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We give a sufficient condition for a finitely presented Rees quotient of a free
inverse semigroup to have rational growth. Using related techniques we give a new
proof that nonmonogenic free inverse semigroups have irrational growth. A new
criterion for polynomial growth is proved and is used to show that polynomial
growth implies rational growth. However we give an example of such a semigroup
which has rational and exponential growth. Q 1998 Academic Press

1. INTRODUCTION

w xIn 2 Easdown and Shneerson initiated the study of growth of finitely
presented Rees quotients of free inverse semigroups. Growth was known
to be polynomial or exponential for semigroups from this class and an

walgorithm was given to recognise which type of growth occurred 2, Section
x Ž .3 . In Theorem 4.8 we give a sufficient condition for rational growth,

which is used in Section 5 to show that polynomial growth implies rational
growth. Other sufficient conditions for rational growth are given in Propo-

Ž . Ž . w xsition 4.10 and Theorem 5.5 . Brazil 1 showed that nonmonogenic free
inverse semigroups have irrational growth, using techniques from func-
tional analysis. We give a new proof of this result in Section 3.

2. PRELIMINARIES

We assume familiarity with the basic definitions and the elementary
w xresults from the theory of semigroups, which can be found in 4 . Let S be
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Ž .a semigroup generated by a finite subset X. Recall that the length l t of
Ž .an element t g S with respect to X is the least number of factors in all

representations of t as a product of elements of X. Let

<g m s t g S l t F m .� 4Ž . Ž .S

We say that S has polynomial growth if there exist natural numbers q and
d such that

g m F qmd ,Ž .S

for all natural numbers m, and exponential growth if there exists a real
number a ) 1 such that

g m G a m ,Ž .S

w xfor all sufficiently large m. It is clear that if S has polynomial exponential
growth with respect to a given finite set of generators then it has polyno-

w xmial exponential growth with respect to any finite set of generators.
Clearly, if S contains a noncyclic free subsemigroup then S has exponen-
tial growth.

The growth series of S with respect to X is defined to be the usual
Ž .generating function for the sequence g m ,S

`
mg z s g m z .Ž . Ž .ÝS S

ms0

Ž .A semigroup S is said to have rational growth if g z is a rational functionS
of z for some choice of X. In this paper it is more convenient to work with
a slightly different series. We define a sequence,

<h m s t g S l t s m ,� 4Ž . Ž .S

Ž . Ž . Ž .and let h z be its generating function. Because clearly h m s g mS S S
Ž .y g m y 1 , we haveS

h z s 1 y z g z .Ž . Ž . Ž .S S

Ž .Therefore S has rational growth if and only if h z is a rational functionS
of z.

Throughout this paper we shall denote the subring of rational functions
ww xx ww xx ww xx ww xx Ž .in R z by Rat z , that is, Rat z s R z l R z . An element in

ww xx Ž . Ž . Ž . Ž .Rat z can be written as p z rq z for some polynomials p z and q z
Ž .such that q z has nonzero constant term. It can be easily checked that

ww xxU ww xx ww xxU ww xxRat z , the group of units of Rat z , is precisely R z l Rat z , the
ww xxelements in Rat z whose series expansions have nonzero constant term.
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Let A be a finite alphabet. We denote the free semigroup and the free
inverse semigroup over A by F and FI , respectively. Equality in F isA A A
denoted by @ . Recall that a word w is reduced if w does not contain
xxy1 as a subword for any letter x g A j Ay1.

Recall that elements of FI may be regarded as birooted word trees, theA
w x Žterminology and theory of which are explained in 4, Chapter 2 see also

w x. y12, Section 2 . Thus if u g F , then regarded as an element of FI , uAj A A
may be represented as a birooted tree,

w u s T u , a u , b u .Ž . Ž . Ž . Ž .Ž .

Ž . Ž .Recall that u is an idempotent of FI if and only if a u s b u . Given aA
Ž .birooted word tree B s T , a , b , we shall adopt the following notation:

Ž . Ž . � Ž . < 4i e B s max d a , ¨ ¨ g T ,
Ž . < Ž < . <ii for m g N, B s T , a , a , where T is the subtree of Tm m m

obtained by deleting all vertices of distance greater than m away from a ,
and all edges incident on such vertices.

It is often convenient to adjoin an identity called 1 to FI and adopt theA
Ž . Ž . Ž .convention that l 1 s 0 and w 1 s (, (, ( , the null birooted tree

consisting of one vertex.
Ž . Ž .Given two trees B s T , a , b and B s T , a , b , define B [ B1 1 1 1 2 2 2 2 1 2

Ž .s T , a , b where T is the word tree obtained by ‘‘pasting’’ T and T1 2 1 2
together, identifying b with a and then further identifying any isomor-1 2
phic paths from the common vertex b s a . Note that B [ B s1 2 1 2
Ž y1Ž . y1Ž ..w w B w B .1 2

Ž .A birooted word tree T , a , b on A is said to be planted if it is null or
Žif it is nonnull and a is a leaf of the tree that is, a is adjacent to exactly

.one vertex of T . We shall refer to a birooted word tree which is planted
simply as a planted tree.

Ž .Given a nonnull planted tree P s T , a , b , we shall adopt the follow-
ing notation:

Ž . Ž .i g P is the unique vertex of T adjacent to a ,
Ž . Ž .ii the label of P, denoted by label P , is the label of the edge
Ž .a ª g P .

