of fts is very foundational and
important.

DerINITION 2.1, Let A be a fuzzy set in X. Then the subset 4° = {(x. x):
Pre A, xel,} in product set X x I, is called the shape of the fuzzy set A.
The family {4%:4€1*} of all shapes of fuzzy sets in X is denoted by G.
where 1,=(0. 1).

THEOREM 2.1.  The operator *: 1Y = G is an isomorphism for “|)" and
P .
Sinite “N."

Proof. 1t is evident that the operator *is 1 1. Let {4,:xe A} be a
family of fuzzy sets in X, then

U A47=1) {(x,2):veX 0<a<A,(x)]
e 1

et

Hvcx):xe X, 0<a<sup 4,(x)}

re
[
s

1S
N A?’=[ N A,J.
I ’ - "

WH

Il

Similarly. we can prove

’

DeFINITION 2.2. A topology for the open interval /,= (0. 1) is called a
O-topology iff its open sets family consists of some open intervals (0. x),
where xe [0, 1].

It is easily seen that

Oy =19, 1o},
f,=1{10,2):2€ [0, 1]}

are g-topologies.
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DerINITION 2.3, Let 7 be a topology for X and 6 be a #-topology for
1,. The family of fuzzy sets in X

Froo=1{A:Ael* A% e 7 x0}

is a fuzzy topology for X, which is called a product-induced topology, and
(.X. F,.4)is the product-induced space.

THEOREM 2.2, The product-induced space (X,F ;. ,) and topological
space (X x 1,, 7 x 0) are topologically isomorphic, that is, there exists a 1 1
correspondence . F . — 7 x 8 such that

(1) OS=Q, ]S=XX[(1,
(ii) (AN B)S=A4%n B,
(iii) (U;_c,,A,:)S=U,-(-,1Af,

foranv A, B, A, €l ; ,. re A

Proof. By Theorem 2.1 is trivial.

By the above theorem, it is easy for us to sec that a statement involving
only the topology and the operator “J” and finite “()” holds in (X x [,,
7 x 8), then the corresponding statement holds in (X, ¥ - _,). For example,
we have the followng.

THEOREM 2.3. A product-induced space (X, T ;) is fuzzy C,, C,, and
separable, respectively, iff the topological space (X,J) is C,, C, and
separable.

Let (X, .77) be a topological space. The family of all lower semicon-
tinuous functions from (X, .7 ) to [0, 1] forms a fuzzy topology for X and
the corresponding fts is called semicontinuous fts or induced fts [3, 7, §].
By the properties of lower semicontinuous functions, it 1s easy to prove the
following proposition.

THEOREM 2.4.  The product-induced space (X, F . ,) is just the lower
semicontinuous fts which is induced by topological space (X, 7).

DeriNITION 2.4, Let (X, }) be a fts, then the family of subsets in X
fo,(A4): AeF, 2e[0,1]}

forms a subbase of some topology for X. This topology is called initial
topology of F, denoted by i(F), and the corresponding topological space
(X. 1«(F)) is the initial topological space.
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Obviously, the definition of i(}) mentioned above and the corresponding
definition in (8§) are identical. Similarly. the topologies 1,(r). x€ [0, 1]. for
X induced in (10) can be defined by

1(F)=tla,44): 4de};.

It is evident that we have

1(F)= sup 1,(F)

xe [0.1]

THEOREM 2.5.  Every open (closed) fuzzy set in a fis (X, F) is a lower
(upper) semicontinuous function from (X, 1(F)) to [0, 1].

Proof. Tt follows from the character of semicontinuous functions.
Due to Theorems 2.4. and 2.5, we obtain immediately the following
important results.

THEOREM 2.6.  For any fuzzy topology b oon X, we have

J'_C}_y <tye

where .7 =1(F).
Thus it can be seen that all fuzzy topologies for X can be classified by their
initial topology 7 = (F) and the finest member of each class is F; .

THEOREM 2.7, For every fts (X, F) there exists u topological space
(X x 1y, ), % (b)) x 0,0 such that (X, Y and (X x I,. #) are topologically
isomorphic.

Proof. Trivial from Theorems 2.2 and 2.6.

Let (X, %) be a fts and U'e.7 =u(}), xe(0. 1]. The fuzzy set with shape
Ux (0. 2) is called a fundamental fuzzy sct for (X, F), denoted by N7 . If
N7 el, then it is called a fundamental open fuzzy set. In particular. for
product-induced space (X, F, ,,), if (0,2)€0, then N7 is a fundamental
fuzzy open set, and the family {N7:Ue.7.(0.1)ef} forms a base of
ﬂ: 7 ox

THFEOREM 2.8.  The shape A® of an open fuzzy set A in fts is an open set
in (X..7)x [0, 1]. where 7 =u(F) and [0, 1] is the subspace of number line.

Proof. First, the shape Ux (0, 2) of N7 is an open sct in (X .7 }x
[0,1]. For any A€l ,. because all Ni. forms a base for F ., so
A=Nj.. Hence 4 is an open set in (X, .7 )x[0,1]. By Theorem 2.6,
Aetl implies A€l ,, therefore A% is an open set in (X, 7)x[0,1].
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DEFINITION 2.5. Let A4 be a fuzzy set in fts (X, F). We define its weak 0-
cut

wo(A) =\ {W:ay(Ad)c W. W e(F)}.

THEOREM 2.9. Let C be a closed fuzzy set in fts (X, F), then set
CPU{(x, c(x)): xewy(1)} is a closed set in (X, T)x [0.1], .7 =i(F).

Proof. Obvious form Theorem 2.8.

THEOREM 2.10. Ler 8,50,. The mapping T: (X, F - ,) (Y, F, 4) is
fuzzy continuous iff the mapping T: (X, 7 ) > (Y. ¥) is continuous.

Proof. Sufficiency. Let N3 be a fundamental fuzzy set in (Y, F, .,,).
Obviously, we have

yy 1 X Ty
1 N(.'—‘N‘r ey

Since T is continuous and ¢,>6, thus T '(U)e 7. (0,2)e 6, and so
T 'N%eF ;.0

Let BeF, ... then there exists a family {N} :4€e A} of fundamental
fuzzy scts in F,, , 4, such that

B=[) N3.
se A
Hence
T 'B=|) T 'Nueb, .

s A

Necessity. For every Ue 4, it is obvious that N}.€ F, , ,,. By fuzzy con-
tinuity of T, we have T 'N},= N\_, ., €F 5 ., hence T~ (U)e 7.

THEOREM 2.11. The mapping T: (X.F o) = (Y. F, .0) is fuzzy open
(closed) iff the mapping T: (X, 7 V- (Y, %) is open (closed).

Proof. We prove it in case of fuzzy open.

Sufficiency. U mapping T is fuzzy open, then for each fundamental
open fuzzy set Nj e[, ., the image TN eF, ,. It is easily seen that
TN} =N}, thus Ny, €F, ., and so T(U)e %. Hence the mapping T is
open.

Necessity. Let AeF ;, ,and Pie T4, take note of 0 <a < TA(y), then
there is an xe€ X such that T(P})= P and P?e A. Hence there is a fun-
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damental fuzzy open set N¥. such that Pre N¥ < A. Since mapping 1 is
open. we have T(U)e # and TNY =N, elb, .. By TN c T4 we have

TA= |) TNFeF, .
/7

)

The mapping 7' is fuzzy open.

Two fuzzy topological spaces are said to be homcomorphic iff there exist
a 1 1 and fuzzy continuous open mapping such that the image of one is
exactly the other. Obviously, product-induced spaces (X, F,.,) and
(Y.F, ., are homeomorphic which is equivalent to (X,.7) and (Y, #)
being homeomorphic.

[11. Fvzzy POINTS AND LEVEL SETS

The fuzzy points and level sets of fuzzy sets are important tools for
reserach on fuzzy topologies because any fuzzy set can be resolved ver-
tically and levelly by means of them, respectively.

The fuzzy point is a kind of most simple and basic fuzzy set. For it the
relation “ <™ is natural, and the relation “€™ has only subordinate status.

DrriNiTioN 3.1 Let P*, 0 <x < 1, be a point and A be a fuzzy set in fts
{X, 7). 4 is called a neighborhood of P iff there is a open fuzzy set Bel,
such that P2e Bc A.

DeriNniTION 3.2, Let P* be a point and N¥. a fundamental fuzzy set in fts
(X" F). If Pxe N then N¥ is called a neighborhood germ of P*.

THEOREM 3.1. A fuzcy set A is a neighborhood of fuzzy point P*,
x€(0.1). in fts (X, }) iff there exists an open fuzzy set BeF and a
neighborhood germ N of P* such that

P eNf cBcA.

Proof.  Obviously, from Theorem 2.5 and the property of lower
semicontinuous function.

