AN IMPROVED ALGORITHM FOR TRANSITIVE CLOSURE ON ACYCLIC DIGRAPHS

Klaus SIMON

Fachbereich 10, Angewandte Mathematik und Informatik, Universität des Saarlandes, 6600 Saarbrücken, Fed. Rep. Germany

Abstract

In [6] Goralćíková and Koubek describe an algorithm for finding the transitive closure of an acyclic digraph G with worst-case runtime $O\left(n \cdot e_{\text {red }}\right)$, where n is the number of nodes and $e_{\text {red }}$ is the number of edges in the transitive reduction of G. We present an improvement on their algorithm which runs in worst-case time $\mathrm{O}\left(k \cdot e_{\text {red }}\right)$ and space $\mathrm{O}(n \cdot k)$, where k is the width of a chain decomposition. For the expected values in the $G_{n, p}$ model of a random acyclic digraph with $0<p<1$ we have

$$
\begin{aligned}
& E(k)=\mathrm{O}\left(\frac{\log (p \cdot n)}{p}\right), \quad E\left(e_{\mathrm{red}}\right)=\mathrm{O}(n \cdot \log n) \\
& E\left(k \cdot e_{\mathrm{red}}\right)= \begin{cases}\mathrm{O}\left(n^{2}\right) & \text { for } \log ^{2} n / n \leqslant p<1 \\
\mathrm{O}\left(n^{2} \cdot \log \log n\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

where "log" means the natural logarithm.

1. Introduction

A directed graph $G=(V, E)$ consists of a vertex set $V=\{1,2,3, \ldots, n\}$ and an edge set $E \subseteq V \times V$. Each element (v, w) of E is an edge and joins v to w. If $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are directed graphs, G_{1} is a subgraph of G_{2} if $V_{1} \subset V_{2}$ and $E_{1} \subseteq E_{2}$. The subgraph of G_{2} induced by the subset V_{1} of V_{2} is the graph $G_{1}=\left(V_{1}, E_{1}\right)$, where E_{1} is the set of all elements of E_{2} which join pairs of elements of V_{1}. Unless we specify otherwise, any subgraph referred to in this paper is the subgraph induced by its vertex set. A path in a graph from vertex v_{0} to vertex v_{s} is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{s}$ such that $\left(v_{i-1}, v_{i}\right)$ is an edge for $i \in$ $\{1,2, \ldots, s\} ; s$ is the length of the path. The path is simple if all its vertices are pairwise distinct. A path v_{0}, \ldots, v_{s} is a cycle if $s \geqslant 1$ and $v_{0}=v_{s}$ and a simple cycle if in addition v_{1}, \ldots, v_{s-1} are pairwise distinct. A graph without cycles is acyclic. A topological sorting of a digraph $G=(V, E)$ is a mapping ord: $V \rightarrow\{1,2, \ldots,|V|\}$ such that for all edges $(v, w) \in E$ we have $\operatorname{ord}(v)<\operatorname{ord}(w)$. The relation between an acyclic digraph G and a topological sorting is given in Theorem 1.1 (for a proof see [8, pp. 320-323]).

Theorem 1.1. $G=(V, E)$ is acyclic if and only if it has a topological sorting. A topological sorting of an acyclic graph can be computed in linear time $\mathrm{O}(|V|+|E|)$.

Throughout this paper we will assume that the acyclic digraph $G=(V, E)$ is topologically sorted, i.e., $(i, j) \in E$ implies $i<j$ and that the adjacency lists out $(v)=$
$\{w \in V \mid(v, w) \in E\}$ are sorted in increasing order. This can be achieved in linear time $\mathrm{O}(|V|+|E|)$ (see [8, p. 323]). Now we need some more definitions. The node w is in the reflexive, transitive closure out* (v) if and only if there is a path from v to w in G. The set out ${ }^{\text {rcd }}(v)=\{w \in \operatorname{out}(v) \mid$ there is no path of length at least 2 from v to w in $G\}$ is called the transitive reduction of the node v. Let $E^{*}=\{(v, w) \mid w \in$ out $*(v)\}$, $E_{\text {red }}=\left\{(v, w) \mid w \in \operatorname{out}^{\text {red }}(v)\right\}$; then $G^{*}=\left(V, E^{*}\right)\left(G_{\text {red }}=\left(V, E_{\text {red }}\right)\right)$ is called the transitive closure (transitive reduction) of G. Further we use the usual notation $e=|E|$, $e^{*}=\left|E^{*}\right|, \quad e_{\text {red }}=\left|E_{\text {red }}\right|, \quad n=|V|, \quad \gamma(v)=|\operatorname{out}(v)|, \quad \gamma^{*}(v)=\mid$ out ${ }^{*}(v) \mid, \quad$ and $\quad \gamma^{\text {red }}(v)=$ \mid out ${ }^{\text {red }}(v) \mid$.

Let out $(v)=\left\{w_{1}<\cdots<w_{s}\right\}$; then it is easy to see that we obtain

$$
\begin{equation*}
\text { out }^{*}(v)=\{v\} \cup \text { out }^{*}\left(w_{1}\right) \cup \text { out }^{*}\left(w_{2}\right) \cup \cdots \cup \text { out }^{*}\left(w_{s}\right) \tag{1}
\end{equation*}
$$

For a topologically sorted digraph $G=(V, E)$ the observation that

$$
\begin{align*}
w_{i} \notin \text { outrd }^{\text {red }}(v) & \Leftrightarrow w_{i} \in \text { out }^{*}\left(w_{1}\right) \cup \cdots \cup \text { out }^{*}\left(w_{i-1}\right) \\
& \Leftrightarrow \operatorname{out}^{*}\left(w_{i}\right) \subseteq \text { out }^{*}\left(w_{1}\right) \cup \cdots \cup \text { out }^{*}\left(w_{i-1}\right) \tag{2}
\end{align*}
$$

was made by Goralćíková and Koubek to show $G^{*}=G_{\text {red }}^{*}$. Through negation from (2) we get

$$
\begin{equation*}
\text { out }^{\text {red }}(v)=\left\{w_{i} \in \operatorname{out}(v) \mid w_{i} \notin \text { out }^{*}\left(w_{1}\right) \cup \cdots \cup \text { out }^{*}\left(w_{i-1}\right)\right\} \tag{3}
\end{equation*}
$$

and further

$$
\begin{equation*}
\bigcup_{w \in \operatorname{out}(v)} \operatorname{out}^{*}(w)=\bigcup_{z \in \operatorname{out}^{\operatorname{tad}}(v)} \operatorname{out}^{*}(z) . \tag{4}
\end{equation*}
$$

Here we give their algorithm.

