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Abstract. In [6] Goralcikova and Koubek describe an algorithm for finding the transitive closure 

of an acyclic digraph G with worst-case runtime O(n. e,,,), where n is the number of nodes and 

ered is the number of edges in the transitive reduction of G. We present an improvement on their 

algorithm which runs in worst-case time O(k. crud) and space O(n. k), where k is the width of a 

chain decomposition. For the expected values in the G,,.,, model of a random acyclic digraph 

with O<p<l we have 

F(k)=O(y), E(e,,,)=O(n,logn), 

E(k, ercd) = 
O(n’) forlog’n/n~p<l. 

0( n2 log log n) otherwise, 

where “log” means the natural logarithm. 

1. Introduction 

A directed graph G = ( V, E) consists of a vertex set V = {1,2,3,. . . , n} and an 

edge set E c VX V. Each element (u, w) of E is an edge and joins 2, to w. If 

G, = (V,, E,) and G, = (V,, E2) are directed graphs, G, is a subgraph of Gz if 

V, G V, and E, c EZ. The subgraph of G, induced by the subset V, of V, is the 

graph G, = (V,, E,), where E, is the set of all elements of E, which join pairs of 

elements of V, . Unless we specify otherwise, any subgraph referred to in this paper 

is the subgraph induced by its vertex set. A path in a graph from vertex v0 to vertex 

V, is a sequence of vertices vO, u,, . . . , u, such that (vi_, , v,) is an edge for ic 

{1,2, . , s}; s is the length of the path. The path is simple if all its vertices are 

pairwise distinct. A path vO, . . . , v, is a cycle if s 2 1 and u,, = u, and a simple cycle 

if in addition u,, . . . , u,-~ are pairwise distinct. A graph without cycles is acyclic. 

A topological sorting of a digraph G = ( V, E) is a mapping ord : V + { 1,2, . . , 1 Vi} 

such that for all edges (u, w) E E we have ord( v) < ord( w). The relation between an 

acyclic digraph G and a topological sorting is given in Theorem 1.1 (for a proof 

see [8, pp. 320-3231). 

Theorem 1.1. G = (V, E) is acyclic if and only if it has a topological sorting. A 

topological sorting of an acyclic graph can be computed in linear time 0( / VI + 1 E I). 

Throughout this paper we will assume that the acyclic digraph G = (V, E) is 

topologically sorted, i.e., (i, j) E E implies i <j and that the adjacency lists out(v) = 
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{w E V) (v, w) E E} are sorted in increasing order. This can be achieved in linear time 

O(lVl+lEI) (see [8, p. 3231). Now we need some more definitions. The node w is 

in the reflexive, transitive closure out*(v) if and only if there is a path from v to w 

in G. The set outred( v) = {w E out(u) 1 there is no path of length at least 2 from zi to 

w in G} is called the transitive reduction of the node ZJ. Let E* = {(q w) I w E out*(v)}, 

Ered = {( ZI, w) 1 w E outred( u)}; then G” = ( V, E”) ( Gred = ( V, Ered)) is called the transi- 

tive closure (transitive reduction) of G. Further we use the usual notation e = 1~1, 

e*=IE*I, ered= IEredl, n = I VI, y(v) = lout( v)l, y*(v) = lout*(u)l, and yred( v) = 

loutred( zJ)l. 

Let out(v)={w,<* * . < w,}; then it is easy to see that we obtain 

out*(v)={v}uout*(w,)uout*(w,)u~~ ~uout*(w,). (1) 

For a topologically sorted digraph G = ( V, E) the observation that 

Wi~OUP(U) e wiEOut*(w,)u~~ ~uout*(w,_*) 

e out*(w,)cout*(w,)u~~ ~uout*(wi_*) (2) 

was made by GoralCikovA and Koubek to show G* = Gz,. Through negation from 

(2) we get 

OUtTed( V) = { Wi E OUt( V) I Wi f? OUt*( WI) U ’ . ’ U OUt*( Wi_1)) 

and further 

(3) 

IJ out*(w)= u out”(z). (4) 
wEout ZiO”P(U) 

Here we give their algorithm. 

