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Charmed tetraquarks Tcc = (ccūd̄) and Tcs = (csūd̄) are studied through the S-wave meson–meson
interactions, D–D , K̄ –D , D–D∗ and K̄ –D∗, on the basis of the (2 + 1)-flavor lattice QCD simulations
with the pion mass mπ � 410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark
action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the
S-wave potentials in lattice QCD simulations, from which the meson–meson scattering phase shifts are
calculated. The phase shifts in the isospin triplet (I = 1) channels indicate repulsive interactions, while
those in the I = 0 channels suggest attraction, growing as mπ decreases. This is particularly prominent
in the Tcc ( J P = 1+, I = 0) channel, though neither bound state nor resonance are found in the range
mπ = 410–700 MeV. We make a qualitative comparison of our results with the phenomenological diquark
picture.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

One of the long standing challenges in hadron physics is to es-
tablish and classify genuine multiquark states other than baryons
(3 quark states) and mesons (quark–antiquark states) [1]. In par-
ticular, charmed tetraquarks (such as Tcc (ccūd̄), Tcs (csūd̄)) and
bottomed tetraquarks (such as Tbb , Tbc , Tbs) are unambiguous can-
didates for such multiquark states [2–5], since there are no an-
nihilations among the four quarks. If they form bound states or
resonances with respect to the corresponding two-meson thresh-
olds, they could be experimentally observed in B-factories and
relativistic heavy-ion colliders [6–9].

In this Letter, we exclusively investigate the charmed tetra-
quarks Tcc and Tcs . To understand a possible reason why they may
appear as bound states below the two meson threshold, let us con-
sider the diquark picture [10] as a working hypothesis, where ūd̄
in the color 3, spin-singlet (S = 0), isospin-singlet (I = 0) channel
is denoted as a “good” diquark, due to the large attraction between
ū and d̄ generated through a gluon exchange. We now assume that
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good diquarks are the main substructure of charmed tetraquarks.
Then the color-singletness of hadrons and the quark Pauli principle
constrain the possible low-mass tetraquarks as follows.

(i) Tcc ( J P = 1+ , I = 0) in which ūd̄ forms a good diquark while
the diquark cc with color 3∗ and S = 1 has a weak repul-
sion between the two charm quarks. This state couples to the
D–D∗ system.

(ii) Tcs ( J P = 1+ , I = 0) in which ūd̄ forms a good diquark while
the diquark cs with color 3∗ and S = 1 has a weak repulsion.
This state couples to the K̄ –D∗ system.

(iii) Tcs ( J P = 0+ , I = 0) in which ūd̄ forms a good diquark while
the diquark cs with color 3∗ and S = 0 has an attraction. This
state couples to the K̄ –D system.

Quantitatively, however, predictions for the binding energies of
charmed tetraquarks widely spread, ranging from negative values
(resonance) to 100 MeV (deeply bound) with respect to the two-
meson thresholds, depending on the details of the dynamical mod-
els (diquark model, dynamical four-body calculation in the con-
stituent quark model, meson–meson molecular model, lattice QCD
in the heavy-quark limit, etc.) [11–16]. Therefore, a quantitative
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prediction for charmed tetraquarks requires a careful study in full
lattice QCD with a finite charm-quark mass.1

In this Letter, we report our first results on the interactions in
the D–D , K̄ –D , D–D∗ and K̄ –D∗ systems in (2 + 1)-flavor lattice
QCD simulations. The dynamics of the charm quarks are incorpo-
rated on the lattice with the relativistic heavy quark action [19].
The meson–meson scattering phase shifts are derived from the
corresponding potentials calculated on the lattice by the HAL QCD
method [20–22] (reviewed in [23]), which was recently shown to
be quite accurate to describe some meson–meson scattering phase
shifts [24].

This Letter is organized as follows. In Section 2, we present the
HAL QCD method to extract the potential between two mesons. We
then show the numerical setup of our lattice QCD simulations in
Section 3. In Section 4, we show our numerical results for the po-
tentials, from which scattering phase shifts and scattering lengths
are extracted for three different quark masses. Section 5 is devoted
to a summary and a discussion.