Algorithm A (Goralćíková, Koubek [6])
Input: $G=(V, E)$
Output: out ${ }^{*}(v)$ and out ${ }^{\text {red }}(v), \forall v \in V$

```
    for }v\leftarrown\mathrm{ downto 1(*V={1,_.,n}*)
    do
        out*(v)\leftarrow{v};
        out }\mp@subsup{}{}{\mathrm{ red }}(v)\leftarrow\emptyset
        for }\forallw\in\operatorname{out}(v)(* in increasing order *
        do
            if w\not\inout*(v)
            then
            out*}(v)\leftarrow\mp@subsup{\operatorname{out}}{}{*}(v)\cup\mathrm{ out*}(w)
            out }\mp@subsup{}{}{\mathrm{ red }}(v)\leftarrow\mp@subsup{\mathrm{ out }}{}{\mathrm{ red }}(v)\cup{w}
            fi
        od
    od
```

Inside loop (2)-(13) we use a bitvector for out* (v). So the test " $w \in$ out ${ }^{*}(v)$ " takes time $\mathrm{O}(1)$. Outside loop (2)-(13) the set out* (v) is kept as a linear list. This implies that the operation out* $(v) \cup$ out $^{*}(w)$ has execution time $\mathrm{O}\left(\mid\right.$ out $\left.{ }^{*}(w) \mid\right)=\mathrm{O}(n)$ and so we need total time $O\left(n \cdot e_{\text {red }}\right)$. We will show later that the expected execution time is $\mathrm{O}\left(n^{2} \cdot \log n\right)$ for this algorithm. In this paper we give a better method for computing out* $(v) \cup$ out $^{*}(w)$. Our improvement is based on an efficient data structure, the so-called chain decomposition.

2. The algorithm

Definition 2.1. Let $G=(V, E)$ be an acyclic digraph. A partition Z_{1}, \ldots, Z_{k} of V $\left(Z_{i} \neq \emptyset\right.$ for $1 \leqslant i \leqslant k$ and $\left.Z_{1} \cup \ldots \cup Z_{k}=V\right)$ is called a chain decomposition of $G=$ (V, E) if and only if every $Z_{i}, 1 \leqslant i \leqslant k$, is a path in G. Because G is topologically sorted, we obtain for a path $Z_{i}=\left\{v_{1}<\cdots<v_{s}\right\}$

$$
\left(v_{j}, v_{j+1}\right) \in E \quad \forall 1 \leqslant j \leqslant k
$$

The integer k is called the width of the decomposition. A chain decomposition Z_{1}, \ldots, Z_{k} induces the maps id, niv, and niv_{j}. Let $v \in V, A \subseteq V, i, j \in\{1, \ldots, k\}$; then

$$
\begin{aligned}
& \operatorname{id}(v)=i \Leftrightarrow v \in Z_{i}, \\
& \operatorname{niv}_{j}(A)=\min \left(A \cap Z_{j}\right), \quad \operatorname{niv}(A)=\left\{\operatorname{niv}_{j}(A) \mid 1 \leqslant j \leqslant k\right\} .
\end{aligned}
$$

In particular, we use the notation $\operatorname{niv}_{j}(v)$ for $\operatorname{niv}_{j}\left(\right.$ out $\left.^{*}(v)\right)$ and $\operatorname{niv}(v)$ for $\operatorname{niv}\left(\right.$ out $\left.^{*}(v)\right)$. In this paper we have only $A=$ out* $\left(w_{1}\right) \cup \cdots \cup$ out $^{*}\left(w_{s}\right)$ and therefore $A \cap Z_{j}$ is a path in G with first node niv ${ }_{j}(A)$ (see Fig. 1).

Now we come to the question how we can use a chain decomposition to speed up the computation of the transitive closure? The critical observation is given in Theorem 2.2.

Theorem 2.2. $\forall v \in V$:

$$
\operatorname{out}^{*}(v)=\bigcup_{1 \leqslant j \leqslant k}\left\{w \in Z_{j} \mid w \geqslant \operatorname{niv}_{j}(v)\right\}
$$

Proof. Let $v \in V$ and let Z_{1}, \ldots, Z_{k} be a chain decomposition. Then Z_{1}, \ldots, Z_{k} are a partition of V and we have $Z_{1} \cup \cdots \cup Z_{k}=V$. Since out* $(v) \subseteq V$, we get

$$
\operatorname{out}^{*}(v)=\bigcup_{1 \leqslant j \leqslant k}\left(\operatorname{out}^{*}(v) \cap Z_{j}\right) .
$$

Let Z_{j} be a path v_{1}, \ldots, v_{s} with $v_{1}<v_{2}<\cdots<v_{s}, \operatorname{niv}_{j}(v)=\min \left(\right.$ out $\left.*(v) \cap Z_{j}\right)$ and out* $(v) \cap Z_{j} \neq \emptyset$. Now $\operatorname{niv}_{j}(v)$ is an element of out* (v) and therefore the set

Fig. 1.
(out* $(v) \cap Z_{j}$) is a tail of Z_{j}, namely $v_{i}, v_{l+1}, \ldots, v_{s}$, where $v_{l}=\operatorname{niv}_{j}(v)$. Then we have

$$
\operatorname{out}^{*}(v)=\bigcup_{1 \leqslant j \leqslant k}\left(\operatorname{out}^{*}(v) \cap Z_{j}\right)=\bigcup_{1 \leqslant j \leqslant k}\left\{w \in Z_{j} \mid w \geqslant \operatorname{niv}_{j}(v)\right\}
$$