Algorithm A (GoralCikovd, Koubek [6]) 

Input: G=(V, E) 

Output: out*(v) and outred( v), Vu E V 

(1) for v+n downto 1 (* V={l,...,n}*) 

(2) do 

(3) out*(u)+(v); 

(4) oufred( U) + 0; 

(5) for VW E out(v) (* in increasing order *) 

(6) do 

(7) if w&out*(v) 

(8) then 

(9) out”( ?.I) + out”(u) u 0Llt*( w); 

(10) OUP( u) + oufred( u) u {w}; 

(11) fi 

(12) od 

(13) od 
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Inside loop (2)-(13) we use a bitvector for out*(u). So the test “WEOU~*(ZI)” 

takes time O(1). Outside loop (2)-(13) the set out*(v) is kept as a linear list. This 

implies that the operation out*(u) u out*(w) has execution time 0( lout*( w)l) = O(n) 

and so we need total time 0( n. ered). We will show later that the expected execution 

time is O(n2. log n) for this algorithm. In this paper we give a better method for 

computing out*(u) u out*(w). Our improvement is based on an efficient data struc- 

ture, the so-called chain decomposition. 

2. The algorithm 

Definition 2.1. Let G = (V, E) be an acyclic digraph. A partition Z,, . . . , 2, of V 

(Z,#@ for lsi<k and Z,u.. . u Z, = V) is called a chain decomposition of G = 

(V, E) if and only if every Z,, 1 s i c k, is a path in G. Because G is topologically 

sorted, we obtain for a path Z, = {u, < . . . < v,} 

The integer k is called the width of the decomposition. A chain decomposition 

Z, , . . . , Z, induces the maps id, niv, and nivi. Let v E V, A c V, i, j E { 1, . . . , k}; then 

id(v)=i e VEZ,, 

niv,(A) = min(A n Zj), niv(A) = {niv;(A) 11 s j s k}. 

In particular, we use the notation nivj(v) for niv,(out*(v)) and niv(v) for 

niv(out*(u)). In this paper we have only A = out*( w,) u . . . u out*( w,) and therefore 

A n Z, is a path in G with first node niv,(A) (see Fig. 1). 

Now we come to the question how we can use a chain decomposition to speed 

up the computation of the transitive closure? The critical observation is given in 

Theorem 2.2. 

Theorem 2.2. Vu E V: 

out*(u)= U {wEZjIw>nivj(v)}. 
,SjGk 

Proof. Let u E V and let Z,, . . . , Z, be a chain decomposition. Then Z,, . . . , Z, are 

a partition of V and we have Z, us . + u Z, = V. Since out*(v) g V, we get 

out*(v) = n Z,). 
ISjGk 

Let Z, be a path v,, . . , v, with v, < v2 < * * . < q, niv,(v) = min(out*(v) n Z,) and 

out*(v) n Z, # 0. Now nivj(v) is an element of out*(v) and therefore the set 
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Fig. 1. 

(out*(u) n .Zj) is a tail of Zj, namely q, 2),+r, . . 

out”(u) = IJ (out*(u)nzj) = u 
,SjSk ISjSk 

3 v,, where II, = nivj( v). Then we have 

{wEZjIw>nivj(v)}. 0 

This theorem shows that it is sufficient to compute niv,(v) for all 1 sjs k since 

the computation of the set {w E Z, 1 w 2 nivj( v)} is trivial for a given chain Z,. In the 

following we will use the convention min(0) = ~0. Now we describe relations that 

we need for the efficient computation of niv(v). Let 

niv,( w,) = niv;(out*( w,)), . . . , nivj( wS) = nivi(out*(w,)) 

are given; then we infer 

nivj(out*( w,) u . . . u out*( w,)) 

= min((out*(w,) u . . . u out*( w,)) n Z,) 

= min((out*(w,) n Z,) u * * * u (out*( w,) n Zj) 

= min(min(out*( w,) n Zj), . . . , min(out*( w,) n Z,)) 

= min(niv,(out*(w,)), . . . , nivj(out*(w,))) 

= min(nivj(w,), . . . , niv,(w%)). 

Now we combine expression (5) with (1) and this leads us to Theorem 2.3. 

(9 
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Theorem 2.3. VVE V, vj, lsjsk: 

niv, (0) = 
min({nivj( w) 1 w E out(v)}) ifj f id(u), 

V otherwise. 

Proof. Letout(u)={w,,...,w,};thenweget 

niv;(v) = niv.i(out*(u)) 

(I) 
=niv,({v}uout*(w,)u.. .uout*(ws)) 

=<M A 

= min(({ u} u A) n Z,) 

=min(({u}nZ,)u(AnZ,)) 

= min(min({ u} n Z,). min(A n Zj)) i 
=niv,(A) 

(5) 
=min(min({u}nZ,),min(niv,(w,) ,..., nivj(w,))) 

min(niv,(w,) ,..., niv,(w,)) if v&Z,, 

V otherwise. 0 

With Theorem 2.3 it is clear how we compute niv( u) = niv(out*( u)). In Algorithm 

A we replace the operation 

out”(u) +- out*(v) u out*(w) 

by 

niv(out*(v)) + niv(out*( 0) u out*( w)). 