Ž . Ž .Let P s T , a , a and P s T , a , a be two planted trees repre-1 1 1 1 2 2 2 2
Ž . Ž . Ž .senting idempotents, with P / w 1 . If P s w 1 , or label P /1 2 1

Ž .y1 Ž .label P , then define P (P to be the planted word tree T , a , a ,2 1 2 1 1
where T is the word tree obtained by pasting T and T together, by1 2

Ž .identifying g P with a and then by further identifying any isomorphic1 2
Ž .paths from the common vertex g P s a . The reader can easily verify1 2

that order is unimportant where the operation ( is iterated.
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Let P be a planted tree representing an idempotent with label x. Then
P can be uniquely expressed in the form

P s w x [ P [ ??? [ P [ w xy1 ,Ž . Ž .1 s

where s G 0, P , . . . , P are nonnull planted trees with distinct labels, and1 s
Ž . y1for each i, P represents an idempotent and label P / x . We shall calli i

P , . . . , P and the null tree the components of P.1 s

3. FREE INVERSE SEMIGROUPS

w xIn this section we give a new proof of a result due to Brazil 1 , that the
growth series for FI is irrational if and only if n G 2. While being� x , . . . , x 41 n

an interesting result in its own right, the proof also illustrates some
counting techniques employed in the next section.

� 4 1Let A s x , . . . , x . As was mentioned earlier, elements of S s FI1 n A
Ž .can be regarded as birooted word trees. We will ‘‘build’’ the series h zS

from the growth series for certain types of idempotents.
For x g A j Ay1, define the sets,

� 4A x s e g E S w e is a planted tree with label x j 1 ,� 4Ž . Ž . Ž .
B x s u g S _ E S w u is a planted tree with label x .� 4Ž . Ž . Ž .

By symmetry, for any given natural number m, the integers,

a s e g A x l e s m and b s u g B x l u s m� 4 � 4Ž . Ž . Ž . Ž .m m

are independent of x. Denote the generating functions of the correspond-
Ž . Ž .ing sequences by a z and b z , respectively.

Ž . Ž .Now clearly a s 1 and a s 0. Suppose m G 2. If e g A x and l e s0 1
m, then

w e s w xxy1 ( w e ,Ž . Ž . Ž .y y

Ž y1 . � y14 Ž .where y ranges over A j A _ x , e is some element of A y fory
Ž .each y, such that Ýl e s m y 2. Therefore,y

a s a ??? a for m G 2.Ým m m1 2 ny1
m q ??? qm smy21 2ny1
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Translating into generating functions, this gives

2 ny1 m ma z s a ??? a z s a z ,Ž . Ý Ý Ým m mq21 2 ny1ž /
m q ??? qm smmG0 mG01 2ny1

and hence,

2 ny12z a z s a z y 1. 1Ž . Ž . Ž .

Ž .Next we turn to deriving an identity for b z . Clearly b s 0. Suppose0
Ž . Ž . Ž . Ž .m G 1, u g B x and l u s m. There are two possibilities. If b u s g u ,

then

w u s w x [ w eŽ . Ž . Ž .y y

Ž y1 . � y14 Ž . Ž .where y ranges over A j A _ x , e g A y for each y, and Ýl ey y
Ž . Ž . X Ž y1 . � y14s m y 1. If b u / g u , then there is an x g A j A _ x such

that

w u s w x [ w e [ w uX ,Ž . Ž . Ž . Ž .Ž .y y

Ž y1 . � X y14 Ž . Xwhere y ranges over A j A _ x , x , e g A y for each y, u gy
Ž X. Ž X. Ž .B x , and l u q Ýl e s m y 1. Because there are 2n y 1 choices fory

xX, we get

b s a ??? a q 2n y 1 a ??? a bŽ .Ým m m m m m1 2 ny1 1 2 ny2 2 ny1
m q ??? qm smy11 2ny1

s a q 2n y 1 a ??? a b ,Ž . Ýmq 1 m m m1 2 ny2 2 ny1
m q ??? qm smy11 2ny1

and hence,

12 ny2b z s 2n y 1 za z b z q a z y 1 . 2Ž . Ž . Ž . Ž . Ž . Ž .Ž .
z

Ž . Ž .Finally suppose u g S and l u s m. Again we have two cases. If a u s
Ž .b u , then

w u s [ w e ,Ž . Ž .y1 yy g Aj A

Ž . Ž . Ž . Ž .where e g A y for each y, and Ýl e s m. If a u / b u , then therey y
is an x g A j Ay1 such that

w u s [ w e [ w uX ,Ž . Ž . Ž .yž /y
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Ž y1 . � 4 Ž . X Ž .where y ranges over A j A _ x , e g A y for each y, u g B x ,y
Ž X. Ž .and l u q Ýl e s m. Because there are 2n choices for x, we gety

h m s a ??? a q 2na ??? a b ,Ž . ÝS m m m m m1 2 n 1 2 ny1 2 n
m q ??? qm sm1 2n

for all m G 0. Therefore,

2 ny1h z s a z 2nb z q a z . 3Ž . Ž . Ž . Ž . Ž .Ž .S

Ž .We can now show that h z is irrational if n G 2. The result dependsS
on the following lemmas.

Ž . Ž . ww xx Ž . s Ž . t3.1 LEMMA. Suppose that f z g R z and f z y 1 s z f z for
Ž .some integers s G 1, t G 2. Then f z is irrational.

Ž . Ž . Ž . Ž . Ž .Proof. Suppose f z s p z rq z for some polynomials p z and q z .
Ž . Ž .We can assume that p z and q z have no nonconstant common factors

w xin R z . Then
t ty1sz p z s q z p z y q z .Ž . Ž . Ž . Ž .Ž .

Ž . s Ž . t w x Ž .Thus q z divides z p z in R z . Because q z has a nonzero constant
Ž ww xx.term see comments following the definition of Rat z , it has no common

s Ž . Ž .factor with z either. Therefore q z is a constant and f z is a polyno-
Ž .mial. Considering the degrees of the polynomials on both sides of f z y

s tŽ .1 s z f z , this is easily seen to be impossible.