This theorem shows that it is sufficient to compute $\operatorname{niv}_{j}(v)$ for all $1 \leqslant j \leqslant k$ since the computation of the set $\left\{w \in Z_{j} \mid w \geqslant \operatorname{niv}_{j}(v)\right\}$ is trivial for a given chain Z_{j}. In the following we will use the convention $\min (\emptyset)=\infty$. Now we describe relations that we need for the efficient computation of niv(v). Let

$$
\operatorname{niv}_{j}\left(w_{1}\right)=\operatorname{niv}_{j}\left(\operatorname{out}^{*}\left(w_{1}\right)\right), \ldots, \operatorname{niv}_{j}\left(w_{s}\right)=\operatorname{niv}_{j}\left(\text { out }^{*}\left(w_{s}\right)\right)
$$

are given; then we infer

$$
\begin{align*}
& \operatorname{niv}_{j}\left(\text { out }^{*}\left(w_{1}\right) \cup \cdots \cup \text { out }^{*}\left(w_{s}\right)\right) \\
& \quad=\min \left(\left(\text { out }^{*}\left(w_{1}\right) \cup \cdots \cup \text { out }^{*}\left(w_{s}\right)\right) \cap Z_{j}\right) \\
& \quad=\min \left(\left(\text { out }^{*}\left(w_{1}\right) \cap Z_{j}\right) \cup \cdots \cup\left(\text { out }^{*}\left(w_{s}\right) \cap Z_{j}\right)\right. \\
& \quad=\min \left(\min \left(\text { out }^{*}\left(w_{1}\right) \cap Z_{j}\right), \ldots, \min \left(\text { out }^{*}\left(w_{s}\right) \cap Z_{j}\right)\right) \\
& \quad=\min \left(\operatorname{niv}_{j}\left(\text { out }^{*}\left(w_{1}\right)\right), \ldots, \operatorname{niv}_{j}\left(\text { out }^{*}\left(w_{s}\right)\right)\right) \\
& \quad=\min \left(\operatorname{niv}_{j}\left(w_{1}\right), \ldots, \operatorname{niv}_{j}\left(w_{s}\right)\right) . \tag{5}
\end{align*}
$$

Now we combine expression (5) with (1) and this leads us to Theorem 2.3.

Theorem 2.3. $\forall v \in V, \forall j, 1 \leqslant j \leqslant k$:

$$
\operatorname{niv}_{j}(v)= \begin{cases}\min \left(\left\{\operatorname{niv}_{j}(w) \mid w \in \operatorname{out}(v)\right\}\right) & \text { if } j \neq \operatorname{id}(v) \\ v & \text { otherwise }\end{cases}
$$

Proof. Let $\operatorname{out}(v)=\left\{w_{1}, \ldots, w_{s}\right\}$; then we get

$$
\begin{aligned}
\operatorname{niv}_{j}(v) & =\operatorname{niv}_{j}\left(\text { out }^{*}(v)\right) \\
& \stackrel{(1)}{=} \operatorname{niv}_{j}(\{v\} \cup \underbrace{\text { out } \left.^{*}\left(w_{1}\right) \cup \cdots \text { out }^{*}\left(w_{s}\right)\right)}_{=\operatorname{def} A} \\
& =\min \left((\{v\} \cup A) \cap Z_{j}\right) \\
& =\min \left(\left(\{v\} \cap Z_{j}\right) \cup\left(A \cap Z_{j}\right)\right) \\
& =\min (\min \left(\{v\} \cap Z_{j}\right) \cdot \underbrace{\left.\min \left(A \cap Z_{j}\right)\right)}_{-\operatorname{niv}_{j}(A)} \\
& = \begin{cases}\min \left(\operatorname{miv}_{j}\left(w_{1}\right), \ldots, \operatorname{niv}_{j}\left(w_{s}\right)\right) & \text { if } v \notin Z_{j}, \\
v & \text { otherwise. }\end{cases}
\end{aligned}
$$

With Theorem 2.3 it is clear how we compute $\operatorname{niv}(v)=\operatorname{niv}($ out $*(v))$. In Algorithm A we replace the operation

$$
\operatorname{out}^{*}(v) \leftarrow \operatorname{out}^{*}(v) \cup \operatorname{out}^{*}(w)
$$

by

$$
\operatorname{niv}\left(\text { out }^{*}(v)\right) \leftarrow \operatorname{niv}\left(\text { out }^{*}(v) \cup \text { out }^{*}(w)\right) .
$$

With expression (5) this reduces the execution time from

$$
\mathrm{O}\left(\mid \text { out }^{*}(w) \mid\right) \stackrel{(\mathrm{L} .3 .5)}{=} \mathrm{O}(n)
$$

to

$$
\mathrm{O}\left(\mid \operatorname{niv}\left(\text { out }^{*}(w)\right) \mid\right)=\mathrm{O}(k)
$$

In general we find that k is very much smaller as \mid out ${ }^{*}(w) \mid$ (see Section 3). Now it remains the problem how we implement the test " $w \in$ out* (v) " from Algorithm A. If we want to use our new data structure, we cannot realize set out* (v) as a bitvector. But now we use an array of integers for set $\operatorname{niv}\left(\right.$ out $\left.^{*}(v)\right)$ and Lemma 2.4 shows this is sufficient.

Lemma 2.4. Let $v, w_{1}, \ldots, w_{s} \in V$ and $w \in Z_{j}(\Leftrightarrow \mathrm{id}(w)=j)$. Then there is

$$
w \notin \operatorname{out}^{*}\left(w_{1}\right) \cup \cdots \cup \operatorname{out}^{*}\left(w_{s}\right) \Leftrightarrow w<\min \left(\operatorname{niv}_{\mathrm{id}(w)}\left(w_{1}\right), \ldots, \operatorname{niv}_{\operatorname{id}(w)}\left(w_{s}\right)\right)
$$

Proof. With $A=$ out $^{*}\left(w_{1}\right) \cup \cdots \cup$ out $^{*}\left(w_{s}\right)$ we get

$$
\begin{aligned}
w \in A & \Leftrightarrow w \in A \cap Z_{\mathrm{id}(w)} \\
& \Leftrightarrow w \geqslant \min \left(A \cap Z_{\mathrm{id}(w)}\right) \\
& \Leftrightarrow w \geqslant \operatorname{niv}_{\mathrm{id}(w)}(A) \\
& \Leftrightarrow(5) \\
& \Leftrightarrow \geqslant \min \left(\operatorname{niv}_{\mathrm{id}(w)}\left(w_{1}\right), \ldots, \operatorname{niv}_{\mathrm{id}(w)}\left(w_{s}\right)\right) .
\end{aligned}
$$

Our claim is inferred through negation.

$$
\begin{aligned}
& Z_{1}=\{1,3,5,11,12,13\} \\
& Z_{2}=\{2,4,8,10\} \\
& Z_{3}=\{6,7,9\}
\end{aligned}
$$

Fig. 2. An example for chain decomposition.

A chain decomposition of an acyclic graph is easily constructed in time $\mathrm{O}(n+e)$. Now we give one particular algorithm. In a greedy manner we find a first path Z. We remove Z from $G=(V, E)$ and restart the method (see Fig. 2).