With expression (5) this reduces the execution time from 

O(Jout”( w)l) ‘LL51 O(n) 

to 

O(lniv(out*(w))l) = O(k). 

In general we find that k is very much smaller as lout*(w)1 (see Section 3). Now it 

remains the problem how we implement the test “w E out*(u)” from Algorithm A. 

If we want to use our new data structure, we cannot realize set out*(u) as a bitvector. 

But now we use an array of integers for set niv(out*( 0)) and Lemma 2.4 shows this 

is sufficient. 

Lemma 2.4. Let u, w,, . . . , w, E V and w E Z, (a id(w) = j). Then there is 

wEout*(w,)u... uout*(w,) @ w<min(nivid,.,(w,), . .,niv,,,,.,(w,)). 
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Proof. With A = out*( w,) u * * * u out*( w,) we get 

w E A ~3 W E An Zid(w) 

e w 2 min(A CT Zid(,,>)) 

ti w 2 niVidcw)(A) 

g W 2 min(niVidcwj(wl), . . , niVid(h,j( W,)). 

Our claim is inferred through negation. 0 

z-1 = { 1,3,5,11,12,13 } 

22 = { 2,4,8,10 } 

23 = {6,7,9) 

Fig. 2. An example for chain decomposition. 
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A chain decomposition of an acyclic graph is easily constructed in time 0( n + e). 

Now we give one particular algorithm. In a greedy manner we find a first path Z. 

We remove Z from G = (V, E) and restart the method (see Fig. 2). 

Now have a look at Algorithm B. At line (4) V, is realized as a bitvector S. Line 

(6) is implemented by sliding a pointer pt across bitvector S. All elements to the 

left of pt are not in V. The sets Zi are kept as linear lists. Then loop (7)-(13) takes 

time 0(7(v)) for fixed U. Hence, the total time (l)-(18) is O(n + e). Note that the 

total time spent in line (6) is O(n) since pt is slid one across vector S. 

Algorithm B (computation of a chain decomposition) 

Input: G=(V, E) 

Output: Z,, . . . , Z,, id 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

it1 

for VVE V do id[v]+O od 

v,+V 

while Vi # 0 

do 

x+min(V,) 

Z+(x) 
while 3y E Vi with (x, _y) E E 

do 

let y be minimal with y E V; and (x, y) E E 

Z-Z+(Y) 

x+Y 
od 

zi + z 

v;+, + vi - z, 

for Vu E Z, do id[v] + i od 

i+l+l 

od 

In the following when we speak about a chain decomposition we will mean the 

decomposition constructed by this algorithm and we define the width k = k(G) of 

the chain decomposition by 

k ymax({sEN)Z,#O}). 

Now we can compute niv( v) for all v E V In Algorithm C we use the linear list 

nivlist[v] for keeping niv(v); nivfield, id Ire arrays of integers. So we come to 

Algorithm C. 

Algorithm C (computation of niv( v)) 

Input: G=(V,E),id:V+{l,...,k} 
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Output: niv(u), outred( v), Vu E V 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

for s + 1 to k do nivfield [s] t ~0 od 

for v -+ n downto 1 

do 

outTed[ v] t $4; nivlist [ 211 + 8; 

for VW E out(v) (* in increasing order *) 

do 

if w < nivfield[id[ w]] 

then 

outred[ v] + oLltred[ v] u {w} 

for Vp E nivlist[ w] 

do 

nivfield[id[p]] + min(nivfield[id[ p]], p) 

od 
fi 

od 

nivfield[id[ v]] + v; 

for s t 1 to k 

do 

if nivfield[ s] # 00 

then nivlist[ v] + nivlist[ v] u nivfield[s] fi 

nivfield[ s] + ~0 

od 

od 

Correctness is shown by induction, starting with v = n. In particular we get, after 

every execution of loop (2)-(23), 

nivlist[ v] = niv( v) and outred[ v] = outred( v). 

(v = n): Since loop (5)-( 15) is not executed, we obtain nivlist[n] = {n} = niv( n). 

(v < n). Now the induction hypothesis is 

Vw, v<wSn: nivlist[ w] = niv( w). 

There is, after line (13), 

Vp, p E nivlist[ w]: nivfield[id[ p]lne, = min(nivfield[id[ p]lold, p). 

With the induction hypothesis this is equivalent to 

Vj, 1 s j s k; nivfield[ jlnew = min(nivfield[ jlold, niv,( w)) (*) 
since 

p = niVidcpj( W) Vp E nivlist[ w] (‘C) niv( w). 



