
Theoretical Computer Science 58 (1988) 325-346

North-Holland

325

AN IMPROVED ALGORITHM FOR TRANSITIVE CLOSURE
ON ACYCLIC DIGRAPHS

Klaus SIMON

Fachbereich IO, Angewandte Mathematik und Informatik, CJniversitCt des Saarlandes, 6600

Saarbriicken, Fed. Rep. Germany

Abstract. In [6] Goralcikova and Koubek describe an algorithm for finding the transitive closure

of an acyclic digraph G with worst-case runtime O(n. e,,,), where n is the number of nodes and

ered is the number of edges in the transitive reduction of G. We present an improvement on their

algorithm which runs in worst-case time O(k. crud) and space O(n. k), where k is the width of a

chain decomposition. For the expected values in the G,,.,, model of a random acyclic digraph

with O<p<l we have

F(k)=O(y), E(e,,,)=O(n,logn),

E(k, ercd) =
O(n’) forlog’n/n~p<l.

0(n2 log log n) otherwise,

where “log” means the natural logarithm.

1. Introduction

A directed graph G = (V, E) consists of a vertex set V = {1,2,3,. . . , n} and an

edge set E c VX V. Each element (u, w) of E is an edge and joins 2, to w. If

G, = (V,, E,) and G, = (V,, E2) are directed graphs, G, is a subgraph of Gz if

V, G V, and E, c EZ. The subgraph of G, induced by the subset V, of V, is the

graph G, = (V,, E,), where E, is the set of all elements of E, which join pairs of

elements of V, . Unless we specify otherwise, any subgraph referred to in this paper

is the subgraph induced by its vertex set. A path in a graph from vertex v0 to vertex

V, is a sequence of vertices vO, u,, . . . , u, such that (vi_, , v,) is an edge for ic

{1,2, . , s}; s is the length of the path. The path is simple if all its vertices are

pairwise distinct. A path vO, . . . , v, is a cycle if s 2 1 and u,, = u, and a simple cycle

if in addition u,, . . . , u,-~ are pairwise distinct. A graph without cycles is acyclic.

A topological sorting of a digraph G = (V, E) is a mapping ord : V + { 1,2, . . , 1 Vi}

such that for all edges (u, w) E E we have ord(v) < ord(w). The relation between an

acyclic digraph G and a topological sorting is given in Theorem 1.1 (for a proof

see [8, pp. 320-3231).

Theorem 1.1. G = (V, E) is acyclic if and only if it has a topological sorting. A

topological sorting of an acyclic graph can be computed in linear time 0(/ VI + 1 E I).

Throughout this paper we will assume that the acyclic digraph G = (V, E) is

topologically sorted, i.e., (i, j) E E implies i <j and that the adjacency lists out(v) =

0304.3975/88/$3,50 0 1988, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82238824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

326 K. Simon

{w E V) (v, w) E E} are sorted in increasing order. This can be achieved in linear time

O(lVl+lEI) (see [8, p. 3231). Now we need some more definitions. The node w is

in the reflexive, transitive closure out*(v) if and only if there is a path from v to w

in G. The set outred(v) = {w E out(u) 1 there is no path of length at least 2 from zi to

w in G} is called the transitive reduction of the node ZJ. Let E* = {(q w) I w E out*(v)},

Ered = {(ZI, w) 1 w E outred(u)}; then G” = (V, E”) (Gred = (V, Ered)) is called the transi-

tive closure (transitive reduction) of G. Further we use the usual notation e = 1~1,

e*=IE*I, ered= IEredl, n = I VI, y(v) = lout(v)l, y*(v) = lout*(u)l, and yred(v) =

loutred(zJ)l.

Let out(v)={w,<* * . < w,}; then it is easy to see that we obtain

out*(v)={v}uout*(w,)uout*(w,)u~~ ~uout*(w,). (1)

For a topologically sorted digraph G = (V, E) the observation that

Wi~OUP(U) e wiEOut*(w,)u~~ ~uout*(w,_*)

e out*(w,)cout*(w,)u~~ ~uout*(wi_*) (2)

was made by GoralCikovA and Koubek to show G* = Gz,. Through negation from

(2) we get

OUtTed(V) = { Wi E OUt(V) I Wi f? OUt*(WI) U ’ . ’ U OUt*(Wi_1))

and further

(3)

IJ out*(w)= u out”(z). (4)
wEout ZiO”P(U)

Here we give their algorithm.