Now have a look at Algorithm B. At line (4) V_{i} is realized as a bitvector S. Line (6) is implemented by sliding a pointer pt across bitvector S. All elements to the left of pt are not in V_{i}. The sets Z_{i} are kept as linear lists. Then loop (7)-(13) takes time $\mathrm{O}(\gamma(v))$ for fixed v. Hence, the total time (1)-(18) is $\mathrm{O}(n+e)$. Note that the total time spent in line (6) is $\mathrm{O}(n)$ since pt is slid one across vector S.

```
Algorithm B (computation of a chain decomposition)
Input: \(G=(V, F)\)
Output: \(Z_{1}, \ldots, Z_{k}\), id
    (1) \(\quad i \leftarrow 1\)
(3) \(\quad V_{i} \leftarrow V\)
(4) while \(V_{i} \neq \emptyset\)
(5) do
(6) \(x \leftarrow \min \left(V_{i}\right)\)
(7) \(Z \leftarrow\{x\}\)
(9) do
```

 (2) \(\quad\) for \(\forall v \in V\) do id \([v] \leftarrow 0\) od
    ```
    (2) \(\quad\) for \(\forall v \in V\) do id \([v] \leftarrow 0\) od
(8) while \(\exists y \in V_{i}\) with \((x, y) \in E\)
(8) while \(\exists y \in V_{i}\) with \((x, y) \in E\)
```

 let \(y\) be minimal with \(y \in V_{i}\) and \((x, y) \in E\)
    ```
            let \(y\) be minimal with \(y \in V_{i}\) and \((x, y) \in E\)
                \(Z \leftarrow Z+\{y\}\)
                \(Z \leftarrow Z+\{y\}\)
                \(x \leftarrow y\)
                \(x \leftarrow y\)
od
od
    \(Z_{i} \leftarrow Z\)
    \(Z_{i} \leftarrow Z\)
    \(V_{i+1} \leftarrow V_{i}-Z_{i}\)
    \(V_{i+1} \leftarrow V_{i}-Z_{i}\)
        for \(\forall v \in Z_{i}\) do \(\operatorname{id}[v] \leftarrow i\) od
        for \(\forall v \in Z_{i}\) do \(\operatorname{id}[v] \leftarrow i\) od
        \(i \leftarrow 1+1\)
        \(i \leftarrow 1+1\)
    od
```

 od
    ```

In the following when we speak about a chain decomposition we will mean the decomposition constructed by this algorithm and we define the width \(k=k(G)\) of the chain decomposition by
\[
k \stackrel{\text { def }}{=} \max \left(\left\{s \in \mathbb{N} \mid Z_{s} \neq \emptyset\right\}\right) .
\]

Now we can compute \(\operatorname{niv}(v)\) for all \(v \in V\). In Algorithm \(C\) we use the linear list nivlist[ \(v\) ] for keeping \(\operatorname{niv}(v)\); nivfield, id are arrays of integers. So we come to Algorithm C.

Algorithm C (computation of \(\operatorname{niv}(v)\) )
Input: \(G=(V, E)\), id: \(V \rightarrow\{1, \ldots, k\}\)

Output: \(\operatorname{niv}(v)\), out \({ }^{\text {red }}(v), \forall v \in V\)
(1) for \(s \leftarrow 1\) to \(k\) do nivfield \([s] \leftarrow \infty\) od
(2) for \(v \leftarrow n\) downto 1
(3) do
(4) \(\quad\) out \(^{\text {red }}[v] \leftarrow \emptyset\); nivlist \([v] \leftarrow \emptyset\);
(5) for \(\forall w \in \operatorname{out}(v)\) (* in increasing order *)
(6) do
(7) if \(w<\operatorname{nivfield}[\operatorname{id}[w]]\)
(8) then
\[
\begin{equation*}
\text { out }^{\text {red }}[v] \leftarrow \text { out }^{\text {red }}[v] \cup\{w\} \tag{9}
\end{equation*}
\]
for \(\forall p \in \operatorname{nivlist}[w]\)
do \(\operatorname{nivfield}[\operatorname{id}[p]] \leftarrow \min (\operatorname{nivfield}[\operatorname{id}[p]], p)\)
od

\section*{fi}
od
nivfield \([\operatorname{id}[v]] \leftarrow v\);
for \(s \leftarrow 1\) to \(k\)
do
if nivfield \([s] \neq \infty\)
then nivlist \([v] \leftarrow \operatorname{nivlist}[v] \cup\) nivfield \([s]\) fi
nivfield \([s] \leftarrow \infty\)
od
od

Correctness is shown by induction, starting with \(v-n\). In particular we get, after every execution of loop (2)-(23),
\[
\operatorname{nivlist}[v]=\operatorname{niv}(v) \quad \text { and } \quad \text { out } t^{\text {red }}[v]=\text { out }^{\text {red }}(v)
\]
\((v=n)\) : Since loop (5)-(15) is not executed, we obtain nivlist \([n]=\{n\}=\operatorname{niv}(n)\).
\((v<n)\). Now the induction hypothesis is
\[
\forall w, v<w \leqq n: \quad \operatorname{nivlist}[w]=\operatorname{niv}(w) .
\]

There is, after line (13),
\[
\forall p, p \in \operatorname{nivlist}[w]: \quad \operatorname{nivfield}[\operatorname{id}[p]]_{\mathrm{new}}=\min \left(\operatorname{nivfield}[\operatorname{id}[p]]_{\mathrm{old}}, p\right)
\]

With the induction hypothesis this is equivalent to
\[
\begin{equation*}
\forall j, 1 \leqslant j \leqslant k ; \text { nivfield }[j]_{\text {new }}=\min \left(\operatorname{nivfield}[j]_{\text {old }}, \operatorname{niv}_{j}(w)\right) \tag{*}
\end{equation*}
\]
since
\[
p=\operatorname{niv}_{\operatorname{id}(p)}(w) \quad \forall p \in \operatorname{nivlist}[w] \stackrel{(1 . \mathrm{H})}{=} \operatorname{niv}(w) .
\]

We infer inductively from (*) that before the execution of loop (6)-(15) it is valid that
\[
\begin{equation*}
\operatorname{nivfield}[j]=\min \left(\left\{\operatorname{niv}_{j}(z) \mid z \in \operatorname{out}^{\text {red }}(v) \wedge z<w\right\}\right) \tag{**}
\end{equation*}
\]