Improved algorithm for transitive closure on acyclic digraphs 333 

We infer inductively from (*) that before the execution of loop (6)-(15) it is valid 

that 

nivfield[ j] = min({niv,(z) ( z E outred( v) A z < w}). (**) 

Consequently, line (7) is executed if and only if 

w < nivfield[id[ w]] ‘2 w < nivid(,,( v) (L$) w E outTed( 0). 

This shows the correct construction of outred. With induction on the number of 

executions of loop (6)-(15) we get from (**) after line (16) Vj, 16 jc k: 

nivfield[ j] = 
min({nivj( w) 1 w E outred( v)}) if j # id(v), 
2, 

otherwise 

and this leads with Theorem 2.3 to 

nivfield[ j] = niv;( v) Vj, 1 s j 4 k. 

This ends the correctness proof of Algorithm C. 

Running time: Outside lines (6)-(15) the cost of the algorithm is clearly O(e+ 

n. k). One execution of the loop (lo)-(13) has cost O(k) and this loop is executed 

only for (u, w) E Fred. Hence, for Algorithm C we have total cost 

O(e+n.k)+O(e,,,.k)=O(e+e,,,*k). 

Theorem 2.5. The improved algorithm computes the transitive closure of an acyclic 

digraph in time O(e* f ered. k). 

Proof. Running time of the decomposition algorithm is 0( n + e). The computation 

of niv( v), Vu E V needs time 0( e+ ered. k). From a chain decomposition of 

21,. . ., 2, with given id(v), niv(v), Vu E V, it is now trivial to compute E* in time 

O(e*) (recall Theorem 2.2). Hence, we get a total running time 

O(n+e)+O(e+e,,,. k)+O(e*)=O(e*+e,,,.k). 0 

3. Average case 

For the average case analysis we use the G,,, model of a random acyclic digraph 

with vertex set (1, . . . , n} in which the possible edges (i, j), 1 s i < j G n, occur 

independently with probability p, 0 < p < 1. An introduction to the theory of random 

graphs was given by Erdos and Spencer in [3]. By this model the size of k, ered, or 

k. ered is a random variable. Our aspiration is to obtain good upper bounds for the 

expected values of these random variables, especially for the product k. ere+ Note 

that the latter is a product of two dependent random variables and its analysis takes 

a lot of time. Therefore we give the main findings first and see the proofs and other 

results later in their logical order. We write Pr(A) for the probability of event A 



334 K. Simon 

and further Pr(A 1 B) for the probability of A on condition of event B. Let X be a 

random variable; then E(X) means the expected value of X. “log” stands for the 

natural logarithm. 

(Lemma 3.4) E(k) s 
log(p* n) + 1 

P ’ 

(Corollary 3.8) 

(Lemma 3.12) 

E( ered) s n. (log n + 2), 

log n 
E(k. ered) S 4.----. E(e,,J + I, 

P 

(Lemma 3.13) E(k*e,,,)s(E(k)+l).E(e). 

Theorem 3.1. By use of the G,,, model of a random digraph our Algorithm C computes 

the transitive closure of an acyclic digraph in expected time: 

0(n2) forecp< 1 and 

log2 n 
O(n2.10glog n) for O<p<- 

n ’ 

Proof. For p 2 (log2 n)/n we use Lemma 3.12 and otherwise Lemma 3.13. 

Case p 2 (log2 n)/p: 

log n 
E(e,,,)S4.-. E(e,,J+ I 

P 

log n 

S4’(log2 n)/n 
.n.(log n+2)+1 

-iO(n2*s) SO(n2). 

Case p=5 (log2 n)/n: 

E(k.e,,,)S(E(k)+l)*E(e)sO 
hdp* n) 

+p. n2 
P > 

<O( n’-(log(*.n))) SO(n2.(2.10g(log n))) 

SO(n2*loglog n). 0 

In the random graph G,,, we describe the size of the chain decomposition 

k = k(G,,p) = k,, and the size of the transitive closure of the first vertex y*(l) = 

Y*(~)(G~,~) = yz as a Markov chain with discrete time t = n [4]. First we consider 

the behaviour of k at the point of transition from n to n + 1. If k,, = 1, 1 s IS n, then 
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we get 1 G k,,, G I+ 1 since the width of the chain decomposition either increases 

by one or does not change. When it increases, i.e., when the vertex n + 1 is a new 

chain Z,,, = {n + l}, then there is no chain Zj, 1 S j G 1, which can be extended to 

n + 1. More formally, 

k It+, =1+1 e Vj, 1SjSl: (max(Z,), n+l)GE. 

This leads to the transition probability 

Wk+, =l+l)k,=l)=Pr(Vj,l~j~l:(max(Zj),n+l)~E) 

= (1 -p)‘. 

Note that the 1 possible edges are independent. This implies 

Pr(k,+, = lIk,=l)=l-Pr(k,+, =1+11k,=l)=l-(l-p)‘. 