Ž . Ž . ww xx3.2 LEMMA. Suppose that f z g R z and for some natural number t
Ž . Ž . ww xxthere exist a z , b z g Rat z such that

tza z f z s f z q b z .Ž . Ž . Ž . Ž .
Ž . ww xxSuppose also that for some natural number k G 1, there exist g z g Rat zi

such that
ky1

k if z s g z f z .Ž . Ž . Ž .Ý i
is0

Ž . ww xxThen f z g Rat z .

Proof. If t F 1 or k s 1 then one of the preceding equations will imply
Ž . ww xxthat f z g Rat z . So we can assume k, t G 2.

ww xx ww xxUsing the fact that Rat z is a subring of R z , it can easily be shown
by induction that for all m G k,

ky1
m if z s f z f z ,Ž . Ž . Ž .Ý i

is0
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Ž . ww xxfor some f z g Rat z . In particular,i

ky1
kq ty2 if z s h z f z ,Ž . Ž . Ž .Ý i

is0

Ž . ww xxfor some h z g Rat z . Therefore,i

ky1
ky1 ky2 kqty2 if z q b z f z s za z f z s za z h z f z ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý i

is0

and, rearranging the terms,

ky2
ky1 i ky21 y za z h z f z s za z h z f z y b z f z .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ýky1 i

is0

Ž . Ž . ww xxUNow 1 y za z h z has a nonzero constant term, and so is in Rat z .ky1
Therefore,

ky2
ky1 iXf z s g z f z ,Ž . Ž . Ž .Ý i

is0

XŽ . ww xxfor some g z g Rat z . We can repeat the process and decrement ki
each time until we get to the case k s 1.

Ž .3.3 THEOREM. FI has irrational growth if and only if n G 2.� x , . . . , x 41 n

Ž .Proof. Suppose n G 2. From 2 we have

2 ny2b z z 1 y 2n y 1 za z s a z y 1.Ž . Ž . Ž . Ž .Ž .
Ž . Ž .Multiplying both sides by a z and using 1 , this becomes

b z za z y 2n y 1 a z y 1 s a z a z y 1 .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .
Ž . Ž .Putting this into 3 and using 1 again gives

h z z 2 za z y 2n y 1 a z y 1Ž . Ž . Ž . Ž .Ž .Ž .S

s a z y 1 a z 2n a z y 1 q za zŽ . Ž . Ž . Ž .Ž . Ž .Ž
y 2n y 1 a z y 1Ž . Ž .Ž . .

s a z y 1 a z a z y 1 q za z .Ž . Ž . Ž . Ž .Ž . Ž .
Ž .Suppose that h z is rational. Then by rearranging the previous equation,S

Ž . Ž .31 q z a z can be expressed in the form,

2g z a z q g z a z q g z ,Ž . Ž . Ž . Ž . Ž .2 1 0
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Ž . ww xx ww xxU Ž .3for some g z g Rat z . Because 1 q z g Rat z , a z can also bei
Ž . Ž . Ž . ww xx Ž .expressed in this form. By 1 and Lemma 3.2 , a z g Rat z . But by 1

Ž . Ž .and Lemma 3.1 , a z is irrational, which yields a contradiction. Therefore
Ž .h z cannot be rational.S

Ž . Ž .For n s 1, the Eqs. 1 ] 3 still hold, and

1 1
a z s and h z s .Ž . Ž .S2 31 y z 1 q z 1 y zŽ . Ž .

Ž .We showed that, in the case of free inverse semigroups, h z can beS
Ž .built out of the growth series a z for certain idempotents, and the

Ž . Ž .rationality of h z depends on that of a z . This motivates the generalS
construction in the next section.

4. RATIONAL GROWTH

In this section we give a sufficient graphical condition for a Rees
quotient of a finitely generated free inverse semigroup by a finitely
generated ideal to have rational growth series. Along the way we shall

Ž .build h z from some component series, and give an algorithm for doingS
so.

First we review some terminology from graph theory. A cycle in a
directed graph is a path which starts and finishes at the same vertex. By a
loop at a ¨ertex ¨ we mean a cycle which begins at ¨ using no other vertex
more than once. If there is a path from u to ¨ , we say the vertex u is
reachable from ¨ . The strongly connected components of a directed graph
are the equivalence classes of vertices under the ‘‘are mutually reachable’’
relation.

Let M denote the class of finitely presented inverse semigroups SFI
with zero having a presentation of the form,

² < :S s A c s 0 for i s 1, . . . , k ,i

where A is some finite alphabet, k is some nonnegative integer, c gi
F y1 for i s 1 to k. Then M is precisely the class of Rees quotientsAj A FI
of finitely generated free inverse semigroups by finitely generated ideals.

y1 � 4We shall write A j A s x , x , . . . , x and we shall put1 2 2 n

< < <d q 1 s max 3, c i s 1, . . . , k ,� 4i

< < y1where c denotes the length of c with respect to F . By ouri i Aj A
w xdefinition, d G 2. This is a slight modification of the convention in 2 ,

where it is assumed d G 1. The reasons for this definition are given in the
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Ž .remarks following Theorem 4.8 . Also we have the following useful
criterion, which lies behind much of the proofs which follow and ensures
the words we count are not zero in the semigroup.

Ž . Ž .y14.1 LEMMA. Let w g F . Then w s 0 in S if and only if T wAj A
Ž .contains T c as a subtree for some i.i

We will now define a directed graph G
X , depending on the presentationS

of S, called the word tree graph of S:

Ž . X Ž .i the vertices of G are planted trees P s T , a , a on A satisfy-S
Ž . y1Ž .ing the properties that e P s d and w P is nonzero in S;

Ž . <ii there is a directed edge from vertex P to vertex Q if Q is ady1
y1Ž .component of P and w P(Q is nonzero in S.