Algorithm A (GoralCikovd, Koubek [6])

Input: G=(V, E)

Output: out*(v) and outred(v), Vu E V

(1) for v+n downto 1 (* V={l,...,n}*)

(2) do

(3) out*(u)+(v);

(4) oufred(U) + 0;

(5) for VW E out(v) (* in increasing order *)

(6) do

(7) if w&out*(v)

(8) then

(9) out”(?.I) + out”(u) u 0Llt*(w);

(10) OUP(u) + oufred(u) u {w};

(11) fi

(12) od

(13) od

improved algorithm for transitive closure on acyclic digraphs 321

Inside loop (2)-(13) we use a bitvector for out*(u). So the test “WEOU~*(ZI)”

takes time O(1). Outside loop (2)-(13) the set out*(v) is kept as a linear list. This

implies that the operation out*(u) u out*(w) has execution time 0(lout*(w)l) = O(n)

and so we need total time 0(n. ered). We will show later that the expected execution

time is O(n2. log n) for this algorithm. In this paper we give a better method for

computing out*(u) u out*(w). Our improvement is based on an efficient data struc-

ture, the so-called chain decomposition.

2. The algorithm

Definition 2.1. Let G = (V, E) be an acyclic digraph. A partition Z,, . . . , 2, of V

(Z,#@ for lsi<k and Z,u.. . u Z, = V) is called a chain decomposition of G =

(V, E) if and only if every Z,, 1 s i c k, is a path in G. Because G is topologically

sorted, we obtain for a path Z, = {u, < . . . < v,}

The integer k is called the width of the decomposition. A chain decomposition

Z, , . . . , Z, induces the maps id, niv, and nivi. Let v E V, A c V, i, j E { 1, . . . , k}; then

id(v)=i e VEZ,,

niv,(A) = min(A n Zj), niv(A) = {niv;(A) 11 s j s k}.

In particular, we use the notation nivj(v) for niv,(out*(v)) and niv(v) for

niv(out*(u)). In this paper we have only A = out*(w,) u . . . u out*(w,) and therefore

A n Z, is a path in G with first node niv,(A) (see Fig. 1).

Now we come to the question how we can use a chain decomposition to speed

up the computation of the transitive closure? The critical observation is given in

Theorem 2.2.

Theorem 2.2. Vu E V:

out*(u)= U {wEZjIw>nivj(v)}.
,SjGk

Proof. Let u E V and let Z,, . . . , Z, be a chain decomposition. Then Z,, . . . , Z, are

a partition of V and we have Z, us . + u Z, = V. Since out*(v) g V, we get

out*(v) = n Z,).
ISjGk

Let Z, be a path v,, . . , v, with v, < v2 < * * . < q, niv,(v) = min(out*(v) n Z,) and

out*(v) n Z, # 0. Now nivj(v) is an element of out*(v) and therefore the set

328 K. Simon

Fig. 1.

(out*(u) n .Zj) is a tail of Zj, namely q, 2),+r, . .

out”(u) = IJ (out*(u)nzj) = u
,SjSk ISjSk

3 v,, where II, = nivj(v). Then we have

{wEZjIw>nivj(v)}. 0

This theorem shows that it is sufficient to compute niv,(v) for all 1 sjs k since

the computation of the set {w E Z, 1 w 2 nivj(v)} is trivial for a given chain Z,. In the

following we will use the convention min(0) = ~0. Now we describe relations that

we need for the efficient computation of niv(v). Let

niv,(w,) = niv;(out*(w,)), . . . , nivj(wS) = nivi(out*(w,))

are given; then we infer

nivj(out*(w,) u . . . u out*(w,))

= min((out*(w,) u . . . u out*(w,)) n Z,)

= min((out*(w,) n Z,) u * * * u (out*(w,) n Zj)

= min(min(out*(w,) n Zj), . . . , min(out*(w,) n Z,))

= min(niv,(out*(w,)), . . . , nivj(out*(w,)))

= min(nivj(w,), . . . , niv,(w%)).

Now we combine expression (5) with (1) and this leads us to Theorem 2.3.

(9

Improved algorithm for transitive closure on acyclic digraphs 329

Theorem 2.3. VVE V, vj, lsjsk:

niv, (0) =
min({nivj(w) 1 w E out(v)}) ifj f id(u),

V otherwise.

Proof. Letout(u)={w,,...,w,};thenweget

niv;(v) = niv.i(out*(u))

(I)
=niv,({v}uout*(w,)u.. .uout*(ws))

=<M A

= min(({ u} u A) n Z,)

=min(({u}nZ,)u(AnZ,))

= min(min({ u} n Z,). min(A n Zj)) i
=niv,(A)

(5)
=min(min({u}nZ,),min(niv,(w,) ,..., nivj(w,)))

min(niv,(w,) ,..., niv,(w,)) if v&Z,,

V otherwise. 0

With Theorem 2.3 it is clear how we compute niv(u) = niv(out*(u)). In Algorithm

A we replace the operation

out”(u) +- out*(v) u out*(w)

by

niv(out*(v)) + niv(out*(0) u out*(w)).