(6) 

(7) 

Remark. Let k,,, = k,; then the current chain decomposition Z, , . . . , Z, can be 

extended to the new node n + 1, and Algorithm B links the vertex n + 1 to the chain 

with lowest index. Let (max(Z,), n + 1) E E and 

(max(Z,), n + 1) & E, . . . , (max Zi--l) & E; 

Then Algorithm B connects n + 1 with chain Zi. It is easy to see that this special 

choice has no influence on the future growth of the chain decomposition. 

In the same way as k we treat yX = loutz(l)l: 

Pr(yz+, = l+l~y~=l)=Pr(3w~out~(l):(w,n+l)~E) 

= 1 -(l-p)’ (8) 

and 

Pr(~~+,(l)=l~y~=l)=1-Pr(y~+,=l+1~y~=l)=(1-p)’. (9) 

With the additional notation k,,, =&f Pr( k, = 1) and yz, =def Pr( 7: = 1) we find that 

k n, I, yz,, satisfy the following recurrence. 

Lemma 3.2. Vn E N, Vl, 1 G 1 s n, 

k,,, = 1, k,,=(l-(l-p)‘).k,~,,,+(l-P)‘-‘. k,-I,,_, 

and 

YTl = 1, r:,, = (1 -p)'- Y:-l.r+(l -(1 -p)‘-‘). y:_1,,-1. 

(10) 

(11) 
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Proof. Clear by the preceding discussion. 0 

This description shows that k, (yz respectively) is a discrete-time, pure-birth 

process (see [4]). By a discrete-time, pure-birth process we understand a sequence 

of random variables X,, t E N, assuming the states 1 = 1,2,3, . . . with corresponding 

probabilities P,,I and a sequence of transition probabilities AI, 0 =S Al s 1 and I E N, 

so that 

P,,,=l and P,,,=(l-h,).P,~,,,+A,~I.P,_,,,_,, 

i.e., the process starts at epoch 1 from state 1; direct transitions from a state Z are 

only possible to I+ 1; these transitions have probability A,. To provide for an easy 

treatment we first give a very useful identity of this kind of birth process. 

Let cp be a real function with 

Then we state the following lemma. 

Lemma 3.3. E(rp(X,)) = t - 1, Vt E N. 

Proof. We use induction on t. 

(t=l): E(X,)=,~,~(Z).P,,,=Ol=O. 

(t 2 2): Our induction hypothesis (I.H.) is E((p(X,_,)) = t -2. Then we have 

Hv(X,)) = t cp(z). Pt,/ 
I=1 

= ,i, cp(Z).((l -A,).P,-,,,+Ar~,.Pr--I,,-,) 

+ i c~(0.L,*f’-,,I-,- i cp(~)~A,~f’-,,r 
I=, r=, 

= E(p(X,-,))= r-2 

= t-2+ c q(~)~A,_,~P,_,,,_,- c cp(Z).A,.P,_,,, 
/=I /=I 

(note that P,_l,o= 0 = P,_,,,) 

f-1 f-l 

= t-2+ 1 ~(Z+l).A,.P,_,,,- c cp(Z).A,.P, _,,, 
/=I I=1 
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(since cp(1+1)=cp(I)+l/A,) 

By use of Lemma 3.3 a simple deduction leads to Lemmas 3.4 and 3.5. 

Lemma 3.4 

Proof. With expression (6) there is 

A,(k) = Pr(k,, = I+ 11 k, ~, = I) = (1 -p)‘. 

By a simple application of the summation formula for geometric series (see Appendix 

A) we get 

t-1 1 

p(l)= c -= 
,==I A,(k) 

Of course, cp(l) is an exponential function and so cp( I) is convex, i.e., 

Vx ,,..., x,,E&!: cy ,,..., cu,,ER+with i a,-1. 
I-, 

We get 

‘p(a,.x,+. . ~+cu;x,)~a,~cp(x,)+~~ ~+q;p(x,,). 

This implies with a, = k,,,, and x, = I, 1 G Is n, Jensen’s inequality 

cp(E(k,)) zq( j, l.k.,,,) s j, cp(l). k,,,, z’” E(cp(k,,)). 

Now we apply Lemma 3.3 and the inverse function cp -’ to cp given by 

cp_‘(x) = Jog(p.x+ 1)+ 1 

-log(l -P) 



338 K. Simon 

We find 

cp(E(k,))iE(cp(k,))(L%-l 

e cp(E(k,))c n - 1 

@ cp-‘(cp(E(k,))) c cp-‘(n - 1) 

,S E(k,)s 
log(P+-l)+l)+l q 

-log(l -p) . 