DeriNITION 3.3, A fuzzy set A is called an S-neighborhood of point P’
in fts (X, F) iff there is a neighborhood germ N%. of P* and an open fuzzy
sct B such that

PreNic Bc A.
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Note that for the crisp point the neighborhood and the S-neighborhood
may be different.

DermNITION 34. Fuzzy point P! * is called a dual point of P*. For
crisp point P!, we define its dual point the support x of P!, denoted by P°.

In our system, since the P® is not a point, the neighborhood has no
meaning for P%. However, it is convenient that we call the neighborhood of
P:, 0<a<1, a neighborhood of P? and define P°e A< A(x)>0,
Plc A< xewyA)

The notions of quasi-coincident and Q-neighborhood introduced by [4]
arc very important, and can perfectly deal with the question: the shape of
the complement of a fuzzy set has to turn in topological space X x (0, 1),
such that we can transplant various definitions of closurc on usual
topology to fuzzy topology and make these concepts compatible with each
other. We introduce the concept of dual point for the same object. The Q-
neighborhood of a point is exactly the neighborhood of its dual point.
Hence in our system the Q-neighborhood system and the neighborhood
system are dual each other.

THEOREM 3.2, Let A be a fuzzy set in fts (X, F). The point P*e A iff
each neighborhood of its dual point P\~* is_quasi-coincident with A. The
fuzzy point P*e A° iff its dual point P' * & A

Proof. The first half of the theorem is exactly Theorem 4.1. in [4]. Now
we prove the second half.

If P! * & A then there is a neighborhood B of P* quasi-coincident with
A’ ie, B A, and so P2e Bc A, hence P*e A°. Inversely, if P*e A° then
there is Be F such that P2e Bc A4, ic., B is not quasi-coincident with A’
(or B and A’ are quasi-discoincident), hence P* & A4’

In [3], for induced fuzzy topological spaces, ic., (X, I, ,), Weiss
proved the following proposition:

In fts (X, F, ., ), the fuzzy set A4 is an open (or closed) fuzzy set iff the
set g,(A) (or w,(A4)) is .7 -open (or .7 -closed).

By this result and Theorem 2.6, we have

THEOREM 3.3, If A is an open (or closed) fuzzy set in fis (x, F), then
o, (A) is an (F)-open set (or w,(A) is an 1(F)-closed set).

DerINITION 3.5, Let a be a fuzzy set in fis (X, F). The strong 1-cut is
defined by

a(d)=) {U: Ni.c 4},

where N}, are the fundamental fuzzy sets in (x, F).
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THEOREM 3.4. Let A be an open fuzzy set in fts (X, F), then for each
ae [0, 1] we have

o,(A)=]){UP* e Nl c A},

where N¥, are the fundamental fuzzy sets in (X, ).

Praof. Obvious from the property of lower semicontinuous function.

IV. FuzzZY SEPARATION

DerFmnITION 4.1. A fts (X, [) is a fuzzy T, space iff, for any two distinct
points in (X, ), at least one of them has a neighborhood which is not a
neighborhood of the other.

THEOREM 4.1. If fts (X, T) is a fuzzy T, space, then the initial space (X,
yF)) is a T, space.

Proof. Let x and y be two distinct points in X. Consider the fuzzy
points P% and P?, 0 <a < 1. Due to (X, F) being a fuzzy T, space, we might
as well suppose that P* has an open neighborhood B such that Pié B
Thus xeo,(B)e1(F) but y € g, (B) hence (X, 1(F)) is a T, space. '

DerFINITION 4.2. A fts(X, F) is a fuzzy T, space iff for any point P* and
P ¢ P2 the dual point P!~ # has a neighborhood which is not quasi-coin-
cident with P*.

THEOREM 4.2, If fts (X, F) is a fuzzy T, space, then the initial space
(X, u(F)) is a T, space.

Proof. Let x#y; Consider points P> and P)* then P}” has a
neighborhood 4 such that 4 and P!? are not quasi-coincident. Thus
P!>¢ A and so x € g,,,(A). Hence (X, «(F))is T,.

THEOREM 4.3. A fis (X, F)is a T, space iff every point P* is fuzzy closed.

Proof. 1t is obvious from Theorem 3.2.

THEOREM 4.4. A fts (X, F) is a fuzzy T, space iff for any fuzzy set A, we
have

A={}{B:A<BeF).
Proof.  Sufficiency. For any P} and P¥ ¢ P*, we have

P! #=(\{B:P! FcBeF}.
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Thus P, ” has an open neighborhood B such that B and P? are not quasi-
coincident and so P# ¢ p%. Hence p* = p2. By Theorem 4.3, the fts (X, F) is
a fuzzy T,.

Necessity. For any fuzzy set 4 and point P2 < 4, there is <« such
that P# & A. Since (X, F) is a fuzzy T, space and the point P!~ ? is a closed
fuzzy set, then (P, #) is an open fuzzy set and 4 < (PL #Y, P* & (P!~ F),
Let B=(P!~") then

Azﬂ {B:Ac Bel}.

DerNtTiON 4.3. A fts (X, F) 1s a fuzzy T, space iff for any point P* and
P & P there are neighborhoods of P? and P! #, respectively, which are
not quasi-coincident cach other.

THEOREM 4.5, If fis (X, F) is a fuzzy T, space, then (X, 1(F)} is a T,
space.

The proof is straightforward (cf. Theorem 4.2).
THEOREM 4.6. A fis (X, V) is a fuzzy T, space iff for any P* we have
Pr=(Y{C:P*eC’ CeF}.

Proof.  Sufficiency. For any points P* and P¥ & P*, therc is a closed
neighborhood C of P such that P# ¢ (" hence P! *e C". Thus C®and C’
are the neighborhoods of P* and P! *, respectively, which are not quasi-
coincident cach other. Therefore the fts (X, F) is a fuzzy T, space.

Necessity. Let PP ¢ P*, then P* and P! * have neighborhoods 4 and
B, respectively, which are not quasi-coincident each other. That s,
PeAc B and P/ ¢ B'. Let C= 1B, then C is a closed neighborhood of
P, we have

Pr=(V{C:P*eC’%CeF).

It is evident that fuzzy T, implies fuzzy T, and fuzzy T, implies fuzzy T,,.

DEFNITION 4.4, A fts (X, F) is fuzzy regular iff, for any point P* and its
any open neighborhood A, there 1s a fuzzy sct B such that

P*eB'cBc A,

and A is a neighborhood of B.
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A fuzzy set 4 is said to be neighborhood of B iff 4 1s a neighborhood of
every point P(x, B(x)). B(x} >0, ve X.

THEOREM 4.7, If fis (X. b)Y is fuzzyv regudar. then the initial spuce
(X. (")) is regular.

Proof.  Since the family {a,(4): AeF. xe (0. 1)} forms a base of (F) we
must only show that, for any ve X and its any open neighborhood
U=, ., lo,0A4):4,et. 2,e(0.1)]. there exists an open set }” and
closed set W in (X, 1(F)) such that

el Wel.

In fact, by the fuzzy regular of (X, F), for any fuzzy point P¥ and its any
open neighborhood A, there 1s an open fuzzy set B, such that

PxeB B c A,
and 4, is a neighborhood of B, so we have
xea (B)cwm,(B)c a,.(d,)

Let V=0, , ,0,(B)and W=\, |, , »,(B,). Obviously, they arc open
and closed sets in (X. 1(F)), respectively. and we have

xebVcWel.
Therefore, (X, 1(F)) is regular.

THEOREM 4.8. A fts (X. F) is fuzzy regular iff for any closed fuzzy set A
we have

A=)V C:P(x. A(x) e C'.xe X. C'el L.

Proof.  Sufficiency. Let B be an open fuzzy set in (X, F) and P2 e B. It
1s clear that P! * & B'. Let 4 =B, then there is a closed neighborhood €
of 4 such that P! * & (., and we have

PreC'cCVcB,
and B is a neighborhood of C*. Hence (X, F) is fuzzy regular.

Necessity.  Let 4 be a closed fuzzy set in (X, F) and P* & A, then
P, *e A’ and there is an open fuzzy sct B such that

P! *¢BcBc A,
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and A4' is a neighborhood of B. Let C=B’, obviously C is a closed
neighborhood of 4 and P* ¢ C, hence we have

A= {C:P(x, A(x))e C°. xe X, C'eF}.

DerFNITION 4.5, The fuzzy sets 4 and B in (X, F) are said to be strong
non-quasi-coincident (or strong quasi-discoincident) iff, for any xe X,
A(x)+ B(x)< 1, and if A(x) + B(x)=1, then either A(x)=1 or B(x)=1.

THEOREM 4.9. A fis (X, V) is fuzzy regular iff, for any point P* and any
closed fuzzy set C which is strong non-quasi-coincident with P*, there are
neighborhoods A and B of P* and C, respectively, such that A and B are not
quasi-coincident.