With expression (5) this reduces the execution time from

O(Jout”(w)l) ‘LL51 O(n)

to

O(lniv(out*(w))l) = O(k).

In general we find that k is very much smaller as lout*(w)1 (see Section 3). Now it

remains the problem how we implement the test “w E out*(u)” from Algorithm A.

If we want to use our new data structure, we cannot realize set out*(u) as a bitvector.

But now we use an array of integers for set niv(out*(0)) and Lemma 2.4 shows this

is sufficient.

Lemma 2.4. Let u, w,, . . . , w, E V and w E Z, (a id(w) = j). Then there is

wEout*(w,)u... uout*(w,) @ w<min(nivid,.,(w,), . .,niv,,,,.,(w,)).

330 K. Simon

Proof. With A = out*(w,) u * * * u out*(w,) we get

w E A ~3 W E An Zid(w)

e w 2 min(A CT Zid(,,>))

ti w 2 niVidcw)(A)

g W 2 min(niVidcwj(wl), . . , niVid(h,j(W,)).

Our claim is inferred through negation. 0

z-1 = { 1,3,5,11,12,13 }

22 = { 2,4,8,10 }

23 = {6,7,9)

Fig. 2. An example for chain decomposition.

Improved algorithm for transifiue closure on acyclic digraphs 331

A chain decomposition of an acyclic graph is easily constructed in time 0(n + e).

Now we give one particular algorithm. In a greedy manner we find a first path Z.

We remove Z from G = (V, E) and restart the method (see Fig. 2).

Now have a look at Algorithm B. At line (4) V, is realized as a bitvector S. Line

(6) is implemented by sliding a pointer pt across bitvector S. All elements to the

left of pt are not in V. The sets Zi are kept as linear lists. Then loop (7)-(13) takes

time 0(7(v)) for fixed U. Hence, the total time (l)-(18) is O(n + e). Note that the

total time spent in line (6) is O(n) since pt is slid one across vector S.

Algorithm B (computation of a chain decomposition)

Input: G=(V, E)

Output: Z,, . . . , Z,, id

(1)
(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

it1

for VVE V do id[v]+O od

v,+V

while Vi # 0

do

x+min(V,)

Z+(x)
while 3y E Vi with (x, _y) E E

do

let y be minimal with y E V; and (x, y) E E

Z-Z+(Y)

x+Y
od

zi + z

v;+, + vi - z,

for Vu E Z, do id[v] + i od

i+l+l

od

In the following when we speak about a chain decomposition we will mean the

decomposition constructed by this algorithm and we define the width k = k(G) of

the chain decomposition by

k ymax({sEN)Z,#O}).

Now we can compute niv(v) for all v E V In Algorithm C we use the linear list

nivlist[v] for keeping niv(v); nivfield, id Ire arrays of integers. So we come to

Algorithm C.

Algorithm C (computation of niv(v))

Input: G=(V,E),id:V+{l,...,k}

332 K. Simon

Output: niv(u), outred(v), Vu E V

(1)
(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

for s + 1 to k do nivfield [s] t ~0 od

for v -+ n downto 1

do

outTed[v] t $4; nivlist [211 + 8;

for VW E out(v) (* in increasing order *)

do

if w < nivfield[id[w]]

then

outred[v] + oLltred[v] u {w}

for Vp E nivlist[w]

do

nivfield[id[p]] + min(nivfield[id[p]], p)

od
fi

od

nivfield[id[v]] + v;

for s t 1 to k

do

if nivfield[s] # 00

then nivlist[v] + nivlist[v] u nivfield[s] fi

nivfield[s] + ~0

od

od

Correctness is shown by induction, starting with v = n. In particular we get, after

every execution of loop (2)-(23),

nivlist[v] = niv(v) and outred[v] = outred(v).

(v = n): Since loop (5)-(15) is not executed, we obtain nivlist[n] = {n} = niv(n).

(v < n). Now the induction hypothesis is

Vw, v<wSn: nivlist[w] = niv(w).

There is, after line (13),

Vp, p E nivlist[w]: nivfield[id[p]lne, = min(nivfield[id[p]lold, p).

With the induction hypothesis this is equivalent to

Vj, 1 s j s k; nivfield[jlnew = min(nivfield[jlold, niv,(w)) (*)
since

p = niVidcpj(W) Vp E nivlist[w] (‘C) niv(w).

Improved algorithm for transitive closure on acyclic digraphs 333

We infer inductively from (*) that before the execution of loop (6)-(15) it is valid

that

nivfield[j] = min({niv,(z) (z E outred(v) A z < w}). (**)

Consequently, line (7) is executed if and only if

w < nivfield[id[w]] ‘2 w < nivid(,,(v) (L$) w E outTed(0).