Lemma 3.5 

E(lout*(l)(G,,)I) 2 n + 1 - lhs PI + 1 
. p 

Proof. By term (7) we have A, = A,( y”) = 1 - (1 -p)’ and, consequently, for 1 E N, 

&i:;=i+‘i’ 1 
p j-2 1-(1-p)’ 

++;z; I,‘, l -(1’1,)- =$+ I 

I-1 dx 

1 1-(1-p)” 

(see [l, P. 871) 

$+(i-l)- 
log(1 -(l -p>‘-‘) 

lo&d1 -P) 

_,+lw(l-(VP)) 

lw(l -P) 

~(~-~)+llogP/il:I1 
P 

And, consequently, cp( I) S (I - 2) + ([log pi + 1)/p =def c$( 1). This implies 

E(cp(y:))= f ~(O~Y:,&~ +(O*r?,,=E(+(r:)) 
/=I 

also by Lemma 3.3 and, by the fact that C$ is a straight line, 

n - 1 = E(cp(d))s E(~(Y:)) = 4@(d)) = E(d)+ 
IlogPl+l_2 

P 

a E(y;)~n+l-‘l’~~‘+~. 0 
P 

Using the notation yzd= yred( l)( G,,) for the size of the transitive reduction of 

the first vertex, we show that the lower bound for E(yz) gives an upper bound for 

the expected value of the reduction E(y’,‘). This can be reached by comparing 

AE(yz) = Pr((1, n) E E”) with AE(yTd) = Pr((1, n) E Ered). 
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Lemma 3.6 

E(y’,‘d)=-. 
1 f, (n -E(Y:)). 

Proof. Let A be the event “( 1, n) E E*” with 

Pr((l,n)EE*)=Pr(3wEoutz_,(l): (w,n)rE). 

Then, by splitting A on yz ,, we have 

Pr((l,n)~E*)=~~‘Pr(AIyf-,=I).Pr(y” - 1) 
, = I ,‘-“-’ d 

=(lL(lbp)‘) ‘Y,, I., 

=~~:(l-il-P)t)-Y,.t. 

Let n 3 2; then we find 

(12) 

Pr((1, n)EEred)=Pr((l, n)E E).Pr(VwEout:_,(l), wf 1: (w, n)G E) 

II I 

=P’ c (1 -PI’-” YL,., 
t-i 

(splitting by y:_,) 

=Jq’(l-l+(l-p)‘).yZ ,,, 
l-p /~I 

P =-. 
1-P ( l-“~‘(l-(l-p)‘). y;_,., 

I-1 > 

Thus we arrive at 

Now the proof is easily completed: 

E(rTd) = i E((l,j) s Ed = i Pr((l,j) E Ed 
j-2 1-2 

,131 11 
= c 

,__z 
&,(I-W(l,i)~E*)) 

P =-. 
1-P 

n-l- 2 Pr((l,j)E E*) 
, -:2 

(13) 

Corollary 3.7. E( ercd) c n. (Ilog PI +2). 
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Proof 

E(e,,d = E(yred(l))+ * . . + E( yred( n)) =S n. E( yred( 1)) = n. E( yrd). 

By Lemma 3.6, 

E(ered) = n.-. 1 “, (n-E(d)) 

(by Lemma 5) 

(by Taylor) 

<*. (l-p)+$(l-p)2+;(l-p)‘+* * ‘$-I 

. ( 1-P 

s nqIlogplt2). cl 

Corollary 3.8. 7’he expected running time of Algorithm B, according to GoralCikova’ 

and Koubek [6], is 

0(min(n2~(~logp+2),p~n3))=O(n2~log n). 

Proof. We have, by the preceding discussion, 

Casep>(logn)/n: 

E(n.e,,,)Sn*. (~logp~+2)~0(n210g n). 

Case p S (log n)/n: 

E(n.e,,d)<E(n.e)Cp.n3SO(n2.10g n). 0 

In the remainder of this section we develop upper bounds for E( k. ered)_ Recall 

that k. ered is a product of two dependent random variables. In Lemma 3.12 we will 

understand ered as the dependent variable, i.e., we use the interpretation 

E(k.e,,d)=E(k).E(e,,dIk). 

This analysis is prepared in the next three lemmas. First we determine the expected 

size of chain 2 = Z( G,,) constructed in Algorithm B. The repeated application of 

Lemma 3.9 shows that 

E#‘$=(~-P)~- .n-h(Pr(k(G,,,)>i)). 

By simple transformations we can see that function f( i) = Pr( k( G,,) 2 i) decreases 

exponentially. 
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Now we analyse the construction of the chain decomposition (Algorithm B) more 

exactly. The algorithm iteratively constructs a chain 2 = Z(G), deletes Z from G 

and starts again with graph G’ = G -Z. Retain the notations: 

G,=(V,,E)=G,,,, G,=(K, E), 

V+,= V/i-Z(Gi)= V-Z;. 