< Ž . Ž .y1Note that if Q is a component of P, then label P / label Q , sody1
Ž . <P(Q is defined. Furthermore P(Q s P.d

X Ž X . Ž X .Denote the set of vertices of G by V G . For P g V G , defineS S S

X X X XV P s P g V G P ª P is an edge in G ,� 4Ž . Ž .S S

X XV P s P g V P label P s x , for i s 1, . . . , 2n.� 4Ž . Ž . Ž .i i

Here the label of a vertex in G
X is simply its label as a planted tree.S

X Ž .For each vertex P in G define A P to be the set of u g FI such thatS A
Ž . Ž . <u is nonzero in S, and w u is a planted word tree with w u s P. Ford

r, m g N put

A P , r , m s u g A P l u s m , d a u , b u s r ,� 4Ž . Ž . Ž . Ž . Ž .Ž .

and

B P , m s u g A P l u s m , d a u , b u ) 0 .� 4Ž . Ž . Ž . Ž . Ž .Ž .
Ž . < Ž . < Ž . < Ž . <Let a P, r, m s A P, r, m and b P, m s B P, m . Denote their gen-

Ž .Ž . Ž .Ž .erating functions by a P, r z and b P z , respectively.
Let P be a vertex of G

X with label x . Then P can be uniquelyS j
expressed in the form,

P s w x [ P [ ??? [ P [ w xy1 ,Ž . Ž .j 1 2 n j

where P is null for k such that x s xy1 and, for each i, either P is nullk k j i
Ž .or P is a planted tree with label x . For 1 F i F 2n, let c P, i, r, mi i

Ž . Ž .denote the number of planted trees B s T , a , b such that T , a , a s P ,i
Ž . Ž y1Ž ..d a , b s r, and l w B s m. Define the polynomials,

c P , i , r z s c P , i , r , m z m .Ž . Ž . Ž .Ý
mG0



RATIONAL GROWTH OF INVERSE SEMIGROUPS 415

Ž . Ž .Ž .Because e P - d for each i, it is clear that c P, i, r z s 0 wheneveri
r G d.

Ž .In the following propositions we shall construct h z as an element ofS
Ž Ž .Ž . < Ž X ..Q z, a P, 0 z P g V G , the set of rational functions of z and theS

Ž .Ž .Ž Ž X ..series a P, 0 z P g V G . The proofs actually give an algorithm forS
doing so.

Ž . X4.2 PROPOSITION. For each ¨ertex P in G ,S

2n
X2a P , 0 z s z c P , i , 0 z q a P , 0 z ,Ž . Ž . Ž . Ž . Ž . Ž .Ł Ý½ 5

Xis1 Ž .P gV Pi

2n
Xa P , 1 z s z c P , i , 0 z q a P , 0 z ,Ž . Ž . Ž . Ž . Ž . Ž .Ł Ý½ 5

Xis1 Ž .P gV Pi

and for all natural numbers r G 2,

2n
Xa P , r z s z c P , j, r y 1 z q a P , r y 1 zŽ . Ž . Ž . Ž . Ž . Ž .Ý Ý½ 5

Xjs1 Ž .P gV Pj

= c P , i , 0 z q a PX , 0 z .Ž . Ž . Ž . Ž .Ł Ý½ 5
Xi/j Ž .P gV Pi

Ž X . Ž .Proof. Let P g V G . Without loss of generality assume label P s xS 1
and xy1 s x . Thus,1 2 n

P s w x [ P [ ??? [ P [ w xy1 ,Ž . Ž .1 1 2 ny1 1

where for each i, either P is null or P is a planted tree with label x .i i i
We will first consider the case when r G 2, which is more complicated.

Ž . Ž . Ž .Clearly a P, r, 0 s a P, r, 1 s 0. Consider an element u of A P, r, m
Ž . <for m G 2. Because w u s P, for some 1 F j F 2n y 1,d

w u s w x [ w e [ ??? [ w eŽ . Ž . Ž . Ž .1 1 jy1

[ w e [ ??? [ w e [ w uX ,Ž . Ž . Ž .jq1 2 ny1

Ž . Ž X.where Ýl e q l u s m y 1, andi

Ž . Ž X Ž .. X Ž .i for each i / j, either e g A P , 0, l e for some P g V P ori i i
Ž .w e s P ,i i

Ž . X Ž X Ž X.. X Ž . Ž X.ii either u g A P , r y 1, l u for some P g V P or w u sj
Ž . Ž . Ž .T , a , b with T , a , a s P and d a , b s r y 1.j
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Therefore,

2ny1

a P , r , m s c P , j, r y 1, mŽ . Ž .Ý Ý j½
js1 m q ??? qm smy11 2ny1

q a PX , r y 1, mŽ .Ý j 5
X Ž .P gV Pj

= c P , i , 0, m q a PX , 0, m .Ž . Ž .Ł Ýi i½ 5
Xi/j Ž .P gV Pi

ŽTranslating into generating functions gives the formula we want. Note
Ž .Ž .that, by our assumption at the beginning of this proof, c P, 2n, 0 z s 1,

Ž . Ž . .c P, 2n, i s 0 if i G 1, and V P s B.2 n
Ž .We now consider the case when r s 1. Clearly a P, 1, 0 s 0. Consider

Ž . Ž . <an element u of A P, 1, m for m G 1. Because w u s P,d

w u s w x [ w e [ ??? [ w e ,Ž . Ž . Ž . Ž .1 1 2 ny1

Ž . Ž X Ž ..where Ýl e s m y 1, and for each i, either e g A P , 0, l e for somei i i
X Ž . Ž .P g V P or w e s P . Therefore,i i i

a P , 1, mŽ .
2ny1

Xs c P , i , 0, m q a P , 0, m .Ž . Ž .Ý Ł Ýi i½ 5
Xis1m q ??? qm smy1 Ž .P gV P1 2ny1 i

The formula for r s 1 now follows. The case for r s 0 is similar.