Consequently, line (7) is executed if and only if
\[
w<\operatorname{nivfield}[\operatorname{id}[w]] \stackrel{(* *)}{\Leftrightarrow} w<\operatorname{niv}_{\mathrm{id}(w)}(v) \stackrel{(\mathrm{L} .2 .4)}{\Leftrightarrow} w \in \operatorname{out}^{\mathrm{red}}(v) .
\]

This shows the correct construction of out \({ }^{\text {red }}\). With induction on the number of executions of loop (6)-(15) we get from (**) after line (16) \(\forall j, 1 \leqslant j \leqslant k\) :
\[
\text { nivfield }[j\rfloor= \begin{cases}\min \left(\left\{\operatorname{niv}_{j}(w) \mid w \in \operatorname{out}^{\text {red }}(v)\right\}\right) & \text { if } j \neq \operatorname{id}(v), \\ v & \text { otherwise }\end{cases}
\]
and this leads with Theorem 2.3 to
\[
\operatorname{nivfield}[j]=\operatorname{niv}_{j}(v) \quad \forall j, \quad 1 \leqslant j \leqslant k
\]

This ends the correctness proof of Algorithm C.
Running time: Outside lines (6)-(15) the cost of the algorithm is clearly \(\mathrm{O}(e+\) \(n \cdot k\) ). One execution of the loop (10)-(13) has cost \(O(k)\) and this loop is executed only for \((v, w) \in E_{\text {red }}\). Hence, for Algorithm C we have total cost
\[
\mathrm{O}(e+n \cdot k)+\mathrm{O}\left(e_{\mathrm{red}} \cdot k\right)=\mathrm{O}\left(e+e_{\mathrm{red}} \cdot k\right)
\]

Theorem 2.5. The improved algorithm computes the transitive closure of an acyclic digraph in time \(\mathrm{O}\left(e^{*}+e_{\text {red }} \cdot k\right)\).

Proof. Running time of the decomposition algorithm is \(\mathrm{O}(n+e)\). The computation of \(\operatorname{niv}(v), \forall v \in V\) needs time \(\mathrm{O}\left(e+e_{\mathrm{red}} \cdot k\right)\). From a chain decomposition of \(Z_{1}, \ldots, Z_{k}\) with given \(\operatorname{id}(v), \operatorname{niv}(v), \forall v \in V\), it is now trivial to compute \(E^{*}\) in time \(\mathrm{O}\left(e^{*}\right)\) (recall Theorem 2.2). Hence, we get a total running time
\[
\mathrm{O}(n+e)+\mathrm{O}\left(e+e_{\mathrm{red}} \cdot k\right)+\mathrm{O}\left(e^{*}\right)=\mathrm{O}\left(e^{*}+e_{\mathrm{red}} \cdot k\right)
\]

\section*{3. Average case}

For the average case analysis we use the \(G_{n, p}\) model of a random acyclic digraph with vertex set \(\{1, \ldots, n\}\) in which the possible edges \((i, j), 1 \leqslant i<j \leqslant n\), occur independently with probability \(p, 0<p<1\). An introduction to the theory of random graphs was given by Erdös and Spencer in [3]. By this model the size of \(k\), \(e_{\text {red }}\), or \(k \cdot e_{\text {red }}\) is a random variable. Our aspiration is to obtain good upper bounds for the expected values of these random variables, especially for the product \(k \cdot e_{\text {red }}\). Note that the latter is a product of two dependent random variables and its analysis takes a lot of time. Therefore we give the main findings first and see the proofs and other results later in their logical order. We write \(\operatorname{Pr}(A)\) for the probability of event \(A\)
and further \(\operatorname{Pr}(A \mid B)\) for the probability of \(A\) on condition of event \(B\). Let \(X\) be a random variable; then \(\mathrm{E}(X)\) means the expected value of \(X\). "log" stands for the natural logarithm.
(Lemma 3.4)
\[
\mathrm{E}(k) \leqslant \frac{\log (p \cdot n)}{p}+1
\]
(Corollary 3.8) \(\mathrm{E}\left(e_{\text {red }}\right) \leqslant n \cdot(\log n+2)\),
(Lemma 3.12)
\[
\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right) \leqslant 4 \cdot \frac{\log n}{p} \cdot \mathrm{E}\left(e_{\mathrm{red}}\right)+1,
\]
(Lemma 3.13)
\[
\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right) \leqslant(\mathrm{E}(k)+1) \cdot \mathrm{E}(e) .
\]

Theorem 3.1. By use of the \(G_{n, p}\) model of a random digraph our Algorithm C computes the transitive closure of an acyclic digraph in expected time:
\[
\begin{aligned}
& \mathrm{O}\left(n^{2}\right) \quad \text { for } \frac{\log ^{2} n}{n} \leqslant p<1 \quad \text { and } \\
& \mathrm{O}\left(n^{2} \cdot \log \log n\right) \quad \text { for } 0<p<\frac{\log ^{2} n}{n} .
\end{aligned}
\]

Proof. For \(p \geqslant\left(\log ^{2} n\right) / n\) we use Lemma 3.12 and otherwise Lemma 3.13.
Case \(p \geqslant\left(\log ^{2} n\right) / p\) :
\[
\begin{aligned}
\mathrm{E}\left(e_{\text {red }}\right) & \leqslant 4 \cdot \frac{\log n}{p} \cdot \mathrm{E}\left(c_{\text {red }}\right)+1 \\
& \leqslant 4 \cdot \frac{\log n}{\left(\log ^{2} n\right) / n} \cdot n \cdot(\log n+2)+1 \\
& \leqslant \mathrm{O}\left(n^{2} \cdot \frac{\log ^{2} n}{\log ^{2} n}\right) \leqslant \mathrm{O}\left(n^{2}\right)
\end{aligned}
\]

Case \(p \leqslant\left(\log ^{2} n\right) / n\) :
\[
\begin{aligned}
\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right) & \leqslant(\mathrm{E}(k)+1) \cdot \mathrm{E}(e) \leqslant \mathrm{O}\left(\frac{\log (p \cdot n)}{p} \cdot p \cdot n^{2}\right) \\
& \leqslant \mathrm{O}\left(n^{2} \cdot\left(\log \left(\frac{\log ^{2} n}{n} \cdot n\right)\right)\right) \leqslant \mathrm{O}\left(n^{2} \cdot(2 \cdot \log (\log n))\right) \\
& \leqslant \mathrm{O}\left(n^{2} \cdot \log \log n\right) .
\end{aligned}
\]