2. HAL QCD method for the meson–meson interaction

In QCD, the two-meson correlation function can be expanded
as

F (�r, t) ≡
∑

�x
〈0|Oh1(�x +�r, t)Oh2(�x, t)J̄h1h2(t = 0)|0〉

=
∑
�x,n

An〈0|Oh1(�x +�r, t)Oh2(�x, t)|n〉e−Wnt + · · · , (1)

with An = 〈n|J̄h1h2 (t = 0)|0〉, J̄h1h2 (t = 0) stands for a source
operator at tsrc. = 0 which creates two meson states and Oh1,2

is a point-like interpolating sink operator for the hadron h1,2.

Wn =
√

m2
1 + �k2

n +
√

m2
2 + �k2

n is the relativistic energy of the n-th
eigenstate |n〉 for two mesons, and ellipses represent inelastic con-
tributions.

Consider t sufficiently larger than tsrc. that the contributions
from elastic scattering states and possible bound states remain
while those from inelastic states become negligible. Then, Eq. (1)
becomes F (�r, t) → ∑

n Anφn(�r)e−Wnt , where φn(�r) is an equal-time
Nambu–Bethe–Salpeter (NBS) wave function [25], from which the
HAL QCD potential U is defined [21] as a solution of

H0φn(�r) +
∫

d�r′ U
(�r,�r′)φn

(�r′) = Enφn(�r), (2)

for all elastic eigenstates n, where H0 = −∇2/2μ with μ =
m1m2/(m1 + m2) and En = �k2

n/2μ is a kinetic energy. Here the
non-local but n-independent potential U (�r,�r′) can be shown to ex-
ist, by explicitly constructing it as

U
(�r,�r′) =

∑
n

(En − H0)φn(�r) · φ̃∗
n

(�r′), (3)

where φ̃∗
n (�r′) is the dual basis associated with φn(�r′), and the sum-

mation over n is restricted to elastic channels. (For details and
proofs, see [21,23].)

In principle, the potential is extracted from F (�r, t) at large t ,
when it is dominated by the n = 0 state (i.e. the ground state)
contribution [21,23]. In practice, however, F (�r, t) is usually noisier
at larger t , so that an accurate determination of potentials in this
way becomes difficult.

1 The importance of the finite charm-quark mass to extract the c–c̄ potentials
from lattice QCD was reported previously in [17,18].
To overcome this practical difficulty, an alternative method has
been proposed in [22]. Since U (�r,�r′) is n-independent by defini-
tion, a normalized correlation function R(�r, t) = F (�r, t)/e−(m1+m2)t

satisfies(
− ∂

∂t
− H0

)
R(�r, t) =

∑
n

An(�Wn − H0)φn(�r)e−�Wnt

�
∑

n

An(En − H0)φn(�r)e−�Wnt

=
∫

d�r′ U
(�r,�r′)R

(�r′, t
)
, (4)

where the non-relativistic approximation that �Wn ≡ Wn −
m1 − m2 = En + O (k4/m3

1,k4/m3
2) is used.2 In the velocity expan-

sion of the non-local potential, we finally obtain the leading order
potential as

V LO(�r) = − (∂/∂t)R(�r, t)

R(�r, t)
− H0 R(�r, t)

R(�r, t)
, (5)

within the non-relativistic approximation.
To extract S-wave potentials on the lattice, we consider the

projection of the normalized correlation function on the A+
1 repre-

sentation of the cubic group (containing the J = 0 representation
of the rotational group)

R
(�r, t; A+

1

) ≡ P (A+
1 )R(�r, t) = 1

24

∑
g∈O

χ(A+
1 )(g)R

(
g−1�r, t

)
, (6)

where g ∈ O are elements of the cubic group, and χ(A1)(g) (≡ 1)

are the associated characters of the A1 representation.

3. Numerical setup

We employ (2 + 1)-flavor full QCD gauge configurations gen-
erated by the PACS-CS Collaboration [27,28] on a 323 × 64
lattice with the renormalization group improved gauge action
at β = 1.90 and the non-perturbatively O (a)-improved Wilson
quark action (CSW = 1.715) at (κud, κs) = (0.13754,0.13640),
(0.13727,0.13640), and (0.13700,0.13640). These parameters cor-
respond to the lattice cutoff a−1 = 2176 MeV (lattice spacing a =
0.0907(13) fm), determined from π , K and Ω masses as in-
puts [27], leading to the spatial lattice volume L3 � (2.9 fm)3.