Ž . Ž X .4.3 PROPOSITION. For all P g V G ,S

X X Xb P z g Q z , a P , 0 z P g V G .Ž . Ž . Ž . Ž . Ž .Ž .S

Ž X . � 4 Ž .Ž .Proof. Write V G s P , P , . . . , P . Because c P, i, r z s 0 when-S 1 2 t
ever r G d, from the previous proposition,

t

a P , r z s zf z a P , r y 1 z ,Ž . Ž . Ž . Ž .Ž .Ýi i j j
js1

Ž . w Ž .Ž . < Ž X .xfor all r ) d, where f z g Q z, a P, 0 z P g V G are some seriesi j S
Ž .independent of r. Let M be the t = t matrix with entries zf z . By thei j

Hamilton]Cayley theorem,

M t q f z M ty1 q ??? qf z M q f z I s 0,Ž . Ž . Ž .ty1 1 0
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Ž . t Ž . ty1 Ž .where c Y s Y q f z Y q ??? qf z is the characteristic poly-M ty1 0
nomial of M, and I is the t = t identity matrix. Applying both sides to the

w Ž .Ž .xtcolumn vector a P , r z , we get thati is1

a P , rq t z q f z a P , rq ty1 z q???qf z a P , r z s0,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .ty1 0

Ž X . Ž .Ž . Ž .Ž .for all P g V G , and for all r G d. Because b P z s Ý a P, r z ,S r G1

1 q f z q ??? qf z b P zŽ . Ž . Ž . Ž .Ž .ty1 0

Ž . Ž X .Ž . X Ž X .is a polynomial in f z and a P , r z for P g V G and r F d q t. Nowi S
w Ž .Ž . < Ž X .xeach entry in the matrix M is an element of Q z, a P, 0 z P g V GS

Ž .with zero constant term, therefore each f z is also. Thus,i

X1 q f z q ??? qf z g Q z , a P , 0 z P g V G ,Ž . Ž . Ž . Ž . Ž .ty1 0 S

ww xx Ž X .Ž .and is invertible in Q z . From the previous proposition, each a P , r z
Xw Ž .Ž . < Ž .xis also in Q z, a P, 0 z P g V G . The result now follows.S

Ž . Ž . Ž Ž .Ž . < Ž X ..4.4 PROPOSITION. h z g Q z, a P, 0 z P g V G .S S

� 4Proof. Let P , . . . , P be a set of planted trees whose initial and1 2 n
y1Ž .terminal vertices coincide such that w P [ ??? [ P is nonzero in S,1 2 n

Ž . Ž .and for each i, e P F d and either P is null or label P s x . To controli i i i
Ž . � 4h z , it is enough to calculate for each such set of P , . . . , P theS 1 2 n

number of u g FI which are nonzero in S and satisfyA

w u s P [ P [ ??? [ P .Ž . d 1 2 2 n

Ž .Consider such an element u. If u g E S , then

w u s w e [ ??? [ w e ,Ž . Ž . Ž .1 2 n

Ž . Ž . Ž . Ž Ž ..where Ýl e s l u , and for each i, either w e s P or e g A P , 0, l ei i i i i i
Ž Ž X ..the latter can only occur if P g V G .i S

Ž .The contribution this makes to h z isS

a P , 0 z a P , 0 z ??? a P , 0 z ,Ž . Ž . Ž . Ž . Ž . Ž .1 2 2 n

Ž .Ž . Ž X . Ž .Ž .where a P, 0 z has its usual meaning when P g V G , and a P , 0 z sS i
lŽwy1ŽPi.. Ž .z otherwise. If u f E S , then for some 1 F j F 2n,

w u s w e [ ??? [ w e [ w e [ ??? [ w e [ w uX ,Ž . Ž . Ž . Ž . Ž . Ž .1 jy1 jq1 2 n

Ž . Ž X. Ž .where Ýl e q l u s l u , andi

Ž . Ž . Ž Ž .. Ži for each i / j, either w e s P or e g A P , 0, l e the latteri i i i i
Ž X ..can only occur if P g V G ,i S
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Ž . Ž X. Ž . Ž . Ž .ii either w u s T , a , b with T , a , a s P and d a , b ) 0, orj
X Ž Ž X.. Ž Ž X ..u g B P , l u the latter can only occur if P g V G .j j S

Ž .The contribution this makes to h z isS

b P z a P , 0 z ,Ž . Ž . Ž .Ž . Łj i
i/j

Ž .Ž . Ž .Ž . Ž X .where a P, 0 z and b P z have their usual meanings when P g V G ,S
and are some polynomials in z otherwise.

Ž . Ž .Ž .Therefore h z can be expressed as a polynomial in z, a P, 0 z , andS
XŽ .Ž . Ž .b P z , P g V G . The theorem now follows from the last proposition.S

Therefore, as an immediate corollary we have

Ž . Ž .Ž . Ž X .4.5 THEOREM. Suppose a P, 0 z is rational for each P g V G . ThenS
S has rational growth.

Ž . XTheorem 4.7 gives a condition on G which guarantees the hypothesisS
Ž .of Theorem 4.5 is satisfied. First we prove a lemma.

Ž . Ž . ww xx4.6 LEMMA. Suppose f z g Rat z has nonnegatï e coefficients. Then
Ž . Ž .f z has radius of con¨ergence R ) 0, and as x g R increases to R, f x

increases to `.