In the random graph \(G_{n, p}\) we describe the size of the chain decomposition \(k=k\left(G_{n, p}\right)=k_{n}\) and the size of the transitive closure of the first vertex \(\gamma^{*}(1)=\) \(\gamma^{*}(1)\left(G_{n, p}\right)=\gamma_{n}^{*}\) as a Markov chain with discrete time \(t=n\) [4]. First we consider the behaviour of \(k\) at the point of transition from \(n\) to \(n+1\). If \(k_{n}=l, 1 \leqslant l \leqslant n\), then
we get \(l \leqslant k_{n+1} \leqslant l+1\) since the width of the chain decomposition either increases by one or does not change. When it increases, i.e., when the vertex \(n+1\) is a new chain \(Z_{l+1}=\{n+1\}\), then there is no chain \(Z_{j}, 1 \leqslant j \leqslant l\), which can be extended to \(n+1\). More formally,
\[
k_{n+1}=l+1 \Leftrightarrow \forall j, 1 \leqslant j \leqslant l:\left(\max \left(Z_{i}\right), n+1\right) \notin E .
\]

This leads to the transition probability
\[
\begin{align*}
\operatorname{Pr}\left(k_{n+1}=l+1 \mid k_{n}=l\right) & =\operatorname{Pr}\left(\forall j, 1 \leqslant j \leqslant l:\left(\max \left(Z_{j}\right), n+1\right) \notin E\right) \\
& =(1-p)^{l} . \tag{6}
\end{align*}
\]

Note that the \(l\) possible edges are independent. This implies
\[
\begin{equation*}
\operatorname{Pr}\left(k_{n+1}=l \mid k_{n}=l\right)=1-\operatorname{Pr}\left(k_{n+1}=l+1 \mid k_{n}=l\right)=1-(1-p)^{l} . \tag{7}
\end{equation*}
\]

Remark. Let \(k_{n+1}=k_{n}\); then the current chain decomposition \(Z_{1}, \ldots, Z_{l}\) can be extended to the new node \(n+1\), and Algorithm B links the vertex \(n+1\) to the chain with lowest index. Let \(\left(\max \left(Z_{i}\right), n+1\right) \in E\) and
\[
\left(\max \left(Z_{1}\right), n+1\right) \notin E, \ldots,\left(\max Z_{i-1}\right) \notin E ;
\]

Then Algorithm B connects \(n+1\) with chain \(Z_{i}\). It is easy to see that this special choice has no influence on the future growth of the chain decomposition.

In the same way as \(k\) we treat \(\gamma_{n}^{*}=\mid\) out \(_{n}^{*}(1) \mid\) :
\[
\begin{align*}
\operatorname{Pr}\left(\gamma_{n+1}^{*}=l+1 \mid \gamma_{n}^{*}=l\right) & =\operatorname{Pr}\left(\exists w \in \text { out }_{n}^{*}(1):(w, n+1) \in E\right) \\
& =1-\operatorname{Pr}\left(\forall w \in \operatorname{out}_{n}^{*}(1):(w, n+1) \notin E\right) \\
& =1-(1-p)^{l} \tag{8}
\end{align*}
\]
and
\[
\begin{equation*}
\operatorname{Pr}\left(\gamma_{n+1}^{*}(1)=l \mid \gamma_{n}^{*}=l\right)=1-\operatorname{Pr}\left(\gamma_{n+1}^{*}=l+1 \mid \gamma_{n}^{*}=l\right)=(1-p)^{\prime} . \tag{9}
\end{equation*}
\]

With the additional notation \(k_{n, l}={ }_{\text {def }} \operatorname{Pr}\left(k_{n}=l\right)\) and \(\gamma_{n, l}^{*}=_{\text {def }} \operatorname{Pr}\left(\gamma_{n}^{*}=l\right)\) we find that \(k_{n, l}, \gamma_{n, l}^{*}\) satisfy the following recurrence.

Lemma 3.2. \(\forall n \in \mathbb{N}, \forall l, 1 \leqslant l \leqslant n\),
\[
\begin{equation*}
k_{1,1}-1, \quad k_{n, l}=\left(1-(1-p)^{l}\right) \cdot k_{n-1, l}+(1-p)^{\prime-1} \cdot k_{n-1, l-1} \tag{10}
\end{equation*}
\]
and
\[
\begin{equation*}
\gamma_{1,1}^{*}=1, \quad \gamma_{n, l}^{*}=(1-p)^{l} \cdot \gamma_{n-1, l}^{*}+\left(1-(1-p)^{l-1}\right) \cdot \gamma_{n-1, l-1}^{*} . \tag{11}
\end{equation*}
\]

Proof. Clear by the preceding discussion.

This description shows that \(k_{n}\) ( \(\gamma_{n}^{*}\) respectively) is a discrete-time, pure-birth process (see [4]). By a discrete-time, pure-birth process we understand a sequence of random variables \(X_{t}, t \in \mathbb{N}\), assuming the states \(l=1,2,3, \ldots\) with corresponding probabilities \(P_{t, l}\) and a sequence of transition probabilities \(\lambda_{l}, 0 \leqslant \lambda_{l} \leqslant 1\) and \(l \in \mathbb{N}\), so that
\[
P_{1,1}=1 \quad \text { and } \quad P_{t, t}=\left(1-\lambda_{l}\right) \cdot P_{t-1, t}+\lambda_{i-1} \cdot P_{t-1, t-1},
\]
i.e., the process starts at epoch 1 from state 1 ; direct transitions from a state \(l\) are only possible to \(l+1\); these transitions have probability \(\lambda_{l}\). To provide for an easy treatment we first give a very useful identity of this kind of birth process.

Let \(\varphi\) be a real function with
\[
\varphi(l)=\sum_{j=1}^{l-1} \frac{1}{\lambda_{j}} \quad \forall l \in \mathbb{N} .
\]

Then we state the following lemma.