As for the charm quark, we employ a relativistic heavy quark
(RHQ) action proposed in Ref. [19], which is designed to remove
the leading and next-to-leading order cutoff errors associated with
heavy quark mass, O((mQ a)n) and O((mQ a)n(aΛQCD)), respec-
tively. The RHQ action is given by

S Q =
∑
x,y

Q̄ (x)D(x, y)Q (y), (7)

D(x, y) = δx,y − κQ

3∑
i=1

[
(rs − νγi)Ux,iδx+î,y

+ (rs + νγi)U †
x,iδx,y+î

]
− κQ

[
(rt − νγ4)Ux,4δx+4̂,y + (rt + νγ4)U †

x,4δx,y+4̂

]

− κQ

[
cB

∑
i, j

F i jσi j + cE

∑
i

F i4σi4

]
δx,y . (8)

2 This approximation can be avoided if we allow higher order time derivatives in
Eq. (4), whose contribution, however, turns out to be numerically negligible for the
systems investigated in this Letter.
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Table 1
Parameters of the RHQ action in our calculations. See Ref. [29] for more details.

κQ rs ν cB cE

0.10959947 1.1881607 1.1450511 1.9849139 1.7819512

Parameters of the action are κQ , rs , rt , ν , cB and cE , while the
redundant parameter rt is chosen to be 1. In our simulations, we
take the same parameters as in Ref. [29], where the 1S charmo-
nium mass and its relativistic dispersion relation are reproduced.
The RHQ parameters are summarized in Table 1.

Periodic boundary conditions are imposed in the three spacial
directions, while Dirichlet boundary conditions are taken for the
temporal direction at t/a = ±32 to avoid contaminations from the
opposite propagation of mesons in time. Throughout this study, we
employ local interpolating operators for mesons, φ(x) = q̄(x)Γ q(x),
Table 2
Meson masses obtained in this study. We employ the scale determined in Ref. [27].

(κud, κs) (0.13754,0.13640) (0.13727,0.13640) (0.13700,0.13640)

confs. 450 400 399
mπ (MeV) 411(2) 572(2) 699(1)
mK (MeV) 635(2) 714(1) 787(1)
mηc (MeV) 2988(2) 3005(1) 3024(1)
m J/Ψ (MeV) 3097(2) 3118(1) 3142(1)
mD (MeV) 1902(3) 1946(1) 1999(1)
mD∗ (MeV) 2048(12) 2099(6) 2159(4)

where Γ denotes a 4 × 4 matrix acting on spinor indices. We take
Γ = γ5 for pseudo-scalar mesons (D and K̄ ) and Γ = γi for vec-
tor mesons (D∗). Meson masses calculated in this work are listed
in Table 2 together with the number of configurations used in this
work. We measure the correlation function in Eq. (1) with a source
Fig. 1. (Color online.) Left three panels for the S-wave central potentials in the D–D (square) and K̄ –D (circle) channels with ( J P , I) = (0+,1). Right three panels for the
S-wave central potentials in the D–D∗ (square) and K̄ –D∗ (circle) channels with ( J P , I) = (1+,1). (a), (b) and (c) are obtained at mπ � 410 MeV, mπ � 570 MeV and
mπ � 700 MeV, respectively.



88 Y. Ikeda et al. / Physics Letters B 729 (2014) 85–90
Table 3
The lowest (inelastic) threshold energies for the D–D (D∗–D∗), D–D∗ (D∗–D∗),
K̄ –D (K̄ ∗–D∗) and K̄ –D∗ (K̄ ∗–D) in MeV unit.

Threshold energies mπ = 411(2) mπ = 572(2) mπ = 699(1)

E D D 3805(5) 3893(3) 3999(3)
E D∗ D∗ 4097(23) 4199(11) 4319(7)

E D D∗ 3951(12) 4046(6) 4159(5)
E D∗ D∗ 4097(23) 4199(11) 4319(7)

E K̄ D 2538(3) 2660(2) 2785(2)
E K̄ ∗ D∗ 3075(15) 3184(9) 3314(8)

E K̄ D∗ 2684(12) 2814(6) 2946(4)
E K̄ ∗ D 2930(9) 3031(7) 3153(6)

at one time-slice for each configuration, and the forward and back-
ward propagations are averaged to enhance the statistics. We have
checked that the dispersion relation of the 1S charmonium state at
our heaviest pion mass, mπ ∼ 700 MeV, gives a reasonable value
of the effective speed of light, ceff = 0.987(2).