This shows the correct construction of outred. With induction on the number of

executions of loop (6)-(15) we get from (**) after line (16) Vj, 16 jc k:

nivfield[j] =
min({nivj(w) 1 w E outred(v)}) if j # id(v),
2,

otherwise

and this leads with Theorem 2.3 to

nivfield[j] = niv;(v) Vj, 1 s j 4 k.

This ends the correctness proof of Algorithm C.

Running time: Outside lines (6)-(15) the cost of the algorithm is clearly O(e+

n. k). One execution of the loop (lo)-(13) has cost O(k) and this loop is executed

only for (u, w) E Fred. Hence, for Algorithm C we have total cost

O(e+n.k)+O(e,,,.k)=O(e+e,,,*k).

Theorem 2.5. The improved algorithm computes the transitive closure of an acyclic

digraph in time O(e* f ered. k).

Proof. Running time of the decomposition algorithm is 0(n + e). The computation

of niv(v), Vu E V needs time 0(e+ ered. k). From a chain decomposition of

21,. . ., 2, with given id(v), niv(v), Vu E V, it is now trivial to compute E* in time

O(e*) (recall Theorem 2.2). Hence, we get a total running time

O(n+e)+O(e+e,,,. k)+O(e*)=O(e*+e,,,.k). 0

3. Average case

For the average case analysis we use the G,,, model of a random acyclic digraph

with vertex set (1, . . . , n} in which the possible edges (i, j), 1 s i < j G n, occur

independently with probability p, 0 < p < 1. An introduction to the theory of random

graphs was given by Erdos and Spencer in [3]. By this model the size of k, ered, or

k. ered is a random variable. Our aspiration is to obtain good upper bounds for the

expected values of these random variables, especially for the product k. ere+ Note

that the latter is a product of two dependent random variables and its analysis takes

a lot of time. Therefore we give the main findings first and see the proofs and other

results later in their logical order. We write Pr(A) for the probability of event A

334 K. Simon

and further Pr(A 1 B) for the probability of A on condition of event B. Let X be a

random variable; then E(X) means the expected value of X. “log” stands for the

natural logarithm.

(Lemma 3.4) E(k) s
log(p* n) + 1

P ’

(Corollary 3.8)

(Lemma 3.12)

E(ered) s n. (log n + 2),

log n
E(k. ered) S 4.----. E(e,,J + I,

P

(Lemma 3.13) E(k*e,,,)s(E(k)+l).E(e).

Theorem 3.1. By use of the G,,, model of a random digraph our Algorithm C computes

the transitive closure of an acyclic digraph in expected time:

0(n2) forecp< 1 and

log2 n
O(n2.10glog n) for O<p<-

n ’

Proof. For p 2 (log2 n)/n we use Lemma 3.12 and otherwise Lemma 3.13.

Case p 2 (log2 n)/p:

log n
E(e,,,)S4.-. E(e,,J+ I

P

log n

S4’(log2 n)/n
.n.(log n+2)+1

-iO(n2*s) SO(n2).

Case p=5 (log2 n)/n:

E(k.e,,,)S(E(k)+l)*E(e)sO
hdp* n)

+p. n2
P >

<O(n’-(log(*.n))) SO(n2.(2.10g(log n)))

SO(n2*loglog n). 0

In the random graph G,,, we describe the size of the chain decomposition

k = k(G,,p) = k,, and the size of the transitive closure of the first vertex y*(l) =

Y*(~)(G~,~) = yz as a Markov chain with discrete time t = n [4]. First we consider

the behaviour of k at the point of transition from n to n + 1. If k,, = 1, 1 s IS n, then

Improved algorithm for transitive closure on acyclic digraphs 335

we get 1 G k,,, G I+ 1 since the width of the chain decomposition either increases

by one or does not change. When it increases, i.e., when the vertex n + 1 is a new

chain Z,,, = {n + l}, then there is no chain Zj, 1 S j G 1, which can be extended to

n + 1. More formally,

k It+, =1+1 e Vj, 1SjSl: (max(Z,), n+l)GE.

This leads to the transition probability

Wk+, =l+l)k,=l)=Pr(Vj,l~j~l:(max(Zj),n+l)~E)

= (1 -p)‘.

Note that the 1 possible edges are independent. This implies

Pr(k,+, = lIk,=l)=l-Pr(k,+, =1+11k,=l)=l-(l-p)‘.

(6)

(7)

Remark. Let k,,, = k,; then the current chain decomposition Z, , . . . , Z, can be

extended to the new node n + 1, and Algorithm B links the vertex n + 1 to the chain

with lowest index. Let (max(Z,), n + 1) E E and

(max(Z,), n + 1) & E, . . . , (max Zi--l) & E;

Then Algorithm B connects n + 1 with chain Zi. It is easy to see that this special

choice has no influence on the future growth of the chain decomposition.