Ž . Ž . Ž . Ž . Ž . w xProof. Suppose f z s p z rq z , where p z , q z g R z have no
Ž .nonconstant common factors. Let z , . . . , z g C be the roots of q z .1 s

Ž . � < < < <4Then f z has a positive radius of convergence R s min z , . . . , z . Let1 s
< <R s z , say.i

Ž . Ž .Suppose f R converges. Because f z has nonnegative coefficients, for
< < Ž . < Ž . < Ž . < <each z with z F R, f z converges and f z F f R . But if z - R and

< Ž . <z approaches z , p z is bounded below by a positive real number andi
Ž . < Ž . < Ž .q z ª 0, so f z is not bounded. This contradiction shows that f R

must diverge.

Ž . Ž .Ž . ww xx Ž X .4.7 THEOREM. a P, 0 z g Rat z for each P g V G if and only ifS
G

X does not contain a ¨ertex P such that P is in two cycles,S

P ª P ª ??? ª P ª P and P ª PX ª ??? ª PX ª P ,1 s 1 t

Ž . Ž X .with label P / label P .1 1

Proof. Let V , . . . , V be the strongly connected components of G
X ,1 t S

ordered so that the vertices in V are reachable from the vertices in V onlyi j
if i F j.

We shall prove the ‘‘if’’ part by induction. Suppose that the condition on
X Ž .Ž . ww xxG holds. Suppose a P, 0 z g Rat z for all vertices P g V jS 1

Ž .V j ??? j V . So k s 0 initially.2 k
� 4Let V s P , . . . , P . Because the vertices in V are mutuallykq1 1 s kq1

X X Ž . Y Ž .reachable, the condition on G implies that if P g V P and P g V PS i j
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X Y Ž X . Ž Y .for some P, P , and P in V , then label P s label P and so i s j.kq1
Ž .Ž . Ž .By the formula for a P, 0 z in Proposition 4.2 and the inductive

Ž . Ž . ww xxhypothesis, there are functions g z , f z g Rat z such thati i j

s
2a P , 0 z s z g z q f z a P , 0 z ,Ž . Ž . Ž . Ž . Ž .Ž .Ýi i i j jž /

js1

for each i. Let M be the matrix with entries,

1 y z 2 f z , if i s j; andŽ .i j
M si j 2½ yz f z , if i / j.Ž .i j

Then
ss 2M a P , 0 z s z g z .Ž . Ž . Ž .i iis1 is1

ww xxUBecause det M clearly has constant term 1, det M g Rat z and M is
ww xx Ž .Ž .invertible in the ring of s = s matrices over Rat z . Therefore a P, 0 z

ww xx Ž .Ž . ww xxg Rat z for all P g V . By induction on k, a P, 0 z g Rat z forkq1
Ž X .all P g V G .S

Ž X .Conversely, suppose P g V G is in two cycles,S

P ª P ª ??? ª P ª P and P ª PX ª ??? ª PX ª P ,1 s 1 t

Ž . Ž X . Xwith label P / label P . It is easy to check, by the definition of G , that1 1 S
Ž Ž .. X Ž Ž X..if u g A P, 0, l u and u g A P, 0, l u , then

wy1 P( P ( P ( ??? ( P (w u ???Ž .Ž .Ž .Ž .Ž 1 2 s

( PX
( PX

( ??? ( PX
(w uX

???Ž .Ž .Ž .Ž . .1 2 t

Ž Ž . Ž X. .is in A P, 0, l u q l u q l , for some positive integer l which is indepen-
dent of u and uX. Thus for m G l,

a P , 0, m G a P , 0, i a P , 0, j .Ž . Ž . Ž .Ý
iqjsmyl

Therefore,

2l la P , 0 z y z a P , 0 z s a P , 0 z 1 y z a P , 0 zŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
is a power series with nonnegative coefficients.

Ž .Ž . ww xxSuppose a P, 0 z g Rat z and has radius of convergence R. Be-
Ž .Ž .cause a P, 0 z has nonnegative coefficients, as x increases to R,

Ž .Ž . Ž . l Ž .Ž .a P, 0 x ª ` by Lemma 4.7 , contradicting that 1 y x a P, 0 x G 0.
Ž .Ž . ww xxTherefore a P, 0 z f Rat z .
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Ž .Combining this with Theorem 4.5 gives a sufficient graphical condition
for rational growth.

Ž . X4.8 THEOREM. Suppose G does not contain a ¨ertex P in two cycles,S

P ª P ª ??? ª P ª P and P ª PX ª ??? ª PX ª P ,1 s 1 t

Ž . Ž X .with label P / label P . Then S has rational growth.1 1

It is an open problem whether the converse of the theorem holds also.
We conclude this section with a few remarks on the definitions of d and

G
X . The fact thatS

< < <d q 1 F max c i s 1, . . . , k� 4i

X X Ž X. y1Ž Ž ..ensures that if P ª P is an edge in G and u g A P , then w P(w uS
X Y Ž .is nonzero in S. The fact that d G 2 ensures that if P , P g V P have

y1ŽŽ X. Y .different labels, then w P(P (P is nonzero in S. These two obser-
Ž .vations, easily seen using Lemma 4.1 , lie behind many of the proofs.

X Ž .For each natural number i G 1 we now define a directed graph G i asS
follows:

Ž . X Ž . Ž .i the vertices of G i are planted trees P s T , a , a on AS
Ž . y1Ž .satisfying the properties that e P s i and w P is nonzero in S;

Ž . <ii there is a directed edge from vertex P to vertex Q if Q is aiy1
y1Ž .component of P and w P(Q is nonzero in S.