\section*{Lemma 3.3. \(\mathrm{E}\left(\varphi\left(X_{t}\right)\right)=t-1, \forall t \in \mathbb{N}\).}

Proof. We use induction on \(t\).
\((t=1): \quad \mathrm{E}\left(X_{1}\right)=\sum_{l=1}^{1} \varphi(l) \cdot P_{1,1}=0 \cdot 1=0\).
\((t \geqslant 2)\) : Our induction hypothesis (I.H.) is \(\mathrm{E}\left(\varphi\left(X_{t-1}\right)\right)=t-2\). Then we have
\[
\begin{aligned}
\mathrm{E}\left(\varphi\left(X_{t}\right)\right) & =\sum_{l=1}^{t} \varphi(l) \cdot P_{t, l} \\
& =\sum_{l=1}^{t} \varphi(l) \cdot\left(\left(1-\lambda_{l}\right) \cdot P_{t-1, l}+\lambda_{l-1} \cdot P_{t-1, l-1}\right) \\
& =\underbrace{\sum_{t=1}^{t} \varphi(l) \cdot P_{t-1, l}}+\sum_{l=1}^{1} \varphi(l) \cdot \lambda_{l-1} \cdot P_{t-1, l-1}-\sum_{l=1}^{t} \varphi(l) \cdot \lambda_{l} \cdot P_{t-1, l} \\
& =\mathrm{E}\left(\varphi\left(X_{t-1}\right)\right)=t-2 \\
& =t-2+\underbrace{\sum_{l=1}^{t} \varphi(l) \cdot \lambda_{l-1} \cdot P_{t-1, l-1}}_{=\sum_{l=1}^{t-1} \varphi(l+1) \cdot \lambda_{l} \cdot P_{t-1, l}}-\sum_{l=1}^{t} \varphi(l) \cdot \lambda_{i} \cdot P_{t-1, l}
\end{aligned}
\]
(note that \(P_{t-1,0}=0=P_{t-1, t}\) )
\[
=t-2+\sum_{l=1}^{t-1} \varphi(l+1) \cdot \lambda_{l} \cdot P_{t-1, l}-\sum_{l=1}^{t-1} \varphi(l) \cdot \lambda_{l} \cdot P_{t-1, l}
\]
\(\left(\right.\) since \(\left.\varphi(l+1)=\varphi(l)+1 / \lambda_{l}\right)\)
\[
\begin{aligned}
& =t-2+\sum_{l=1}^{\sum_{t=1}^{-1}} \underbrace{\left(\varphi(l) \cdot \lambda_{1} \cdot P_{t-1, l}-\varphi(l) \cdot \lambda_{i} \cdot P_{t, 1, t}\right.}_{=0})+\frac{1}{\lambda_{l}} \cdot P_{t}, t \\
& =t-2+\underbrace{\sum_{l=1}^{\prime-1} \frac{1}{\lambda_{i}} \cdot \lambda_{t} \cdot P_{t-1, t}}_{=1} \\
& =t-2+1=t-1 .
\end{aligned}
\]

By use of Lemma 3.3 a simple deduction leads to Lemmas 3.4 and 3.5.

\section*{Lemma 3.4}
\[
\mathrm{E}\left(k\left(G_{n, p}\right)\right) \leqslant \frac{\log (p \cdot(n-1)+1)}{-\log (1-p)}+1
\]

Proof. With expression (6) there is
\[
\lambda_{l}(k)=\operatorname{Pr}\left(k_{n}=l+1 \mid k_{n-1}=l\right)=(1-p)^{\prime} .
\]

By a simple application of the summation formula for geometric series (see Appendix A) we get
\[
\varphi(l)=\sum_{j=1}^{l-1} \frac{1}{\lambda_{j}(k)}=\sum_{j=1}^{l-1} \frac{1}{(1-p)^{i}}=\frac{1}{p} \cdot\left(\left(\frac{1}{1-p}\right)^{l-1}-1\right) \quad \forall l, 1 \leqslant l \leqslant n .
\]

Of course, \(\varphi(l)\) is an exponential function and so \(\varphi(l)\) is convex, i.e.,
\[
\forall x_{1}, \ldots, x_{n} \in \mathbb{R}: \quad \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}^{+} \text {with } \sum_{l=1}^{n} \alpha_{l}=1
\]

We get
\[
\varphi\left(\alpha_{1} \cdot x_{1}+\cdots+\alpha_{n} \cdot x_{n}\right) \leqslant \alpha_{1} \cdot \varphi\left(x_{1}\right)+\cdots+\alpha_{n} \cdot \varphi\left(x_{n}\right) .
\]

This implies with \(\alpha_{i}=k_{n, l}\) and \(x_{l}=l, l \leqslant l \leqslant n\), Jensen's inequality
\[
\varphi\left(\mathrm{E}\left(k_{n}\right)\right) \stackrel{\text { def }}{=} \varphi\left(\sum_{l=1}^{n} l \cdot k_{n, l}\right) \leqslant \sum_{l=1}^{n} \varphi(l) \cdot k_{n, l} \stackrel{\text { def }}{=} \mathrm{E}\left(\varphi\left(k_{n}\right)\right) .
\]

Now we apply Lemma 3.3 and the inverse function \(\varphi^{-1}\) to \(\varphi\) given by
\[
\varphi^{\prime}(x)=\frac{\log (p \cdot x+1)}{-\log (1-p)}+1 .
\]

We find
\[
\begin{aligned}
& \varphi\left(\mathrm{E}\left(k_{n}\right)\right) \leqslant \mathrm{E}\left(\varphi\left(k_{n}\right)\right) \stackrel{(\mathrm{L} .3 .3)}{=} n-1 \\
& \Leftrightarrow \varphi\left(\mathrm{E}\left(k_{n}\right)\right) \leqslant n-1 \\
& \Leftrightarrow \varphi^{-1}\left(\varphi\left(\mathrm{E}\left(k_{n}\right)\right)\right) \leqslant \varphi^{-1}(n-1) \\
& \quad \Leftrightarrow \mathrm{E}\left(k_{n}\right) \leqslant \frac{\log (p \cdot(n-1)+1)}{-\log (1-p)}+1 .
\end{aligned}
\]

\section*{Lemma 3.5}
\[
\mathrm{E}\left(\mid \text { out }^{*}(1)\left(G_{n, p}\right) \mid\right) \geqslant n+1-\frac{|\log p|+1}{p}
\]