As for the source operators of the D–D , D–D∗ , K̄ –D and K̄ –D∗
in isospin I channels, we take the following wall sources:

J̄D D(t = 0) =
∑

�x1,�x2,�x3,�x4

[
c̄(�x1, t)γ5u(�x2, t)c̄(�x3, t)γ5d(�x4, t)

+ (−)I+1c̄(�x1, t)γ5d(�x2, t)c̄(�x3, t)γ5u(�x4, t)
]
, (9)

J̄D D∗(t = 0) =
∑

�x1,�x2,�x3,�x4

[
c̄(�x1, t)γ5u(�x2, t)c̄(�x3, t)γid(�x4, t)

+ (−)I+1c̄(�x1, t)γ5d(�x2, t)c̄(�x3, t)γiu(�x4, t)
]
, (10)

J̄K̄ D(t = 0) =
∑

�x1,�x2,�x3,�x4

[
s̄(�x1, t)γ5u(�x2, t)c̄(�x3, t)γ5d(�x4, t)

+ (−)I+1 s̄(�x1, t)γ5d(�x2, t)c̄(�x3, t)γ5u(�x4, t)
]
, (11)
Fig. 2. (Color online.) Left three panels for the S-wave central potentials in the K̄ –D channel with ( J P , I) = (0+,0). Right three panels for the S-wave central potentials in
the D–D∗ (square) and K̄ –D∗ (circle) channels with ( J P , I) = (1+,0). (a), (b) and (c) are obtained at mπ � 410 MeV, mπ � 570 MeV and mπ � 700 MeV, respectively.
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J̄K̄ D∗(t = 0) =
∑

�x1,�x2,�x3,�x4

[
s̄(�x1, t)γ5u(�x2, t)c̄(�x3, t)γid(�x4, t)

+ (−)I+1 s̄(�x1, t)γ5d(�x2, t)c̄(�x3, t)γiu(�x4, t)
]
. (12)

4. Meson–meson potentials and scattering phase shifts

With the above setup, we study the S-wave meson–meson in-
teractions in the following channels related to Tcc and Tcs with
J P = 0+,1+: D–D ( J P = 0+, I = 1), K̄ –D ( J P = 0+, I = 0,1),
D–D∗ ( J P = 1+, I = 0,1), and K̄ –D∗ ( J P = 1+, I = 0,1). We
show the potentials calculated from Eq. (5) at the time-slice
t/a = 16. Since the energy differences between the elastic and in-
elastic thresholds are 200–300 MeV as shown in Table 3, the in-
elastic contributions in Eq. (1) are expected to be suppressed in
the time-slices t/a > 11.

In Fig. 1, we show our results for the S-wave meson–meson
potentials in the I = 1 channels with J P = 0+ (left panels) and
J P = 1+ (right panels). We find that all the potentials in the I = 1
channel are repulsive at all distances. This observation is consistent
with the absence of good ūd̄ diquarks in the I = 1 channel, as
discussed in the Introduction. Since the quark mass dependence
of the potentials is rather weak, it is unlikely that interactions in
these channels turn into strong attractions to form bound states
even at the physical quark mass. Phenomenological models also
predict the absence of bound states in the I = 1 channels.

In Fig. 2, we show our results for the S-wave meson–meson
central potentials in the I = 0 channels with J P = 0+ (left pan-
els) and J P = 1+ (right panels). Contrary to the previous results in
the I = 1 channels, all the potentials in the I = 0 channels show
attractions at all distances without repulsive core. In addition, we
find that all potentials become more attractive as the pion mass
decreases, and the attraction at short distance (r = 0.2–0.3 fm)
in the K̄ –D channel is stronger than in the D–D∗ and K̄ –D∗
channels. Such tendency is again consistent with the existence
of good ūd̄ diquarks in the I = 0 channel, as discussed in Sec-
tion 1.

To investigate the possible existence of bound states or reso-
nances in the I = 0 channels, we fit the potentials with analytic
functions of r and solve the Schrödinger equation with the fitted
potentials at a given time-slice. We employ a multi-range Gaus-
sian form to fit the potential, namely g(r) ≡ ∑Nmax

n=1 Vn · exp(−νnr2)

with Vn and νn being fit parameters. For all cases, we obtain good
fits with χ2/d.o.f. � 0.6 for Nmax = 4. Repeating this at different
time-slices, the mean values of scattering phase shifts are obtained
from the weighted average over the time-slices t/a = 13 through
18. Statistical errors for the scattering phase shifts are calculated
by the jackknife method, and systematic errors are evaluated by
the difference between the weighted average of the phase shifts
over the time-slices t/a = 13–15 and t/a = 16–18.