X X Ž .Obviously G s G d .S S

Ž . X Ž .4.9 PROPOSITION. Suppose i G d. Then G i q 1 does not contain aS
¨ertex P in two cycles,

P ª P ª ??? ª P ª P and P ª PX ª ??? ª PX ª P ,1 s 1 t

Ž . Ž X . X Ž .with label P / label P if and only if G i does not.1 1 S

Proof. The proof in one direction is obvious given the observation that
if

P ª P ª ??? ª P ª P1 s

X Ž .is a cycle in G i q 1 , thenS

< < < <P ª P ª ??? ª P ª Pi i i i1 s

X Ž . Ž .is a cycle in G i . This does not require i G d.S
X Ž .For the converse we first need to observe that if P ª P ª P in G i ,1 2 3 S

X Ž .then P (P ª P (P is an edge in G i q 1 . This is because1 2 2 3 S

wy1 P (P ( P (P s wy1 P ( P (PŽ . Ž . Ž .Ž . Ž .1 2 2 3 1 2 3

is nonzero in S, given that i G d.
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With this observation, we see that if

P ª P ª ??? ª P ª P1 s

X Ž . X Ž . Ž . Ž X .is a cycle in G i , and P g V P with label P / label P , thenS 1 1 1

P(P (PX ª P (P ª ??? ª P (P ª P(P (PXŽ . Ž .1 1 1 2 s 1 1

X Ž .is a cycle in G i q 1 . The proof of the converse is now obvious.S

This proposition means that it is at least plausible that the converse of
Ž . XTheorem 4.8 holds, because the condition on G is ‘‘stable’’ with respectS

Ž .to d. As previously remarked, only half of the proof of Proposition 4.9
requires i G d. So we have

Ž . X Ž .4.10 PROPOSITION. If G i does not contain a ¨ertex P in two cycles,S

P ª P ª ??? ª P ª P and P ª PX ª ??? ª PX ª P ,1 s 1 t

Ž . Ž X . X Ž .with label P / label P , then G i q 1 does not either.1 1 S

This gives a possible shortcut for showing S has rational growth: for G
X
S

Ž . X Ž .to satisfy the condition in Theorem 4.8 , it is enough to show that G iS
satisfies the same condition for some i F d.

5. THE WORD TREE GRAPH AND
POLYNOMIAL GROWTH

Ž .In this section we apply Theorem 4.8 to prove that if a semigroup S
from our class M has polynomial growth then it has rational growth.FI
Along the way we develop a new graphical criterion for polynomial growth.

w xEasdown and Shneerson introduced in 2 a directed graph G , theS
Ž .Ufnarö sky graph of S depending on the presentation of S . Vertices of GS

are defined to be reduced words of length d which are nonzero in S. If ¨ 1
and ¨ are vertices then a directed edge from ¨ to ¨ is defined in G if2 1 2 S
there exist letters g, h g A j Ay1 such that ¨ g is a reduced word which1
is nonzero in S and ¨ g @ h¨ . We regard the letter g as a label for this1 2
edge. Paths in G may then be labelled by reduced words which areS

Ž .nonzero in S. The pair w, x is an adjacent pair if w is a reduced word
which labels a loop in G at a vertex ¨ and x is a letter labelling an edgeS
which emanates from ¨ and terminates outside the loop. The following is

w xTheorem 1 of 2 .
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Ž . ² < :5.1 THEOREM. Let S s A c s 0 for i s 1, . . . , k be an in¨ersei
semigroup from the class M . Then the following conditions are equï alent:FI

Ž .a S has polynomial growth.
Ž .b S does not contain any noncyclic free subsemigroup.
Ž . Ž .c i G has no ¨ertex contained in different cycles; andS

Ž . Ž .ii If w, x is an adjacent pair in G thenS

w dq1 xxy1 w dq1 s 0 in S.

Using the word tree graph we can give yet another characterisation of
Ž .polynomial growth. This condition is slightly neater than Theorem 5.1 ,

but generally the word tree graph is much more complicated than the
Ufnarovsky graph. Other criteria for polynomial growth can be found in
w x3 . First we prove a technical lemma.

Ž . X5.2 LEMMA. Let P be a ¨ertex in G , and P , . . . , P be distinct elementsS 1 s
Ž .of V P . Then there are constants n , . . . , n g N such that for m sufficiently1 s

large,

a P , 0, m G a P , 0, m y n q ??? qa P , 0, m y n .Ž . Ž . Ž .1 1 s s

Ž Ž .. y1Ž Ž ..Proof. Let u g A P , 0, l u for each i. Let ¨ s w P(w u . Theni i i i i
Ž Ž .. Ž . Ž .¨ g P, 0, l ¨ , and l ¨ s n q l u for some constant n independenti i i i i i

of the choice of u . Moreover if i / j then ¨ / ¨ becausei i j

w ¨ s P(P / P(P s w ¨ .Ž . Ž .i i j jdq1 dq1

The result now follows.

Ž . ² < :5.3 THEOREM. Let S s A c s 0 for i s 1, . . . , k be an in¨ersei
semigroup from the class M . Then S has polynomial growth if and only ifFI
G

X has no ¨ertex contained in different cycles.S

Proof. Suppose the vertex P is in two different cycles. Applying the
previous lemma to the vertices in the two cycles we find that for m
sufficiently large,

a P , 0, m G a P , 0, m y n q a P , 0, m y n ,Ž . Ž . Ž .1 2

for some constants n , n g N. Let n s n n . Then for m large,1 2 1 2

a P , 0, m y n G a P , 0, m y 2n q a P , 0, m y n y nŽ . Ž . Ž .1 1 1 2

G a P , 0, m y 2n .Ž .1

So repeating we get

a P , 0, m y n G a P , 0, m y 2n G ??? G a P , 0, m y n .Ž . Ž . Ž .1 1
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Ž . Ž . Ž .Similarly a P, 0, m y n G a P, 0, m y n . Therefore a P, 0, m G2
Ž . Ž .2 a P, 0, m y n . Now a P, 0, s ) 0 for infinitely many s g N because we

have a cycle at the vertex P. Fix an s sufficiently large. Then for all t g N,
Ž . ta P, 0, s q tn G 2 . Therefore S has exponential growth.