Proof.  Sufficiency. Let C be a closed fuzzy sct and point P*eC'e',
obviously P> and C are strong quasi-discoincident, then there exist
neighborhoods A4 and B of P* and C, respectively, such that 4 and B are
not quasi-coincident and so

PeAc B (',
and (' is a neighborhood of B’. Hence (X, F) is fuzzy regular.

Necessiry.  Suppose point P* and closed fuzzy set C are strong quasi-
discoincident. i.c., P2e C’, then, by the fuzzy regular property, there is an
open fuzzy set A such that

PreAcAcC,

and (' is a neighborhood of B. Let B=A', then 4 and B are
neighborhoods of P and C, respectively, and they are quasi-discoincident.

A fuzzy regular T, spacc is called a fuzzy T, space. It is easy to show that
a fuzzy T, spacc is a fuzzy T, space. Indeed, let (X, F) be a fuzzy T, space,
give any P¥ & P*_ of course they are different by fuzzy T, property, we
might as well let 4€F and P>e A, P! ¢ A. then thcre exists an open fuzzy
set B such that

P*e Bc Bc A.
Let C = B, then C is a neighborhood of P! # and is not quasi-coincident

with B. That is. fts (X, F) is a fuzzy T, space.

DErFINITION 4.6. A fts (X, F) is fuzzy normal iff for any closed fuzzy set
C and its any open neighborhood B in (X, F) there is a fuzzy set 4 such
that

CcAc Ac B,
and A" is a ncighborhood of C, B is a neighborhood of A.
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We can casily prove the following statement (cf. Theorem 4.9).

THREOREM 4.10. A frs (X, 2) is fuzzy normad iff for any bvo strong quusi-
discoincident closed sets C and D there are their open neighborhoods A and
B, respectively, such that 4 and B are quusi-discoincident.

DEerFINITION 4.7, Let (X, F) be a fts and D a dense subset of the interval
[0, 1]. The family {0 ,:de D} of open fuzzy scts in (X. 1) is called a scale
of fuzzy open scts iff O, < O, and O, is a neighborhood of O, for any
pair d, <d,in D.

Now we generalize Uryshon's lemma on usual topology to the fuzzy
topology.

THEOREM 4.11. A frs (X, ) is fuzzy normal iff for any closed fuzzy set B
and its any open neighborhood A. there exists a scale of fuzzy open sets
10,.de D) such that Bc O, < A. for every de D.

Proof.  Sufficiency.  Obvious.

Necessity. Given any closed fuzzy set B and its open neighborhood 4
in (X, ). Since (X, [F) is fuzzy normal there is an open fuzzy set O, such
that

Bc0,c0,c A.

morcover (), and A are the neighborhoods of B and O, respectively.

Let D be the set of diadic rationals and D, = {m:2":m < 2", m=2k — 1.
k=1,2...1 then D={J,_.,,» D, We construct a scale of fuzzy open sets
as follows: Let O, = A. we can choose an open sct O, » such that

0,c0,,c0,,c0,

and O, ,, 0, are the neighborhoods of O,. O, ,, respectively. Suppose for
every member d in D, uD,u - uD, the O, is already defined such that
0,<0, and O, is a ncighborhood of O, for any pair ¢ <d". For any
de D, ., there are adjacent elements ¢’ and d" of D, v --- U D, such that
d=(d + d")/2. Using the fuzzy normal we can choose an open fuzzy set O,
satisfying

0,<0,c0,c0,.

morcover Q,. O, are the neighborhoods of 0,, O, respectively. By the
induction, we obtain a scale of fuzzy open scts {Q,:de D} such that
Bc O,c A, moreover O, and A arc the neighborhoods of B and 0.

A fuzzy normal and fuzzy T, space is called a fuzzy T, space. Obviously,
fuzzy T, implies fuzzy T,.
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DerFINITION 4.8. A fts (X, F) is fuzzy completely normal iff for any set 4
and its any neighborhood B satisfying the condition P(x, A(x)) € B, there is
an open fuzzy set O such that

AcOcOcB,

moreover O is a neighborhood of 4 and P(x, O(x))e B, xe X.
Fuzzy sets A and B are said to be fuzzy separated iff 4 and B, and at the
same time A and B, are strong quasi-discoincident.

THEOREM 4.12. A4 fis (X, b) is completely normal iff for any pair of fuzzy
separated fuzzy sets A and B, there exist quasi-discoincident vpen fuzzy sets
O , and O, being the neighborhoods of A and B, respectively.

Proof.  Sufficiency. Let fuzzy set B be a neighborhood of A satisfying
the condition P(x, A(x))e B, then 4 and B’ and at the same time 4 and B’
are strong quasi-discoincident. Thus the fuzzy sets A and B’ have, respec-
tively, quasi-discoincident open ncighborhoods O, and O, and so
0O ,< 0. Observe that O, < B is a closed fuzzy set, we have O, <O,
and Ac0,c0O,cB, morcover O, is a neighborhood of A4 and
P(x, 0 (x))eB.

Necessity. Let fuzzy sets 4 and B be fuzzy separated, then A= B,
P(x, A(x))e B and Ac B, P(x, A(x))e B', xeX. Since (X,F) is com-
pletely normal there exists an open fuzzy set O such that

AcOcOc B,

O is a neighborhood of 4 and P(x, O(x))e B’ Let O,=0 and 0,=0'
then O , and O are quasi-discoincident neighborhoods of 4 and B, respec-
tively. Theorem 4.12 is proved.

Fuzzy completely normal T, space is called fuzzy T space. Obviously,
fuzzy T, space is fuzzy T, spacc.

So far, we have given a group of increasing fuzzy separation axioms:
fuzzy T,,i=0,1,2,3,4,5.

THEOREM 4.13.  Product-induced space (X, } , ) possesses any one of
the separate properties mentioned above iff the topological space (X, .7) has
corresponding properties.

Proof. As an example, we only give the proof of fuzzy completely nor-
mal space.

Sufficiency. Suppose fuzzy sets 4 and B satisfying the condition of
Definition 4.8, then for each O<ax<1 we have w,(4)cao,(B°),
w,(A)cw (B). Let A, =w,(A), B,=w,(B), then it is easy to show that
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A, BY. A, < B,. Since (X, 7} is completely normal there exists an open
set L', such that

A, cl,c U, B,
Let O=g.,. N, then O={],.,., Vi, (c[. [6]). It is evident that
4Ac0cOcB.

moreover O is a neighborhood of 4 and P(x, O(x))e B. Hence (X, F <)
is fuzzy completely normal.

Necessity.  Obvious.

The fts (Y, F) is a subspace of fts (X, F) if Y is a subset of X and E is the
family of all restriction of members of F to Y [13]).

It is easy to prove that the subspace of a fuzzy completely normal space
is also fuzzy completely normal. By Theorem 4.13. it is easy to show the
following:

THEOREM 4.14.  Product-induced space (X.F, ,,,) is fuzzy completely
normal iff its every subspace is fuzzy normal.

In every fuzzy separate axiom discussed above instcad of the
neighborhood by S-neighborhood we shall obtain a group of S-separate
axioms [14] denoted by S7,. ST,. S-regular..ctc. Generally, the S-
separation is stronger than the corresponding fuzzy separation.

V. Fuzzy METRIC SPACES

For convenience, we denote P,={P:xelX, 2€(0,1)}, P=P,u
{PooxeXland P, =PuU{P’: xeX}

DerFINITION 5.1. A fuzzy metric for a set X is a mapping ¢: P, x P, —
[0, oc ) which is continuous for membership grade and satisfies, for all P*,
P, pieP,, the following axioms:

(M1) If P¥c P, then e(P2, P¥)=0.
(M2) e(P. Pi)<e(P7, Pl)+e(PL. P).
(M3) e(P% P¥)y=e(P' P! %)
(M4) If P! ¢ P* thene(P, PB)> 0.
A mapping is called continuous for membership grade iff for every fuzzy

point P2e P, and £> 0 there exists a >0 such that | — a| <3 implies
e(P:, PPy <.
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This definition is a little different from that given in [157].

Essentially, the fuzzy metrics is a kind of special quasi-metrics. It is easy
to verify that the mapping e(P?, P#)=max[d(x. v), § — x], which is given
in [ 147, satisfies these axioms.

In the definition mentioned above, if (M4) (or (M3), (M4)) is omitted,
then e is called a fuzzy pseudo-metrics (or fuzzy quasi-metric).

Let ¢ be a fuzzy quasi-metrics for X, then, for any Pie P, and £ >0, the

B(Px)=J [ P! e(P, Pl)<e)
is a fuzzy set, which is called an ¢-open ball of P*. Correspondingly, we call
B(P*)=| {P':e(P*, PP)<&|

a fuzzy closed ball of P*.
It is easy to verify that the family of all fuzzy open balls, corresponding
to fuzzy (quasi-, pseudo-) metric e,

B={B.(P*): P eP. >0}

forms a base of some fuzzy topology [, for X. We call it fuzzy (quasi-,
pseudo-) metric topology and (X. F,) fuzzy (quasi-, pscudo-) metric space.