For the chain Z = Z( G = (V, E)) there is 

(1) min(V)EZ, and 

(2) v E Z=+min(out(v)) E Z. 

Now we are going to compute the expected size of Z( G,,) in our random graph 

model. 

Lemma 3.9. E(IZ(G,,)I)=l+p.(IV/-1). 

Proof. LetTrV={l,...,n}withT={l=t,<t,<~~~<t,}.ThenT=Z(G)ifand 

only if 

(l,h)~E,Vl~h~t,~(l,t,)~E~(t,,h)aE,Vt,<h<r,~... 

~(t,,h)~E,Vt,~<h~n. 

Since all these events are independent, we get 

Pr( T = Z(G)) = p*-‘. (1 -p)(“~‘)~~“~‘) = piTi-1 . (1 -p)“p”i. 

For T, , T2 c V, we obtain 

T,=Z(G)r\ T2=Z(G) =+ T,= T, 

such that we have VT,, T, c V, T, # T,: 

Pr(T,=Zv T,=Z)=Pr(T,=Z)+Pr(T,=Z) 

and further 

Pr(lZ(G)I=l+l)= .P’. (1 +“-r’-‘. 

But this is a binomial distribution (see [4, Vol. 1, p. 146]), which implies 

E(IZ(G)])=l+p.(n-1). 0 

Since removal of Z,, . . . , Z, turns a random graph into a random graph, we 

get, by Lemma 3.9, E(lZ,l) = 1 +p. (j - 1) on the condition that (VI = j. This implies 

the following lemma. 

Lemma 3.10 

i-l 

E(I\/;/) = (1 -p)‘-‘. n- c Pr(k(G)zi-j).(l-p)‘. 
i-1 
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Proof. We first show by induction on i that 

1-1 
E(IV,I)=(l-p)‘-‘. n- C (1-p)‘+‘C’ Pr(/V,I=O).(l-p)‘-‘. 

I ~1 ,=I 
(i=l): E(IV,I)=IVI=n=p”.n-0. 

(jz.2): E(IV,+,I)=E(IV,I)-E(lZ,I) 

=E(lKlI-( .I? E(lz,lllvl=j).Pr(lVl=j)) ,po 

= E(I v,l) 

=E(IV,I)-(p.E(IV,I)+(l-p)-(l-p).Pr(IV,(=o)) 

=(I-p).E(IV,I)-(I-p)+(l-p).Pr(IV,I=O) 

II H.) 

( 

1-1 
= (1-P) (I-p)‘m’.n- C (I-p)‘+‘x’ Pr(IV,I=O)(l-p)‘-’ 

,--I I- 1 > 

-(1-p)+(l-p)*Pr(IV,/=O) 

=(l-p)‘.n- i (l-p)‘+ 1 Pr((V,(=O).(l-p)‘+‘-‘. 
,=-I ,-I 

And this ends the induction proof of our first statement. This expression for ~(1 VI) 

is equivalent to 

,-I , ~I 
E(IV,I)=(l--p)‘~‘.n- 1 (l-p)‘+ 1 Pr(IV/il=O).(l-p)‘-’ 

, = I I-1 I 
CT’ +: Pr(lV,m,I=O).(l-p)' 

=(l-p)‘-~‘.n-‘x’ (l-Pr()V_,I=O)).(l-p)’ 
I 1 i--y-----.J 

= Pr(/ v, )I f 0) 
=Pr(k(G)ZI-j) 

I-1 

E(IV,I)=(l-~1' '. n- 1 Pr(k(G)si-j).(l-p)‘. II 
,--I 

This last lemma allows us to give an upper bound for Pr( k(G,,,,) 2 i). 
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Lemma 3.11. Vl s is n: 

Pr(k(G,,,)z i)s(l-P)‘-‘.n. 

Proof. Since E(1 V,l) 2 0, we infer from Lemma 3.10 

,-I 

1 Pr(k(G)a i-j).(l-p)‘<(l -p)‘-‘.n. 
IFI 

Now, note that there is 

Pr(k(G)~i-l)CPr(k(G)Zi-2)~...~Pr(k(G)~l)=l. 

This implies 

,- I 
Pr(k(G)Zi-1). 1 (l-~)‘s(l-p)‘~‘.n 

, I 

+ Pr(k(G)si-1).(1-p) .(:_l:IPp:)c(l-p)l~.l.n 

j Pr(k(G)ai-l)s(l-p)‘~-‘.n. ‘J 

Lemma 3.11 leads to the first upper bound for E(k. ered). 