Ž . Ž .To prove the converse, we use condition c of Theorem 5.1 . It is clear
Ž y1 . Xthat mapping a vertex w of G to w ww embeds G in G . Therefore ifS S S

no vertex of G
X is contained in different cycles then no vertex of G isS S

contained in different cycles.
Now suppose w dq1 xxy1 w dq1 is nonzero in S for some adjacent pair

Ž .w, x in G . We shall show that this gives a vertex in two different cycles inS
X Ž .G . Let s be the least multiple of l w such that s G d. For 0 F i F s,S

denote the prefix of w dq1 of length i by ¨ , and the suffix of w dq1¨ ofi i
Ž y1 .length d by w . Let P s w w w , which is planted because w isi i i i

cyclically reduced. Then

P ª P ª ??? ª P ª P s P0 1 sy1 s 0

is a cycle at P in G
X . For 1 F i F d y 1, denote the suffix of w dq1 of0 S

X Ž y1 Ž y1 .y1 .length d y i by u , and let P s w u xx ¨ u xx ¨ . Theni i i i i i

P ª PX ª PX ª ??? ª PX ª P ª P ª ??? ª P s P0 1 2 dy1 d dq1 s 0

is a different cycle at P .0

Clearly if G
X has no vertex in two cycles then the hypothesis of TheoremS

Ž .4.8 is satisfied. So we have

Ž .5.4 THEOREM. If S has polynomial growth, then it has rational growth.

It is of course interesting that a simple condition on G
X gives a criterionS

Ž .for polynomial growth. But in fact Theorem 5.4 could have been deduced
Ž .easily from Theorem 5.1 and the following result, which gives yet another

possible shortcut for showing S has rational growth.

Ž .5.5 THEOREM. The following conditions are equï alent:

Ž .a G has no ¨ertex contained in different cycles.S

Ž . Xb If a ¨ertex P in G is contained in two cycles,S

P ª P ª ??? ª P ª P s P and P ª PX ª ??? ª PX ª PX s P ,1 sy1 s 1 ty1 t

Ž . Ž X. � 4then label P s label P for each i s 1, . . . , min s, t .i i

Proof. First we make the following observation: if P ª P ª ??? ª P1 2 d
X Ž . Ž .is a path in G , and a s label P for each i, then w a a ??? a is aS i i 1 2 d
Ž Ž . .subtree of P ( P ( ??? ( P (P ??? . Therefore a a ??? a is a ver-1 2 dy1 d 1 2 d

tex of G .S
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Ž . Ž . Ž .To show a implies b , suppose b does not hold. Let

P ª P ª ??? ª P ª P s P and P ª PX ª ??? ª PX ª PX s P1 s sq1 1 t tq1

X Ž . Ž . Ž X.be two cycles in G . Let a s label P , a s label P , and b s label PS i i i i
� 4for each i. Suppose a / b for some 1 F i F min s q 1, t q 1 .i i

By replacing P ª P ª ??? ª P ª P by1 s

P ª P ª ??? ª P ª P ª P ª ??? ª P ª P ,1 s 1 s

and so on if necessary, we can assume s G d. Applying the foregoing
observation to each subpath of length d of

P ª P ª ??? ª P ª P ª P ª ??? ª P ,1 s 1 dy1

we see that
aa ??? a ª a a ??? a ª ??? ª a ??? a a1 dy1 1 2 d sydq2 s

ª a ??? a aa ª ??? ª a aa ??? a ª aa ??? asydq3 s 1 s 1 dy2 1 dy1

is a cycle in G . But applying the observation toS

P ª P ª ??? ª P ª P ª PX ª ??? ª PX ª P ª P ª ??? ª P ,1 s 1 t 1 dy1

shows that
aa ??? a ª a a ??? a ª ??? ª a ??? a a1 dy1 1 2 d sydq2 s

ª a ??? a ab ª ??? ª b aa ??? a ª aa ??? asydq3 s 1 t 1 dy2 1 dy1

is another cycle in G . Because a / b for some i, aa ??? a is in twoS i i 1 dy1
different cycles in G .S

Ž .Now suppose b holds. Given two cycles,

w ª w ª ??? ª w ª w s w and1 s sq1

w ª wX ª ??? ª wX ª wX s w ,1 t tq1

in G , we need to show that they are the same cycle. We can assume thatS
the cycles are actually loops.

Ž y1 . Ž y1 . X Ž y1 .Let P s w ww , P s w w w , P s w w w . By considering Munni i i i i i
trees, it is clear that w is the concatenation of the labels of the first di
vertices in the sequence,

P ª P ª ??? ª P ª P ª P ª ??? .i iq1 s 1

Ž .Therefore condition b applied to the cycles,

P ª P ª ??? ª P ª P ª P ª ??? and1 s 1

P ª PX ª ??? ª PX ª P ª PX ª ??? ,1 t 1

actually shows that w s wX for each i. So the original cycles are the same.i i
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Ž .If the equivalent conditions in Theorem 5.5 are satisfied by a semi-
group S from the class M , then clearly S has rational growth byFI

Ž . Ž .Theorem 4.8 . However the hypothesis in Theorem 4.8 is weaker than
Ž . ² < 2the conditions stated in Theorem 5.5 . One example is S s x, y x s

2 : Xy s 0 . In this example d s 2, and G is isomorphic to G . By TheoremsS S
Ž . Ž .4.8 and 5.3 , S also serves as an example of a semigroup in the class M FI
which has rational and exponential growth.
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