THeOREM S5.1. Let (X, F,) be a fuzzy quasi-metric space, then, for any
point P*e P and >0, the fuzzy e-open ball B(P?) is an open neighborhood
of point P*.

Proof. 1t is sufficient to show P?e B,(P?). Indeed, if 2 =1, then e(P.,
P')<g, ie, Pl B,(P!) and hence Pl e B,(P*). And if 0 <a <, since e is
continuous for membership grade, then therc 1s >« such that ¢(P?,
Piy<g, ie.. PPc f,(P*). Hence PXe B,(P?).

If we strengthen a little the condition of continuity for membership
grade, just as we gave in [15]. then one can further prove B,(P?) to be an
S-neighborhood of P2.

THEOREM 5.2. Let (X, F.) be a fuzzy pseudo-metric space. If 0< =
B (P y)<1 then e(PY, Pl)=¢

Proof. Let f,, n=1,2,.., be a strictly increasing sequence and con-
vergent to . For any n' <n”. by axiom (M2), we have ¢(P%, Pi)<
e(P*, Pl ) < ¢ Therefore

lim e(P%, Ph)=¢* <
—

"

409 10141
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First we show that e(P*, P¥)=¢*. Since ¢ is continuous for membership
grade and f# < | and remarked axiom (M3). we have

lim e(Plin, PF)=0.

By axiom (M2), we have
(P, PPy<ge(P, PPy e(P?, P_{‘.") + e( PP, PP,

for any n. Hence e( P, P¥)=¢*.

And then, we prove ¢=¢*. If not, then ¢ >¢* Remember that ¢ con-
tinuous for membership grade, there exists 4 >0 such that f*—f <o
implies e(P?. P#*) <& —¢* for ¢ —¢* > 0 and point P£. Choose f* satisfying
B<p*<f+0 then '

e(Px Py <e(Py, Pl) +e(PE, PP) <
and so P*" e B,(P*). This fact contradicts with the definition of . Therefore

ce=c¢* e, e(PY, PPy=¢.
Generally, ¢(P2, PY) =« docs not imply P/ < B,(P%) and P! < B,(P?).

THEOREM 53. Let (X, Fe) be a fuzzy pseudo-metric space, if P%=
Usea Pt then B(P%)=1J,. B.(P*) for any ¢ >0.

Proof. Given any ye X and let i = B,(P*)}(y), B, =B.(P¥)(y), A€ A, we
prove ff=sup,, (B,. Suppose sup,.,f5,=p* wec have f,<f and so
sup; . 4 f, <P, ic, p* < B because P¥ e B,(P*). But the inequality cannot
hold. Otherwise * < f§ then e( P%. P#") <. On the other side, e(P*, P#") >
e(P*, P%) for any 7€ A. And

inf e(P*, P1)=0,

red

because ¢ is continuous for membership grade. By axiom (M2) and
Theorem 5.2, we have

e(PY, Plt)~e(PY, PY)<e(P, PPy<e(PYy, P¥)
and

e(Py, Pl)=¢,  LeA.

Hence sup;, 4 e( P, Pff) =¢ and so e(P?, P_{’_'); ¢ This is in contradiction
to e( p%, p#*) <e. Therefore f* = p.

THEOREM 5.4. Let (X, F,) be a fuzzy pseudo-metric space. then for anv
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P2 and ¢* > ¢ >0 we have B(P%)c B,.(P%) and B,.(P%) is a neighborhood of
B.(P*).

Proof. Given any P?’c B,(P2), then each neighborhood of P!~7 and
B,(P*) are quasi-coincident. If 0 <y < 1, then B4(P! 7¥) is quasi-coincident
with B,(P%) for any 6 >0. That is, there is a point P#< B,(P! *) and
P’ ¢ B,(P?), so that e(P! 7, P#)<§ and e(P¥, P! *)=e(P%, P! #) <.
Hence ' '

(P2, PI)<e(PL 7, PE)+e(PP, PL-*) <&+

Since 6 >0 is arbitrary, we have ¢(P%, Pi)<e¢. If y=1, instead of P!~ 7 by
any P:, {>0 in the above discussion, we have e(P%, P! *)<e¢ and so
e(P: P )<e This shows Pie B,.(P}) hence B.(P})c B,.(P}), moreover
B.. (P_’) is a neighborhood of B.(P3).

THEOREM 5.5. In fuzzy pseudo-metric space, any fuzzy e-closed ball
B,(Px)=U {Pi:e(P%, PY)<e} is a closed fuzzy set and

£* >

Proof. Given any P?c B,(P%), by the proof of Theorem 5.4, we have
e(Px, PTy<yg, ie, pic B(P%). Hence B(P*)c B,(P?) and so B,(P*)is a
closed fuzzy sel

If PPc,...B..(P*) then e(P*, PP)<e* for any ¢* >¢ so that e(P?,
P{?)<r, ie. P{’c B,(P’j.) hence (..., B,-(P2)< B,(P?). Thus we have

B(P*)= () B..(P%).

£ >

Since B(P*)c B P*) and B, P} is a closed fuzzy set, we have

B.(P)c B(P?),
but they may be different.

THEOREM 5.6. Every fuzzy pseudo-metric space is a fuzzy C, space.

Proof. Obvious.

THEOREM 5.7.  Every fuzzy pseudo-metric space (X, F,) is fuzzy regular.

Proof. Given any open fuzzy set 4 and point P* € A, by Theorems 5.1
and 5.4, we have

Pie BI:/Z(PaK)C Bl:/Z(Pt)C B:(P’:)C As
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moreover B 5(P?) and A are the neighborhoods of P7 and B, (l”) respec-
tively. Hence (X. T,) 1s fuzzy regular.

THEOREM 5.8.  Erverv fuzzy pseudo-metric space (X. })) is fuzzy com-
pletely normal and so also is fuzzy normal.

Proof. Let A be a fuzzy set in (X, F_) and B its neighborhood satisfying
condition P(x. 4(x))e B. xe X. We must prove that there is an open fuzzy
set O such that

AcOcOcB.

morcover () is a neighborhood of A4 and P(x. O(x))e B. xe X.

Since B is a neighborhood of A, there is an &=¢(P%) such that
B.(P*)c B” for any point P*e 4. Let O, =B, ,(P*): Pre A, e =¢(PY)].
then O, is an open neighborhood of A. Since P(x, A(x))e B. xe X, the A4’
is an open ncighborhood of B'. and so we can define an open
neighborhood O, of B’ similarly.

Now we prove the fuzzy sets O, and O, are quasi-discoincident. In fact.
if O, and O, arc quasi-coincident. then there exists a fuzzy point Pie 4
such that P: and O, are quasi-coincident, ic.. P! "€ O,. That is, there
arc points P*eA and PP & B osatisfying  e(Pr, P)<e(Pl)2 and
(Pl ¥ Pl ")y<e(P?)2. By axioms (M2) and (M3). we have

(P PEY e(P* . Py + (P Py <max[e(P*) e(P! #)].

On the other side, since P*ed. PPd B then (P, P2
g(PX)e(P "OPL *)=ze(P! ") and so we have

e(P*, PPy = max[e( P*). e( P! )],

This is a contradiction. So that O, and O, are quasi-discoincident, iec..
0,c0%. hence Ac O, Oy < B, P(x, 0%{x))e B. xe X. Remarked that
QY is a closed fuzzy sct. we have

AcQ,c0,cB,
moreover O, is a neighborhood of 4 and P(x, O ((x))€ B. xe X.

THEOREM 5.9. If (X.F.) is a fuzzy pseudo-metric space. then the initial
topological space (X, (F ) is @ pseudo-metric space.

Proof. For any xe [0. 1], we define a mapping d,: X x X - [0. =)
dfx. ¥)=e(PL P +e(PL 2 P "),

obviously d, is a pseudo-metrics for .X.
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Let {a,:i=1.2,..,} be a dense subset of [0,1] and 7, the metric
topologies for X induced by d,. We can prove that

hence (X, 1(F,)) is a pseudo-metric space.
In fact, let Ux,¢)={y:d,(x, v)<e} then onc can easily show that
L:,(.\‘, C)C 01,[8,*,(})_:-')] ﬁ(fl 1,[Bli(P1 x,)]
and
Uix,e)20,[B.o(P)]no, L[B..(P, )]
Therefore {U/x,e):xeX,¢>0.i=1,2,..; and {o,[B.(P¥)]:f,=2, or
-2, i=1,2,., veX, ¢>0} are cquivalent. Moreover they arc all the
subbases of (F,), because {x,:i=1,2,.,} is dense in [0, 1].