Lemma 3.12. Ler k,, =del.[-(4.10g n)/log(l -p)]. Then 

E(k.e,,,)~k,,.E(e,,,)+l. 

Proof. Let k,,= I-(4.1og n)/log(l -p)l; then we get by, Lemma 3.11, 

Pr(k(G)sk,,+l)s(l-p)“C1.n 

< (1 _p) ~(4-loe”J/loscl PI. n 

n 1 
=5 <- 

exp(4.log n) n3’ 

This implies for our product k. ere,,: 

(14) 

E(k.e,,,)= i l.E(e,,,Ik(G)=l).Pr(k(G)=l) 
I-I 

= 2 /.E(e,,,Ik(G)=l).Pr(k(G)=l) 
I ~I 

+ i I.E(e,,,\k(G)=I).Pr(k(G)=l) 
I--h<,+, 

Sk,,. 2 E(e,,,Ik(G)=l).Pr(k(G)=l)+n3. i Pr(k(G)= l) 
I=1 I=k”++1 
\ C 

=Pr(k(G)ak,,+l) 

(by (14)) 

s kl,.E(e,,,)+n’.’ 
n3’ 

0 
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We need a better bound for small p’s. 

Lemma 3.13. E(k.e,,,)c n*E(lout(l)l).(E(k)+l). 

Proof. First we need an upper bound for E( k( G) 1 y( 1) = I). 

We claim 

E(k(G,,,,) 1 y(l) = Z) s 1+ E(k(G,,)). (15) 

(Z=O): Then Z,(G,,)={l} and G-(l) is a random graph with n - 1 vertices. So 

we get 

E(k(G,,,)Ir(l)=O)=l+E(k(G,-,,,))c-+E(k(G,,,)). 

(131): Then y(l)21 implies jZ,(G,,,)132 and G - 2, (G) is a random graph 

with < n -2 vertices. We have 

E(k(G,,,)Iy(l)= Z)sl+E(k(G,-,,,))s l+E(k(G,,)). 

This implies for the product 

E(k.e,,,)~E(k.e)=E(k.y(l))+...+E(k.y(n))~n.E(k.y(l)) 

which implies 

n-1 

E(k=e,+J<n. C Z*E(k(G)ly(l)=Z)*Pr(y(l)=Z) 

(by (15)) 

I=0 

n-1 
<n. C Z.(E(k(G) 

I=0 

s n.(E(k(G))+l) 

)+l)*Pr(Y(l)=Z) 

4. Conclusion 

We presented an improved algorithm for computing the transitive closure of an 

acyclic digraph with running time O(k* ered), where ered is the number of edges in 

the transitive reduction and k is the width of the chain decomposition, a partition 

of V into distinct paths. To analyse the expected values of k, ered, e”, k- ered we 

used the G,,, model of a random graph. We found 

Pr( k( G,,) 2 i) s (1 -p)'-' . n VlSiSn, 

E(k)=O(log(;*“)), E(y”)=+F), 

F(y’,‘d)=-. 1 f, (n -F(Y:)), 

E(e,,d)=O(min(n~llogpl,p~n2)) =O(n.log n), 
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E(k. .%I) = 
0(n2) for log”n/ n S p < 1, 

O(n2. log log n) otherwise. 

Our data structure for representing the transitive closure, namely niv( v) for a vertex 

~1, the map id(v) and the chain decomposition Z, , . . . , Z, only used space O(n* k) 

in contrast to O(e*) of previous methods. Nevertheless we can execute the test 

“w E out*(v)” in time 0( 1). Moreover, with this data structure it is easy to compute, 

e.g., out*(u) n out*(v) in time O(k) and in general k is very much smaller than 

lout”( w)l + lout*(v)] 

5. Further remarks 

We think that the following questions are interesting: 
_ E( k. ered) c E(k) . E( ered)? Conjecture: Yes. 

- Do simple limit theorems exist for the k-, or y*-distribution? 
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A. Appendix 

Claim A.1 

Proof 

1 

( )( 

I-(I-p)-“-” 
p. 

= l-p 1 -(l-p)_’ 
) =$.(($J-1). 0 

Claim A.2 
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Proof 

K. Simon 

cp(cp-‘(x)) 2. --!- (( > 
~log~P~x+l~/~~log~l-p))+l~-l 

1-P 

-1 

P > 

1 (( > 
log(p~x+l)/(log IFlog(lEP)) 

=-. - 

1-P 

=k) > 

-1 
> 

1 1 l/~log(l-p) log(P.x+l) 

-1 
P 1-P > 

=~.(exp(losip.x+l))-l) 

+.x+l-l)-r 0 
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