Fig. 3 shows the resultant S-wave scattering phase shifts as a
function of the meson–meson center-of-mass energy in the I = 0
K̄ –D ( J P = 0+), K̄ –D∗ ( J P = 1+) and D–D∗ ( J P = 1+) channels.
In Table 4 and Fig. 4, we give the corresponding scattering lengths.
We do not find the negative-energy eigenvalues corresponding to
the bound state solutions by solving the Schrödinger equation with
the potentials shown in Fig. 2. Fig. 3 also indicates that there are
no bound states or resonances in this range of pion masses, mπ =
410–700 MeV. Although the potentials for D–D∗ and K̄ –D∗ are
not so much different, as seen in the right panels of Fig. 2, the
scattering length in the D–D∗ channel is larger than that in the
K̄ –D∗ channel. This can be attributed to the smaller kinetic energy
of D in comparison to K̄ due to a heavier charm quark. A similar
tendency has also been reported in studies of phenomenological
models (see e.g. [11]).
Fig. 3. (Color online.) S-wave I = 0 scattering phase shifts in the (a) K̄ –D , (b) K̄ –D∗
and (c) D–D∗ channels. Vertical error bars represent both statistical and systematic
errors.

Although we find a good evidence of a sizable attraction in the
I = 0 channel at mπ = 410–700 MeV, the existence of a bound or
resonant Tcc( J P = 1+, I = 0) at the physical point remains an open
question.3

5. Summary

In order to clarify the possible existence of charmed tetraquark
states (Tcc and Tcs), we have studied the S-wave meson–meson in-
teractions in several I = 0 and I = 1 channels (D–D , K̄ –D , D–D∗
and K̄ –D∗), using (2+1)-flavor full QCD gauge configurations gen-
erated at mπ = 410–700 MeV. For the charm quark, we have em-
ployed the relativistic heavy-quark action to take into account its
dynamics on the lattice.

S-wave meson–meson potentials are extracted from Nambu–
Bethe–Salpeter wave functions using the HAL QCD method. Po-
tentials are then used to calculate scattering phase shifts and

3 If we take the same attractive potential as D–D∗ ( J P = 1+, I = 0) at mπ =
410 MeV and calculate the B–B∗ ( J P = 1+, I = 0) channel with the physical masses
of B and B∗ , we find a bound state with the binding energy 5.7(2.3) MeV.
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Fig. 4. (Color online.) Pion mass dependences of scattering lengths in the I = 0 K̄ –D ,
K̄ –D∗ and D–D∗ channels. Inner vertical error bars represent statistical errors. Both
statistical and systematic errors are included in total error bars.

Table 4
Scattering lengths in the I = 0 channels for the K̄ –D , K̄ –D∗ and D–D∗ systems.
The statistical and systematic errors are also shown.

mπ (MeV) 411(2) 572(2) 699(1)
aK̄ D (fm) 0.266(70)(56) 0.299(35)(15) 0.290(24)(23)
aK̄ D∗ (fm) 0.265(166)(161) 0.385(59)(84) 0.271(32)(27)
aD D∗ (fm) 0.427(223)(104) 0.543(177)(35) 0.291(43)(10)

scattering lengths. S-wave meson–meson interactions in the I = 1
channels are found to be repulsive and insensitive to the pion
mass in the region we explored, so that tetraquark bound states
are unlikely to be formed even at the physical pion mass. On
the other hand, the S-wave interactions in the I = 0 channels
show attractions in the K̄ –D , K̄ –D∗ and D–D∗ channels, which
are qualitatively consistent with the phenomenological diquark
picture. S-wave scattering phase shifts in these attractive chan-
nels indicate, however, that no bound states or resonances are
formed at the pion masses used in this study, mπ = 410–700 MeV,
though attractions become more prominent as the pion mass de-
creases, particularly in the I = 0 D–D∗ channel corresponding to
Tcc ( J P = 1+, I = 0).

To make a definite conclusion on the fate of Tcc and Tcs in the
real world, simulations near or at the physical point are necessary.
We are planning to carry out such simulations with the PACS-
CS (2 + 1)-flavor full QCD configurations with coupled-channel
schemes [26,30].
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