From the proof mentioned above, we can casily see that, if (X, F,.) is a
fuzzy pseudo-metric space, then (X, 1, ,(F_ )) is a pscudo-metric space.

THEOREM 5.10.  Every fuzzy merric space (X, F,) is a fuzzy T, space.
Proof. Let A= (P_/j)’ be the complement of P_{‘, then
AX)=1-f, 1=
=1, &Y

Given any point P*e A, then P! 7 ¢ P> By axiom (M4), we have
e(P*, P! ")>0. Hence therc exists ¢ >0 such that P! /¢ B (P*) and so

A= () B.(P?)
Pic 4
Therefore A is an open fuzzy set. It follows that any point P! is a closed
fuzzy set. By Theorem 4.3, the fuzzy metric space (X, F.) is a fuzzy T
space.

THEOREM S5.11.  Every fuzzy metric space (X, F,) is fuzzy T<, and so is
fuzzy T, space, i=0, 1, 2,3, 4.
Proof. Obvious from Theorems 5.8 and 35.10.

Let (X, F,) be a fuzzy metric space. If each ¢-open ball B,(P%) in (X, F,)
is an S-neighborhood of point P*, then we call (X, F,) S-metric space.
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VI. Fuzzy UNIFORM SPACES

In [17] we introduced a kind of fuzzy uniformity. Consider a class of
nonvoid family ¢ of subsets U of product set P, x P satisfying the follow-
ing conditions:

{cly If (P*, P")e U. then (P%, Pi)e U for cvery 0 <7 < B.

(2y If P*=\Y, P> then PFF=\J, p{ﬁ for every 1re X, where
p* =sup{p: (P, PE)e U}. B¥ =sup{f,: (P¥. Pl e U}.

Forany Ue%. Ael” and P> e P we define

UPY) =\ (PP (P PH)e U}
and

UlAy=\) {PV:(P%, PP e U, P*c A}

Obviously, U(P*)eI*. U(A)eI* and
U ( U P’c) = vy,

U4)=|J U(P(x, A(x))).

ve X

Generally, for a family {A4,: A,e[*. 1€ A} we can prove that

U( U A,»_>= J U4,

je |

For any U, V€% the composition operator -is defined by
VU= {(P%, P}):3PfeP,, st (P*, PYYe U, (P¥, Pi)e V).

Obviously, V- U(4)=V[U(A)] for any Ae[*.
The inverse of Ue % is defined by

U '={(PX Pf)y:(PL-F P "eU}.
If U '"=U, then U is said to be symmetric. It is easy to verify that
(v.u) '=uv v .

DEFINITION 6.1. The nonvoid family % < % of subsets of P, xP, is
called a fuzzy uniformity for X iff the following axioms are satisfied:



FUZZY TOPOLOGICAL SPACES 163

(Ul) If Ue% then (P%, P%)e U for any P2 e P,, moreover, if P* e P,
then there exists = 6(P*) > 0 such that (P*, P**?%)e U.

(U2) 1If Ue4, then there is a Ve such that V- V< U.
(U3) IfUe%, then U~ 'e.

(Ud) T U, Ved, then UnVe#.

(US) fUe% and Uc V then Ve#%.

This definition is different from all definitions given in [17] and [18].

Next we shall see that any fuzzy metric space defines a compatible fuzzy
uniformity.

The nonvoid subfamily # of a fuzzy uniformity % is called a base of # iff
for any Ue % there is a Ve # such that V< U.

The nonvoid subfamily # of ¢ is a base of some fuzzy uniformity iff it
satisfies axioms (U1)-(U3) and

(U4)" If U, Ve then there is a We A such that Wc UnV.

All symmetric members of a fuzzy uniformity % form a base of #.

A nonvoid subfamily S of a fuzzy uniformity % is called a subbase of #
iff all finite intersections of members of S form a base of #.

If the nonvoid subfamily S e ¥ satisfies axioms (U1)- (U3), then it forms
a subbase for some fuzzy uniformity for X. In particular, the union of any
collection of fuzzy uniformities for X is the subbase for a fuzzy uniformity
for X.

DErINITION 6.2. Let # be a fuzzy uniformity for X, then a family of
fuzzy sets

F,={A:VPe A, 3Ue, st. UP*)c A}
is a fuzzy topology of X, which is called fuzzy uniform topology.
It is easy to verify that F, is really a fuzzy topology for X.

THEOREM 6.1. Let A be a fuzzy set in fuzzy uniform topological space
(X. F,), then its interior

A°={J{P:3Ueu, st UPY)c A).

Proof. Let A¥={J{P*:3Ue, st U(P*)c A}, then A* c A. Since for
any open fuzzy set B< A4 implies B A*, it is sufficient to prove A*eF,.
Indeed, given any point P*e A*, there is a Ue % such that U(P*)c A. By
axiom (U2), we can choose Ve such that V<V c U. If P#< V(P?), then
V(PAyc V- V(PY)< U(P%) < A, that is, P¥< A* Hence V(P%)c A and so
A*el,.
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THEOREM 6.2. Let (X.F) be a fuzzv uniform topological space and give
any Pxe P. Ue . then U(PY) is u neighborhood of P7.

Proof. Choose Ve # such that V' V< U. By Theorem 6.1 and axiom
(U1), we have V(P*)c U(P*)" and P*e V(P*)< U(P*)". Hence U(P*)"is a
ncighborhood of point P*.

Generally, U(P?) is not an S-neighborhood of Px. If U(P?) is an §-
neighborhood of P* for every Ue # and P>eP, then # is said to have
property S and (X. },) 1s an S-uniform topological space.

THEOREM 6.3.  Let (X, T ) be a fuzzy uniform topological space and A,
Bel'. If U(A)< B for some Ued, then A< B® and B" is a neighborhood
of A.

Proof. For any point P*c A, U/(P*) is a neighborhood of P2, ie,
P e U(P*)’ < U(A4)" = B’ hence 4= B’ and B" is a neighborhood of A.

THEOREM 6.4. Let (X, F,) be a fuzzy uniform topological space and A,
Bel'. If U(A)< B for some Ue # then Ac B® and B° is a neighborhood
of A.

Proof. Given any point P*c 4. then cvery ncighborhood of P! * is
quasi-coincident with A. Let Ve# be symmetric and V VU If
O<a<1, then V(P, *)and 4 arc quasi-coincident. Hence therc is P¥e 4
such that (P! *, PL #)e V and so (P!, P*)e V.ie. PP V(PH)Yc V(A). If
x=1, then for any O<e<1, by the above discussion, we have
P! "< U(A). Note that >0 is arbitrary, so that P! < V(A). Therefore
A< V(A4). Recall V[V(A)]cU(A)c B, by Theorem 6.3, we have
V(A)yc B’ and B' is a neighborhood of V(A4). Hence A< B" and B" is a
neighborhood of 4.

THEOREM 6.5. Ler (X, b)) be a fuzzy uniform topological space and U,
V.Wew. If W VU, then V(A)c U(A) and U(A)° is a neighborhood of

V(A) for any Ael'.

Proof. Obvious from Theorem 6.4.

THEOREM 6.6. If (X, ¥ ,) is a fuzzy uniform topological space, then (X,
uF,)) is « uniform topological space.

Proof.  Let D be the set of all rationals in (0, 1). For any de D, Ue#%
and x € X, by Theorem 6.2 and axiom (U1), we have U(P?)® (x)>d, hence
U(x)=0,(U(P*)) is a neighborhood of x in (X, i(F,)).

Consider the subset of X x X

Ud=1(x, v):relUix), xe X}
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then
Up,={U"UeW, deD)}
forms a subbase for some uniformity. Indced, we easily verify that for #,
the axioms (a)-(c) [20] are satisfied.
(a) If UYe#,. then Ac U“.
By the definition of U, obvious.
(b) For each U’e %, then set (U¢) ' contains a member of %,,.
Let Ve% and V-V c U, then
v Y=o, VP 9)
=0, 4P " (Pl POeV]
yil=B>1—d (P P)eV}
yif<d Pic V(PP
P V(P
¥y PleU(pd)}
yixe Uly) = (U4 ' (x).

n
~— e, e e
e

Hence
Uy 'sv- Y “ew,.

(c) For each U?e «, there is Ve 4, such that V<. V‘c U“

Let Ue#, then there is Ve # such that V. V< U/ and so (V- V)4 c UY
It is casy to prove that V¢« V¥c (Vo V)¢ hence V< V4 U“

The uniformity (%) generated by #,, induces a uniform topology 7,.
We shall prove .7, =i(F,).