In the same way as k we treat yX = loutz(l)l:

Pr(yz+, = l+l~y~=l)=Pr(3w~out~(l):(w,n+l)~E)

= 1 -(l-p)’ (8)

and

Pr(~~+,(l)=l~y~=l)=1-Pr(y~+,=l+1~y~=l)=(1-p)’. (9)

With the additional notation k,,, =&f Pr(k, = 1) and yz, =def Pr(7: = 1) we find that

k n, I, yz,, satisfy the following recurrence.

Lemma 3.2. Vn E N, Vl, 1 G 1 s n,

k,,, = 1, k,,=(l-(l-p)‘).k,~,,,+(l-P)‘-‘. k,-I,,_,

and

YTl = 1, r:,, = (1 -p)'- Y:-l.r+(l -(1 -p)‘-‘). y:_1,,-1.

(10)

(11)

336 K. Simon

Proof. Clear by the preceding discussion. 0

This description shows that k, (yz respectively) is a discrete-time, pure-birth

process (see [4]). By a discrete-time, pure-birth process we understand a sequence

of random variables X,, t E N, assuming the states 1 = 1,2,3, . . . with corresponding

probabilities P,,I and a sequence of transition probabilities AI, 0 =S Al s 1 and I E N,

so that

P,,,=l and P,,,=(l-h,).P,~,,,+A,~I.P,_,,,_,,

i.e., the process starts at epoch 1 from state 1; direct transitions from a state Z are

only possible to I+ 1; these transitions have probability A,. To provide for an easy

treatment we first give a very useful identity of this kind of birth process.

Let cp be a real function with

Then we state the following lemma.

Lemma 3.3. E(rp(X,)) = t - 1, Vt E N.

Proof. We use induction on t.

(t=l): E(X,)=,~,~(Z).P,,,=Ol=O.

(t 2 2): Our induction hypothesis (I.H.) is E((p(X,_,)) = t -2. Then we have

Hv(X,)) = t cp(z). Pt,/
I=1

= ,i, cp(Z).((l -A,).P,-,,,+Ar~,.Pr--I,,-,)

+ i c~(0.L,*f’-,,I-,- i cp(~)~A,~f’-,,r
I=, r=,

= E(p(X,-,))= r-2

= t-2+ c q(~)~A,_,~P,_,,,_,- c cp(Z).A,.P,_,,,
/=I /=I

(note that P,_l,o= 0 = P,_,,,)

f-1 f-l

= t-2+ 1 ~(Z+l).A,.P,_,,,- c cp(Z).A,.P, _,,,
/=I I=1

337

(since cp(1+1)=cp(I)+l/A,)

By use of Lemma 3.3 a simple deduction leads to Lemmas 3.4 and 3.5.

Lemma 3.4

Proof. With expression (6) there is

A,(k) = Pr(k,, = I+ 11 k, ~, = I) = (1 -p)‘.

By a simple application of the summation formula for geometric series (see Appendix

A) we get

t-1 1

p(l)= c -=
,==I A,(k)

Of course, cp(l) is an exponential function and so cp(I) is convex, i.e.,

Vx ,,..., x,,E&!: cy ,,..., cu,,ER+with i a,-1.
I-,

We get

‘p(a,.x,+. . ~+cu;x,)~a,~cp(x,)+~~ ~+q;p(x,,).

This implies with a, = k,,,, and x, = I, 1 G Is n, Jensen’s inequality

cp(E(k,)) zq(j, l.k.,,,) s j, cp(l). k,,,, z’” E(cp(k,,)).

Now we apply Lemma 3.3 and the inverse function cp -’ to cp given by

cp_‘(x) = Jog(p.x+ 1)+ 1

-log(l -P)

338 K. Simon

We find

cp(E(k,))iE(cp(k,))(L%-l

e cp(E(k,))c n - 1

@ cp-‘(cp(E(k,))) c cp-‘(n - 1)

,S E(k,)s
log(P+-l)+l)+l q

-log(l -p) .

Lemma 3.5

E(lout*(l)(G,,)I) 2 n + 1 - lhs PI + 1
. p

Proof. By term (7) we have A, = A,(y”) = 1 - (1 -p)’ and, consequently, for 1 E N,

&i:;=i+‘i’ 1
p j-2 1-(1-p)’

++;z; I,‘, l -(1’1,)- =$+ I

I-1 dx

1 1-(1-p)”

(see [l, P. 871)

$+(i-l)-
log(1 -(l -p>‘-‘)

lo&d1 -P)

_,+lw(l-(VP))

lw(l -P)

~(~-~)+llogP/il:I1
P

And, consequently, cp(I) S (I - 2) + ([log pi + 1)/p =def c$(1). This implies

E(cp(y:))= f ~(O~Y:,&~ +(O*r?,,=E(+(r:))
/=I

also by Lemma 3.3 and, by the fact that C$ is a straight line,

n - 1 = E(cp(d))s E(~(Y:)) = 4@(d)) = E(d)+
IlogPl+l_2

P

a E(y;)~n+l-‘l’~~‘+~. 0
P

Using the notation yzd= yred(l)(G,,) for the size of the transitive reduction of

the first vertex, we show that the lower bound for E(yz) gives an upper bound for

the expected value of the reduction E(y’,‘). This can be reached by comparing

AE(yz) = Pr((1, n) E E”) with AE(yTd) = Pr((1, n) E Ered).