By general topology [20], we know {U“(x): U’e %, } forming a subbase
for the neighborhood system of x relative to 7,. Remember U“(x)=
6,LU(P*)], the strong d*-cut o,.[U(P?)] is a neighborhood of x and
o.[UPY)] < U%x) for any d*eD, d<d*<U(P*)x). Hence all
a.[U(PY)], Ue, also constitutes a subbasc for the neighborhood system
of x relative to .7,. On the other hand {o,[U(P?)]:2€(0,1), Ue# | is a
subbase for the neighborhood system of x relative to i(F,). Thereforc we
need only to show that each ¢,[ U(P*)] contains some o ,.[ U(P¥)] in order
to prove 7, =1(F,). Indeed, by (C2) and the density of D, we can choosc
de D such that d<a, U(PY)(x)>a Hence there is d*eD, a<d*<
U(P)(x) such that g ,.[U(PY)] < o[ U(P*)].

From the proof mentioned above we can easily see that:
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If 4 has countable, base, then #,, has countable basec and so i(#) also
has countable base.
The topological space (X, 1, 2(F ,)) is a uniform topological space.

THEOREM 6.7.  Let ¥ be a fuzzy uniformity for X, then the closure

A=) U4

(e

for any Ael”.

Proof. First, we prove A<(),.., U(A). Given any point P*c 4 then
each neighborhood of P! * is quasi-coincident with 4. Let Ue % be sym-
metrical. If 0 <x < 1, then U(P! *)and A are quasi-coincident, hence there
is Pfe 4 such that P! P U(P! *)and so P2 U(PF)c U(A4). Ifx=1, by
the above discussion, we have P! ‘< U(A4) for any O<e<1 and so
P'.c U(A). Since all symmetric members of # form its base, therefore P*
ﬂl'c 4 U(A) and SO /ZC ﬂl c % U(A-)

Next. we prove N\, ., U(A)c A If P c3,.., U(A), then there is a
point P’< A such that (P’ PX)e U for any symmetrical Ue %, and so
(P *. P! MelU. IfO0<x<]1 then U(P! *)and P¥ are quasi-coincident. If
a=1, then U(P:) and P’ are quasi-coincident for all 0 <¢ < 1. Therefore
every neighborhood of P! * is quasi-coincident with A, that is,
Neew U(A)= A

THEOREM 6.8. A fuzzv uniform topological space (X, ¥,) is a fuzzy T,
space iff for any point P e P we have

() U(P*)=P=.
Lew
Proof. 1f (X.1,)is afuzzy T, space. then Fj = p*. By Theorem 6.7, we
have (., U(P})= P%=P%. On the contrary, if ;. , U(P%)=P3, then
P*= P, thatis, (X, t,)is a fuzzy T, space.
A fuzzy uniformity 4 is called separate iff .., U=
{(Px, P2): P2 P,]. From Theorem 6.8, % is separate iff F, is fuzzy T
topology.

VII. CHARACTERIZATION OF Fuzzy UNIFORM SPACES

In this section, first, we introduce the fuzzy separation axiom (T) [21]
and show that it is the character of fuzzy uniform space. Then we give a
fuzzy metrization theorem and prove that every uniformity is characterized
by a family of fuzzy pseudo-metrics.
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DerINITION 7.1. A fts (X, F) is called a fuzzy (T) space [21] iff for any
A€l and any point Pie A, there exists a scale of fuzzy open sets
{0,:de D} such that Pie O,c A for every de D.

It is easy to show that the particular choice of the index set D is of no
importance for fuzzy (T) space.

Let {O,:de D} be a scale of fuzzy open sets and OF =0) . It is easy
to prove that {O%:de D} is also a scale of fuzzy open sets which is called a
dual scale of {O,:deD}.

THEOREM 7.1. A fts (X, F) is a fuzzy uniform topological space iff it is a
fuzzy (T) space.

Proof.  Sufficiency. Suppose (X, F) is a fuzzy (T) space then for every
fuzzy set AeF and point P;e A there exists a scale of fuzzy open sets
{0,:de D} such that P;e O,c A for every de D.

Consider the function f/: P, - [0, 1]

f(PY)=inf{d: P*€O,}, Pre0,,
= 1. P: é 0] N
and the function e: P, xP,— [0, 1]
e(P%, Ply=max[f(P")—f(P?),0].
[t is easy to verify that ¢ is a fuzzy quasi-metric for X. Similarly, for the
dual scale {O}:de D} we can define the corresponding function f* and e*.

And e* is also a fuzzy quasi-metric for X.
We now prove that

e*(Pr. Py = (P! #,PL )
for every P2, PleP,. In fact, if P1e OF, then
S[¥(PY)=inf{d: P2 O}}
=inf{d: P*e 0. ,}
=inf{d: P\ * ¢ O, ,}
=1-sup{l—-d:P. *¢ 0, ,}
=1—inf{l—d: P, *€O,_,;=1-f(PL, ),

and if P*¢OpF, then f*(P*)=1 and P! *<=O,, f(P. *)=0. Hence
[*(PX)=1—f(P."*). Thus
e*(P%, PPy =max[f*(Pl)—f*(P3),0]
=max[ /(P *)—f(P."#),0]=e(P, "/, P.7%).

b
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For cvery > 0. we consider the subset of &, x>,

B, = {(P". P"):e(P. Ply<ui).
and
BX= (P> Pl):eX(PY, PP <i).
It is easy to see that B, ' = B*. Next, we shall prove that all B,, B*, ¢ > 0.
form a base of some fuzzy uniformity for X.
First, verify B, and B* satisfying conditions (C1), (C2).

(C1)y M (Px.PHYe B, and O< ' < fi. then e(PY, PPy<e(P?, Ply<e,
hence (P*. PP)e B,.

(C2) Let P*=1{, P*, we have to prove P/ =1{J, P¥, denoted by
sup B¥ = f%;if °> B*, then there is a / such that f* > f* and so there is
#.> B* Hence we have e(P*, PPy < e(P*, P%)<¢. This contradicts with
the definition of f*. If § < f8*, then ¢(P*, P'") <& On the other hand, for
any 2, e{ P, P’f') 2elP, P{’f ). By axiom (M2), we have

(P, PEY—o(P7. Py < e(PY, PP <ot P PTY)

From the definition of e, it follows immediately that

inf e( PY. P1)=0

and for cvery 4, i} >0, we have
(P, P(.fl') =&
Therefore

sup e( P, Ply=¢

and so e(P%, PM)>¢, which is in contradiction with the hypothesis
e(P%, P) <0, so that fi* =B’ =sup, fi*.
Similarly, we can prove B* satisfying (C1) and (C2).
Afterward, we verify B,, B*, £>0, satisfying axioms (Ul)}-(U3) and
(U4y'.
(Ul) Obvious.
(U2) For cvery B,, we have B, , B ,cB,; indeed, if (P}, Pi)e
B, B.,, then there is P/ such that (P}, P/)e B, ,, (P¥, Pi)e B, , hence
e(P%, Pi)<e(P%, PPy +e(PF, Pi)<us, ie., (P2, Pi)eB,, s0 B,,+ B, ,cB,.
(U3) Obvious.
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(U4)" For any B, and B,, we have B, B, n B,,, e =min(e,, ¢,). For
B¥*, a similar result can be obtained.
Thus all B,, B*, ¢>0. form a base of some fuzzy uniformity #%(A4, &, 7)
for X.
For all pair (P, A), P} € A, the union of #(A, ¢, y) forms a subbase of a
fuzzy uniformity. This fuzzy uniformity

U =sup{#U(A, ¢ ;) AeF, Pie A Pie P}
is exactly what we want to find. Now we need only to show [, =F, where
F, is a fuzzy topology for X induced by %.
(a) Fct,.
Indeed, for cvery A € F we have

A=) {0, PieO,c A PieP].

Given any de D and 0 <¢ <d. we can find a point P such that f(P%)=
d—¢, thus

B.(P?)= (P! max[ [(P})—f(P?).0] <]

U110, :d <f(P})+¢)

= U {0‘/':d’<({} CO(/‘
Since B,(P*)eF, and Pie B(P%), Ael, hence F b,

(b) F,cF.

It is sufficient to show that for any Pie 4 e, Pie P and &> 0 the fuzzy
sets B,(P>) and BX(P?) are the members of F. Since B.(P})=
U0, d<f(P*)+¢! and O,ef. thus B(PX)el. Similarly, we have
B*(PX)el, hence F,ct.

Necessity.  Suppose (X, F,) is a fuzzy uniform topological space. For
any A€, and point Pie A, we have to construct a scale of fuzzy open sct
10,:de D} such that Pie O,c 4 for every de D.

If AeF,. then there is Ue # such that

PieU(Pi)c A

Let U, e # be symmetric and U, - U, c U, by Theorem 6.7, we have

U\(PH)c U(PL)' < A,
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and U(P:)" is a ncighborhood of U,(P?). We can select a sequence ({5
n=1,2..} of symmetric members of # such that U’y ... Ly »...cl’s .
and U, U, cl,. For every diadic rational d=2 "+ - +
2 % 0<ny < - <nyg, we define

=Ly 0 Uy

If 0<d, <d,<1 then we can prove

U, o U,cl,.

By Theorem 6.7. for any point P%, we have
Uy(P) e U (P,

and U (P7) is a neighborhood of U, (P%). Let O,= U AP )°, then for any
pair of positive diadic rational ¢, <d,, we have O, <O, and O, is a
neighborhood of O,,. Thus {0,:de D} is a scale of fuzzy open scts and for
any de D we have PieO,c 4 hence (X.I,) is a fuzzy (T) space. The
theorem is proved.

A fuzzy (T) space is fuzzy regular and so a fuzzy uniform space is also
fuzzy regular.

Let ¢ be a fuzzy pseudo-metric, by the proof of the above theorem, we
see that the family {B,,:n=1.2...] of subsets of P x P, forms a coun-
table base of some fuzzy uniformity for X, so that each fuzzy pseudo-metric
induces a fuzzy uniformity #.. Conversely, we shall ask what is the con-
dition of a fuzzy uniformity being a fuzzy pseudo-metric uniformity? The
following theorem is exactly the answer to the question.

THEOREM 7.2, A fuzzy uniform topological space (X. #,) is a fuzzy
pseudo-metric space iff % has a countable hase.

Proof. Sufficiency. 1f % has a countable base, then we can select a
monotonous decreasing base (U, ~:n=0,1.2,..} such that U, ...
U, w.i c U, . (cf. Thcorem 7.1). Denoted by D the all diadic rational in
[0, 1], we can define U, e % for every de D such that for any d,, d,e D
and point P?, we have U, (P?)< U, (P?)°, and U, (P?)" is a ncighborhood
of U, (P3%).

Define a mapping e: P, x P, — [0, 1]

e(Pr. P¥y=infid: Pl c U (P} (P*. Pye U,
=1, (P Pl¢U,.

We shall prove that it is a fuzzy pseudo-metric for X.
First, the mapping e is continuous for membership grade. Indeed, for any
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¢>0 there is de D such that 0 <d<¢. Consider U,€ %, by axiom (U1),
there exists 6 >0 such that (P*, P**%)e U, for any fuzzy point PXeP,.
Hence, if B —x < then (P%, P#)e U, and so e(P*, P?)<d <, that is, the
mapping ¢ is continuous for membership grade.

Now we are going to verify ¢ satisfying the fuzzy pseudo-metric axioms:

(M1) Let PPc P*, by axiom (Ul) and property (C2), we have (P:,
P)e U, for any 0<d<D and (P* P')eU,. Since d>0 is arbitrary,
e(Px, PPy=0. '

(M2) Given any P*, PE PieP,. If e(P*, P¥)+e(P!, P7)= 1, then
e(P%, Pi)<e(P%, PP+ e( P!, P7). If e(P%, PP)+e(P!, Pi)< 1, then we can
select the suitable positive real numbers o, and &, such that
e(P*, P"Y+4d,=d,, e(P’, P)+d,=d,, d +d,<]1, d,,dyeD. Thus
(P*, PHye U, . (P, P))eU, and so (P%, P1)e U, U, c U, , . thatis,

e(P%, P1)<e(PY, Pl +e(P, P)+ 6, +0,.
Since 8,, 6, can be selected arbitrarily, hence
e(P*, P7)<e( P2, PP)+e( PV, Pi).

(M3) Since U,=U, ", deD, then (P*, P!)e U, is cquivalent with
(P! 5, P *)e U, hence

e(Px, Phy=e(P! 5, P! ).

Finally, we show [F.=0F,. In fact, they have the same base
‘U, (P*): P eP,on=12.}s0F.=t,.

Necessity.  Obvious.
From the above theorem, we obtain the following important result:

THEOREM 7.3. Let ¥, n=1,2,., he fuzzy pseudo-metric topologies for
X, then

c=sup{F,:n=12..]}
is also a fuzzy pseudo-metric topology.

THEOREM 7.4, Let U be a fuzzy uniformity for X, then there exists a
family of fuzzy pseudo-metric such that
4 =sup{,}.

Proof. Given any Ue # we can select a sequence{U,-..n=1,2,.,} of
symmetric members of # such that U, .cUand Uy win=Uy w.uc U, o



172 HU CHENG-MING
It is easy to sce that { U, .:n=1,2---} 1s a base of fuzzy uniformity #(U)
for X. Since U, 1< U' we have Ue #(U’). By Theorem 7.2, there is a fuzzy
pseudo-metric ¢ =¢(l’) for X, such that the corresponding fuzzy pscudo-
metric uniformity #,= #(U). Obviously #_ < #. hence sup{# |«
Conversely, for any U e #. there exists ¢ =¢( /) such that Ue #_ and so
Uesupl#,}, ic, #csup|#, . Thercforc # =sup|{#, .} and the theorem
1s proved.

In Theorem 7.2, if, in addition. # is separated. then the following fuzzy
metrization condition is casily obtained.

A fuzzy uniform space (X. T ,) is fuzzy metrizable iff # is separated and
has countable base.

VIII. Fuzzy METRIZATION THEOREM

DeriNiTioN 8.1, A family A of fuzzy sets in (X. F) is said to be fuzzy
locally finite iff every point P* e ¥ has a neighborhood U which is quasi-
coincident with at most a finite number of the members of 4. The family 4
is o-fuzzy locally finite iff it is the countable union of fuzzy locally finite
families.

THEOREM 8.1, If (A, 2e€ A} is a fuzzy locally finite family in (X, F).
then

Proof. 1t is sufficient to show that {J,. 4, <cJ;, ,4,. Given any
point P*c ;. A4, then every neighborhood of P! * is quasi-coincident
with ;. ;A4,. When O<x<1. P! *is a fuzzy point, and by the fuzzy
locally finite property of {A4,: 2e A}, P! * has a neighborhood ¥V which is
quasi-coincident with at most a finite number of 4,. i=1...n But V' is
quasi-coincident with | J,_ , 4,, hence V is certainly quasi-coincident with
cident with {J,_, , A4, . It is sufficient to show that its every neighborhood
which satisfies the condition U« V is quasi-coincident with {J, |, , 4,.
Indeed, if Uc ¥V, then U is probably only quasi-coincident with A4,
i=1l,..n But U and {J,, , A, are quasi-coincident, hence {/ and
U, 1.4, are certainly quasi-coincident. Thus we have proved every
neighborhood of P! *is quasi-coincident with J, |, , A, and so we have

P | 4,= 1 A4, | 4,
i,

i=1...n ' 4 s A
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When a =1, instead of P.=* by P°, 0<e< in the above discussion, we
have PL-*c|J;. 4 A4;, therefore P'.c|); 4 A;, and s0 ;s S U e 4;-

THEOREM 8.2. Suppose (X, F) is fuzzy regular and has o-fuzzy locally
finite base, then it is fuzzy normal.

Proof. Suppose closed fuzzy sets C and D are strong quasi-discoin-
cident, A", n=1, 2...., are locally finite families of open fuzzy sets and
A={A":n=1,2,.,} forms a base of (X, F). By the fuzzy regular of (X,
F), for any x, y€ X, there are A7 e A and 47 A" such that

PCYeAmc AT D,
PPYeqicAncC,
and D’ and (" are the neighborhoods ofA_(f' and A_’I’ respectively. Denoted
by
A= J{A7T: m=k},

A= J{An=k},

and let
Ok =Atndln - nAY.

k _ gk o~ A1~ K
Oh=AZnAl N - n AL,

L0¢ and Op=Uy- 1. 0}, are
quasi-discoincident, moreover O, and O, are the neighborhoods of C and
D, respectively. As a result of Theorem 4.10 the fts (X, F) is fuzzy normal.

THEOREM 8.3. If fts (X, F) is fuzzy regular and has o-fuzzy locally finite
base, then it is a fuzzy pseudo-metrizable space.

Proof. We construct a countable family of fuzzy pseudo-metric and
prove that the topology, which is generated by this family, is equal to F.

Let the natural numbers m and n be fixed. Given any 47€ A", we con-
sider the open fuzzy set

A,=J{A": A" e A" P(x, A7(x))e A7, xe X }.
since A" is fuzzy locally finite, 4, A7 and 4" is a neighborhood of A4,.

Since (X, F) is fuzzy regular and has o-fuzzy locally finite base, by
Theorem 8.2, it is also fuzzy normal. From Theorem 4.1, it follows that

209 1100412
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there exists a scale of fuzzy open sets {O,,:de D} such that A,c O, ,c A"
for any de D. We define mapping f,: P, — [0, 1]

fAP)y=mfld: P €0,,]. Peq,,
=1. P éo0,,.

and mapping g,: P, x P, - [0, 1]
g P>, P"y=max[ f(P!)—f(P?),0].