339

Lemma 3.6

E(y’,‘d)=-.
1 f, (n -E(Y:)).

Proof. Let A be the event “(1, n) E E*” with

Pr((l,n)EE*)=Pr(3wEoutz_,(l): (w,n)rE).

Then, by splitting A on yz ,, we have

Pr((l,n)~E*)=~~‘Pr(AIyf-,=I).Pr(y” - 1)
, = I ,‘-“-’ d

=(lL(lbp)‘) ‘Y,, I.,

=~~:(l-il-P)t)-Y,.t.

Let n 3 2; then we find

(12)

Pr((1, n)EEred)=Pr((l, n)E E).Pr(VwEout:_,(l), wf 1: (w, n)G E)

II I

=P’ c (1 -PI’-” YL,.,
t-i

(splitting by y:_,)

=Jq’(l-l+(l-p)‘).yZ ,,,
l-p /~I

P =-.
1-P (l-“~‘(l-(l-p)‘). y;_,.,

I-1 >

Thus we arrive at

Now the proof is easily completed:

E(rTd) = i E((l,j) s Ed = i Pr((l,j) E Ed
j-2 1-2

,131 11
= c

,__z
&,(I-W(l,i)~E*))

P =-.
1-P

n-l- 2 Pr((l,j)E E*)
, -:2

(13)

Corollary 3.7. E(ercd) c n. (Ilog PI +2).

340 K. Simon

Proof

E(e,,d = E(yred(l))+ * . . + E(yred(n)) =S n. E(yred(1)) = n. E(yrd).

By Lemma 3.6,

E(ered) = n.-. 1 “, (n-E(d))

(by Lemma 5)

(by Taylor)

<*. (l-p)+$(l-p)2+;(l-p)‘+* * ‘$-I

. (1-P

s nqIlogplt2). cl

Corollary 3.8. 7’he expected running time of Algorithm B, according to GoralCikova’

and Koubek [6], is

0(min(n2~(~logp+2),p~n3))=O(n2~log n).

Proof. We have, by the preceding discussion,

Casep>(logn)/n:

E(n.e,,,)Sn*. (~logp~+2)~0(n210g n).

Case p S (log n)/n:

E(n.e,,d)<E(n.e)Cp.n3SO(n2.10g n). 0

In the remainder of this section we develop upper bounds for E(k. ered)_ Recall

that k. ered is a product of two dependent random variables. In Lemma 3.12 we will

understand ered as the dependent variable, i.e., we use the interpretation

E(k.e,,d)=E(k).E(e,,dIk).

This analysis is prepared in the next three lemmas. First we determine the expected

size of chain 2 = Z(G,,) constructed in Algorithm B. The repeated application of

Lemma 3.9 shows that

E#‘$=(~-P)~- .n-h(Pr(k(G,,,)>i)).

By simple transformations we can see that function f(i) = Pr(k(G,,) 2 i) decreases

exponentially.

Improved algorithm for transitive closure on acyclic digraphs 341

Now we analyse the construction of the chain decomposition (Algorithm B) more

exactly. The algorithm iteratively constructs a chain 2 = Z(G), deletes Z from G

and starts again with graph G’ = G -Z. Retain the notations:

G,=(V,,E)=G,,,, G,=(K, E),

V+,= V/i-Z(Gi)= V-Z;.

For the chain Z = Z(G = (V, E)) there is

(1) min(V)EZ, and

(2) v E Z=+min(out(v)) E Z.

Now we are going to compute the expected size of Z(G,,) in our random graph

model.

Lemma 3.9. E(IZ(G,,)I)=l+p.(IV/-1).

Proof. LetTrV={l,...,n}withT={l=t,<t,<~~~<t,}.ThenT=Z(G)ifand

only if

(l,h)~E,Vl~h~t,~(l,t,)~E~(t,,h)aE,Vt,<h<r,~...

~(t,,h)~E,Vt,~<h~n.

Since all these events are independent, we get

Pr(T = Z(G)) = p*-‘. (1 -p)(“~‘)~~“~‘) = piTi-1 . (1 -p)“p”i.

For T, , T2 c V, we obtain

T,=Z(G)r\ T2=Z(G) =+ T,= T,

such that we have VT,, T, c V, T, # T,:

Pr(T,=Zv T,=Z)=Pr(T,=Z)+Pr(T,=Z)

and further

Pr(lZ(G)I=l+l)= .P’. (1 +“-r’-‘.

But this is a binomial distribution (see [4, Vol. 1, p. 146]), which implies

E(IZ(G)])=l+p.(n-1). 0

Since removal of Z,, . . . , Z, turns a random graph into a random graph, we

get, by Lemma 3.9, E(lZ,l) = 1 +p. (j - 1) on the condition that (VI = j. This implies

the following lemma.

Lemma 3.10

i-l

E(I\/;/) = (1 -p)‘-‘. n- c Pr(k(G)zi-j).(l-p)‘.
i-1

342 K. Simon

Proof. We first show by induction on i that

1-1
E(IV,I)=(l-p)‘-‘. n- C (1-p)‘+‘C’ Pr(/V,I=O).(l-p)‘-‘.

I ~1 ,=I
(i=l): E(IV,I)=IVI=n=p”.n-0.

(jz.2): E(IV,+,I)=E(IV,I)-E(lZ,I)

=E(lKlI-(.I? E(lz,lllvl=j).Pr(lVl=j)) ,po

= E(I v,l)

=E(IV,I)-(p.E(IV,I)+(l-p)-(l-p).Pr(IV,(=o))

=(I-p).E(IV,I)-(I-p)+(l-p).Pr(IV,I=O)

II H.)

(

1-1
= (1-P) (I-p)‘m’.n- C (I-p)‘+‘x’ Pr(IV,I=O)(l-p)‘-’

,--I I- 1 >

-(1-p)+(l-p)*Pr(IV,/=O)

=(l-p)‘.n- i (l-p)‘+ 1 Pr((V,(=O).(l-p)‘+‘-‘.
,=-I ,-I

And this ends the induction proof of our first statement. This expression for ~(1 VI)

is equivalent to

,-I , ~I
E(IV,I)=(l--p)‘~‘.n- 1 (l-p)‘+ 1 Pr(IV/il=O).(l-p)‘-’

, = I I-1 I
CT’ +: Pr(lV,m,I=O).(l-p)'

=(l-p)‘-~‘.n-‘x’ (l-Pr()V_,I=O)).(l-p)’
I 1 i--y-----.J

= Pr(/ v,)I f 0)
=Pr(k(G)ZI-j)

I-1

E(IV,I)=(l-~1' '. n- 1 Pr(k(G)si-j).(l-p)‘. II
,--I

This last lemma allows us to give an upper bound for Pr(k(G,,,,) 2 i).

Improved a/gorirhm ,for transitive closure on acylic digraphs 343

Lemma 3.11. Vl s is n:

Pr(k(G,,,)z i)s(l-P)‘-‘.n.

Proof. Since E(1 V,l) 2 0, we infer from Lemma 3.10

,-I

1 Pr(k(G)a i-j).(l-p)‘<(l -p)‘-‘.n.
IFI

Now, note that there is

Pr(k(G)~i-l)CPr(k(G)Zi-2)~...~Pr(k(G)~l)=l.

This implies

,- I
Pr(k(G)Zi-1). 1 (l-~)‘s(l-p)‘~‘.n

, I

+ Pr(k(G)si-1).(1-p) .(:_l:IPp:)c(l-p)l~.l.n

j Pr(k(G)ai-l)s(l-p)‘~-‘.n. ‘J

Lemma 3.11 leads to the first upper bound for E(k. ered).

Lemma 3.12. Ler k,, =del.[-(4.10g n)/log(l -p)]. Then

E(k.e,,,)~k,,.E(e,,,)+l.

Proof. Let k,,= I-(4.1og n)/log(l -p)l; then we get by, Lemma 3.11,

Pr(k(G)sk,,+l)s(l-p)“C1.n

< (1 _p) ~(4-loe”J/loscl PI. n

n 1
=5 <-

exp(4.log n) n3’

This implies for our product k. ere,,:

(14)

E(k.e,,,)= i l.E(e,,,Ik(G)=l).Pr(k(G)=l)
I-I

= 2 /.E(e,,,Ik(G)=l).Pr(k(G)=l)
I ~I

+ i I.E(e,,,\k(G)=I).Pr(k(G)=l)
I--h<,+,

Sk,,. 2 E(e,,,Ik(G)=l).Pr(k(G)=l)+n3. i Pr(k(G)= l)
I=1 I=k”++1
\ C

=Pr(k(G)ak,,+l)

(by (14))

s kl,.E(e,,,)+n’.’
n3’

0

344 K. Simon

We need a better bound for small p’s.

Lemma 3.13. E(k.e,,,)c n*E(lout(l)l).(E(k)+l).

Proof. First we need an upper bound for E(k(G) 1 y(1) = I).