By the same reasoning as in the proof of Theorem 7.1, the mapping g, is a
fuzzy quasi-metric for X. Similarly, we can define /¥ and g* corresponding
to the dual scale ! 0F,:de D!. Of course, g¥ is also a fuzzy quasi-metric for
X.

Consider the mapping ¢,: P, x P, — [0, 1]

(PP =LgdPL PO + 82 (P PO,
note that
GHPL P =g (P PP )

we casily verify that the mapping ¢, is a fuzzy pseudo-metric for X. Let
el PE, PEY=suple (P2 PPy ATe A"},

we now prove that it is a fuzzy pscudo-metric for X.

When 2 <1 and ff <1 we consider points P! *. P! #_ and by the fuzzy
locally finiteness of A", there are, respectively, neighborhoods U, and U, of
P! *and P! #such that U, and U, are quasi-coincident with at most a
finite number of 47. Thus there are at most finite members of 47 such that
P*c A" or PP< A", that is, for only finitely many indices i we have
f(P*)<1of f(P?)< 1. Hence only for these i the inequalitics g,( P%, P#)#0
possibly hold.

When a=1 or f=1, we choose ¢ > 0 suitably small and substitute P or
Pifor P! *or P! # and the above discussion is still cffective. Therefore
there are at most finitely many indices such that g,(P?, P#) 0.

Note that g*(P%, P)=g(P' # P! *) once again, for any pair P?,
PfeP, therc arc only at most finitely many indices i such that
e P*, P!y#0. This shows that ¢,,, is a fuzzy pseudo-metric for X.

Now we have obtained a countable family of fuzzy pseudo-metric
Cpn:m=1,2,., n=1,2..}. Denote by F, the fuzzy pseudo-metric
topology which is generated by ¢,,,. By Theorem 7.3, the fuzzy topology

Fo=sup{F, m=12.,n=12.,}

is a fuzzy pseudo-metric topology for X. So we need only show F_ =F.
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(a) F,cF.

For this reason we must show that every ¢-open ball
B;(P;:)z U { P{} ()m_n(P::w Pl\;) <£;

is an F-neighborhood of point P% for any m, n. That is, we have to choose
an F-neighborhood N(P?*) of P* such that N(P*) < B,(P?).

We know that there exist at most finitely many indices /,,..., #, such that
fi(P) <1, f,(P%) < 1. In scales of fuzzy open sets, which have indices i,
[=1,.., k, respectively, we select O, , < 47 such that g,{ P, P#) <¢ for every

indy

PleQ, =1,k
And there is an F-open neighborhood U of P such that at most finite
numbers of 47 ..., A7, are quasi-coincident U. Let OF | < (4, ) such

that g¥ (P2, P’)<e for every PPe O}, I=1..J

Since O, 450 Opas OF L) 10 OF 4., are contained in F, the fuzzy
set
Ay — e * e *
NPH)=UnO, 40 N0, 4Ok 4. O NOY L u.,

is an F-open neighborhood of P} and for every Ple N(P}) we have
e,..P%, P!) <& Hence N(P?) < B,(P3), ic., B,(P%) is an F-neighborhood of
P>. Therefore F,c F.

(b) FcF,.

Given any Be F and P*e B. Since (X, F) is fuzzy regular and has o-fuzzy
locally finite base A ={J{A":n=1,2,..} there exist A7 A" A7 A" such
that

PfeA_;."c A7< B.
It follows that
P’LEA_;”C/TIC()“,C A'c B,

for every de D. If P? ¢ B, then f(P¥) = 1, hence e, ,,(P%, P%)= 1. This shows
that, if e, (P*, P’)<1, then PPe B and so B,(P>)< B. Therefore BeF,
andso Fct,.

THEOREM 84. If fis (X, F) is a fuzzy T, space and has o-fuzzy locally
finite base, then it is a fuzzy metric space.

Proof. Since fuzzy T, space is fuzzy regular, by Theorem 8.3, thc fts
(X,F) is a fuzzy pseudo-metric space. Hence we need only show the
corresponding fuzzy pseudo-metric e satisfying axiom (M4).
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For any point P*¢e P by Theorem 4.4 on fuzzy T, space, we have

=\ !B(P):e>0..

Therefore for any point P/ ¢ P there is B,(P}) such that PV & B.(P7) and
50 e(P*, P#)> 0. For any P’e P*, v # x, consider (P'), it is an open fuzzy
set and P*e(P.). Thus there is £>0 such that B,(P2)c (P'). and it
follows e{ P, Pﬂ‘) = ¢> 0. Similarly. we can prove ¢( P%, Py >0 for any P!.
xeX, and PPe P, P/+# PY. This shows that ¢ satisfies axiom (M4).

Corresponding to S-neighborhood, we have introduced the concept of S-
cover and S-compact [6].

A family C of fuzzy sets in (X.[) is called an S-cover of fuzzy set A iff
every P(x. A(x))e P, has a neighborhood germ N7} and there is a CeC
such that

P(x. A(x))e N* = C.

A fuzzy set A is said to be S-compact iff each of its S-covers has finite S-
subcover. A fts (X, F) is said to be S-compact if the fuzzy set 1, 1s S-com-
pact.

A family D of fuzzy sets is called a refinement of an S-cover C iff D is
also S-cover and for any De ) there exists C e C such that Dc C.

DeFINITION 8.2, A fts (X, F) is called S-paracompact iff its every S-
cover has a fuzzy locally finite refinement.

THEOREM 8.5, If a fis (X. F) is S-paracompact then its initial topological
space (X, (FY) is paracompact.

Proof. Suppose % ={U: UelF)} is an open cover of (X, «(F)), then
(N,.:Ue} is an S-cover of (X, F) and it has a fuzzy locally finite
reﬁncmenl YA, 2eAt. Let W, =0,(A4;) then {W;: e A} is a locally finite
refinement of #.

A fts (X, ) is called a product-induced S-paracompact 7' space if it is a
product-induced space (X, . ,,) and its initial topological space (X, :(F))
is a paracompact T, space.

THEOREM 8.6. A fts (X, t) is u product-induced S-paracompact T spuce
iff it is an S-paracompact and ST, space.

Proof.  Sufficiency. We need only to prove that for any fundamental
fuzzy set N} and poinl P e N7 there exists an open fuzzy set Be ¥ such

X0

that P e B B, ie, N}, because all N7 forms a base of ¥, .

xp

Since (X, F)is an ST3 space. there are open fuzzy sets D and G such that
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%y < D(xg)<a, PeGcGe D and D is an S-neighborhood of G. Given
any real number 7 satisfying inequality G (x,) <7 < D(x,). Since G is an
upper semicontinuous function in (X, 1(F)), there is a neighborhood W of
X, such that G(x) <7y for every xe W. Let V'=Un W, then the points P}
and P!, xe X~ V, are strong quasi-discoincident. Using a similar way of
proof as for Theorem 4.9, we can prove that there exist quasi-discoincident
open fuzzy sets B, and A, such that P, e N}, c A, and P\ eN; cB,,
where N}, and N, are the neighborhood germs of P, and P.. respectively.
Since open fuzzy sets B, and A, are not quasi-coincident, for any xe X~V
we have B (x,)=0. Obviously, the family B={B,:xe X~ V} is an S-
cover of fuzzy set 1,_,. Since (X, F) is s-paracompact and X~V is a
closed subset of X, we can prove that the S-cover B of 1,_, has fuzzy
locally finite refinement {4,: i€ A}. By Theorem 8.1, we have

U A/-_= U /Z;_.
/6.1 rc A

Since for any A, there exists B, such that 4, < B, it follows that 4,(x)=0
and so

[U A ) (xy) = U z;_(lo)=0~
rc A e A
Let A=(,.4A4,), then 65(4)= V and A(x,)=1.
Let B=ANG, then we have PPe B< Ny, and this shows F=F ;,,,
7 =1(F). By Theorem 8.5, the fts (X, F) is a product-induced S-paracom-
pact Ty space (X, F ;. p)

Necessity. If (X, F) is a product-induced S-paracompact T, space, then
(X, 1(F)) is a paracompact 7, space. By Theorems 4.13 and 8.5, (X, F) is an
ST, and S-paracompact space.

THEOREM 8.7. A fis (X, F) is a product-induced fuzzy metric space (X,
F,,.q) il it s an ST;, S-paracompact fts and the initial topology 1(F) = 7,
has a-locally finite base.

Proof. Sufficiency. Since fts (X, F) is S-paracompact and ST;, by
Theorem 8.6, it is a product-induced S-paracompact spacc. From (X, F)
being an ST, space it follows that the (X, i(F)) is a T; spacc. Therefore (X,
1(F)) is a metric space and so (X, F)is a product-induces fuzzy metric space
(X, lFJ',/x(),)ﬂ Ty=1(F).

Necessity.  Obvious.
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