We claim

E(k(G,,,,) 1 y(l) = Z) s 1+ E(k(G,,)). (15)

(Z=O): Then Z,(G,,)={l} and G-(l) is a random graph with n - 1 vertices. So

we get

E(k(G,,,)Ir(l)=O)=l+E(k(G,-,,,))c-+E(k(G,,,)).

(131): Then y(l)21 implies jZ,(G,,,)132 and G - 2, (G) is a random graph

with < n -2 vertices. We have

E(k(G,,,)Iy(l)= Z)sl+E(k(G,-,,,))s l+E(k(G,,)).

This implies for the product

E(k.e,,,)~E(k.e)=E(k.y(l))+...+E(k.y(n))~n.E(k.y(l))

which implies

n-1

E(k=e,+J<n. C Z*E(k(G)ly(l)=Z)*Pr(y(l)=Z)

(by (15))

I=0

n-1
<n. C Z.(E(k(G)

I=0

s n.(E(k(G))+l)

)+l)*Pr(Y(l)=Z)

4. Conclusion

We presented an improved algorithm for computing the transitive closure of an

acyclic digraph with running time O(k* ered), where ered is the number of edges in

the transitive reduction and k is the width of the chain decomposition, a partition

of V into distinct paths. To analyse the expected values of k, ered, e”, k- ered we

used the G,,, model of a random graph. We found

Pr(k(G,,) 2 i) s (1 -p)'-' . n VlSiSn,

E(k)=O(log(;*“)), E(y”)=+F),

F(y’,‘d)=-. 1 f, (n -F(Y:)),

E(e,,d)=O(min(n~llogpl,p~n2)) =O(n.log n),

Improved algorithm for transitive closure on acyclic digraphs 345

E(k. .%I) =
0(n2) for log”n/ n S p < 1,

O(n2. log log n) otherwise.

Our data structure for representing the transitive closure, namely niv(v) for a vertex

~1, the map id(v) and the chain decomposition Z, , . . . , Z, only used space O(n* k)

in contrast to O(e*) of previous methods. Nevertheless we can execute the test

“w E out*(v)” in time 0(1). Moreover, with this data structure it is easy to compute,

e.g., out*(u) n out*(v) in time O(k) and in general k is very much smaller than

lout”(w)l + lout*(v)]

5. Further remarks

We think that the following questions are interesting:
_ E(k. ered) c E(k) . E(ered)? Conjecture: Yes.

- Do simple limit theorems exist for the k-, or y*-distribution?

Acknowledgment

This paper owes much to the help that I have received from Kurt Mehlhorn. My

thanks to him for this support. Philippe Flajolet has published a paper on “Prob-

abilitic counting” [5]. In this paper he has dealt with the k-distribution independently

from our work. In particular, he has obtained the term in Lemma 3.4 and shown

that the variance of the k-distribution is very small.

A. Appendix

Claim A.1

Proof

1

()(

I-(I-p)-“-”
p.

= l-p 1 -(l-p)_’
) =$.(($J-1). 0

Claim A.2

346

Proof

K. Simon

cp(cp-‘(x)) 2. --!- ((>
~log~P~x+l~/~~log~l-p))+l~-l

1-P

-1

P >

1 ((>
log(p~x+l)/(log IFlog(lEP))

=-. -

1-P

=k) >

-1
>

1 1 l/~log(l-p) log(P.x+l)

-1
P 1-P >

=~.(exp(losip.x+l))-l)

+.x+l-l)-r 0

References

[l] I.N. Bronstein and K.A. Semendjajew, Taschenbuch der Mathemarik (Deutsch, Frankfurt/Main,

1981).

[2] M. O’hEigeartaigh, J.K. Lenstra and A.H.G. Rinnooy Kan, Combinatorial Optimizarion (Wiley, New

York, 1985).

[3] P. ErdGs and J. Spencer, Probabilistic Methods in Combinatorics (Academic Press, New York, 1974).

[4] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. l-2 (Wiley, New York,

1960 and 1966).

[5] Ph. Flajolet, Approximate counting: a detailed analysis, BIT 25 (1985) 113-134.

[6] A. GoralCikova and V. Koubek, A reduct and closure algorithm for graphs, in: Proc. Conf: on

Mathematical Foundarions of Computer Science (1979) Lecture Notes in Computer Science 74

(Springer, Berlin, 1979) 301-307.

[7] A.J. Jammel and H.G. Stiegler, On expected costs of deadlock detection, Inform. Process. Left. 11

(1980) 229-231.

[S] K. Mehlhorn, Data Srructures and Algorithms, Vol. 2: Graph Algorithms and NP-Completeness, EATCS

Monographs in Computer Science 2 (Springer, Berlin, 1984).
[9] C.P. Schnorr, An algorithm for transitive closure with linear expected time, SIAM J. Compuf. 7

(1978) 124-133.