Proof. By term (7) we have \(\lambda_{I}=\lambda_{I}\left(\gamma^{*}\right)=1-(1-p)^{l}\) and, consequently, for \(l \in \mathbb{N}\),
\[
\begin{aligned}
\varphi(l) & =\sum_{j=1}^{l-1} \frac{1}{\lambda_{j}}=\frac{1}{p}+\sum_{j=2}^{l-1} \frac{1}{1-(1-p)^{j}} \\
& \leqslant \frac{1}{p}+\sum_{j=2}^{l-1} \int_{j-1}^{j} \frac{\mathrm{~d} x}{1-(1-p)^{x}}=\frac{1}{p}+\int_{1}^{l-1} \frac{\mathrm{~d} x}{1-(1-p)^{x}}
\end{aligned}
\]
(see [1, p. 87])
\[
\begin{aligned}
& =\frac{1}{p}+(l-1)-\underbrace{\frac{\log \left(1-(1-p)^{l-1}\right)}{\log (1-p)}}_{\geqslant 0}-1+\frac{\log (1-(q-p))}{\log (1-p)} \\
& \leqslant(l-2)+\frac{|\log p|+1}{p}
\end{aligned}
\]

And, consequently, \(\varphi(l) \leqslant(l-2)+(|\log p|+1) / p==_{\text {def }} \phi(l)\). This implies
\[
\mathrm{E}\left(\varphi\left(\gamma_{n}^{*}\right)\right)=\sum_{l=1}^{n} \varphi(l) \cdot \gamma_{n, l}^{*} \leqslant \sum_{l=1}^{n} \phi(l) \cdot \gamma_{n, l}^{*}=\mathrm{E}\left(\phi\left(\gamma_{n}^{*}\right)\right)
\]
also by Lemma 3.3 and, by the fact that \(\phi\) is a straight line,
\[
\begin{aligned}
& n-1=\mathrm{E}\left(\varphi\left(\gamma_{n}^{*}\right)\right) \leqslant \mathrm{E}\left(\phi\left(\gamma_{n}^{*}\right)\right)=\phi\left(\mathrm{E}\left(\gamma_{n}^{*}\right)\right)=\mathrm{E}\left(\gamma_{n}^{*}\right)+\frac{|\log p|+1}{p}-2 \\
& \quad \Leftrightarrow \mathrm{E}\left(\gamma_{n}^{*}\right) \geqslant n+1-\frac{|\log p|+1}{p} .
\end{aligned}
\]

Using the notation \(\gamma_{n}^{\text {red }}=\gamma^{\text {red }}(1)\left(G_{n, p}\right)\) for the size of the transitive reduction of the first vertex, we show that the lower bound for \(\mathrm{E}\left(\gamma_{n}^{*}\right)\) gives an upper bound for the expected value of the reduction \(\mathrm{E}\left(\gamma_{n}^{\text {red }}\right)\). This can be reached by comparing \(\Delta \mathrm{E}\left(\gamma_{n}^{*}\right)=\operatorname{Pr}\left((1, n) \in E^{*}\right)\) with \(\Delta \mathrm{E}\left(\gamma_{n}^{\text {red }}\right)=\operatorname{Pr}\left((1, n) \in E_{\text {red }}\right)\).

\section*{Lemma 3.6}
\[
\mathrm{E}\left(\gamma_{n}^{\mathrm{red}}\right)=\frac{p}{1-p} \cdot\left(n-\mathrm{E}\left(\gamma_{n}^{*}\right)\right)
\]

Proof. Let \(\boldsymbol{A}\) be the event " \((1, n) \in E^{*}\) " with
\[
\operatorname{Pr}\left((1, n) \in E^{*}\right)=\operatorname{Pr}\left(\exists w \in \text { out }_{n-1}^{*}(1):(w, n) \in E\right)
\]

Then, by splitting \(\boldsymbol{A}\) on \(\gamma_{n}^{*}{ }_{1}\), we have
\[
\begin{align*}
\operatorname{Pr}\left((1, n) \in E^{*}\right) & =\sum_{l=1}^{n-1} \underbrace{\operatorname{Pr}\left(\boldsymbol{A} \mid \gamma_{n-1}^{*}=l\right)}_{=\left(1-(1-p)^{\prime}\right)} \cdot \underbrace{\operatorname{Pr}\left(\gamma_{n, l}^{*}=l\right)}_{=\gamma_{n}^{*}} \\
& =\sum_{l=1}^{n-1}\left(1-(1-p)^{\prime}\right) \cdot \gamma_{n-1, l}^{*} . \tag{12}
\end{align*}
\]

Let \(n \geqslant 2\); then we find
\[
\begin{aligned}
\operatorname{Pr}\left((1, n) \in E_{\text {red }}\right) & =\operatorname{Pr}((1, n) \in E) \cdot \operatorname{Pr}\left(\forall w \in \text { out }_{n-1}^{*}(1), w \neq 1:(w, n) \notin E\right) \\
& =p \cdot \sum_{l-1}^{n-1}(1-p)^{l-1} \cdot \gamma_{n-1, l}^{*}
\end{aligned}
\]
(splitting by \(\gamma_{n-1}^{*}\) )
\[
\begin{aligned}
& =\frac{p}{1-p} \cdot \sum_{l=1}^{n-1}\left(1-1+(1-p)^{\prime}\right) \cdot \gamma_{n-1, I}^{*} \\
& =\frac{p}{1-p} \cdot\left(1-\sum_{I-1}^{n-1}\left(1-(1-p)^{\prime}\right) \cdot \gamma_{n-1, l}^{*}\right)
\end{aligned}
\]

Thus we arrive at
\[
\begin{equation*}
\operatorname{Pr}\left((1, n) \in E_{\mathrm{red}}\right) \stackrel{(12)}{=} \frac{p}{1-p} \cdot\left(1-\operatorname{Pr}\left((1, n) \in E^{*}\right)\right) \tag{13}
\end{equation*}
\]

Now the proof is easily completed:
\[
\begin{aligned}
\mathrm{E}\left(\gamma_{n}^{\mathrm{red}}\right) & =\sum_{j=2}^{n} \mathrm{E}\left((1, j) \in E_{\mathrm{red}}\right)=\sum_{j=2}^{n} \operatorname{Pr}\left((1, j) \in E_{\mathrm{red}}\right) \\
& \stackrel{(13)}{=} \sum_{j=2}^{n} \frac{p}{1-p} \cdot\left(1-\operatorname{Pr}\left((1, j) \in E^{*}\right)\right) \\
& =\frac{p}{1-p} \cdot\left(n-1-\sum_{j=2}^{n} \operatorname{Pr}\left((1, j) \in E^{*}\right)\right) \\
& =\frac{p}{1-p} \cdot\left(n-\mathrm{E}\left(\gamma_{n}^{*}\right)\right) .
\end{aligned}
\]

Corollary 3.7. \(\mathrm{E}\left(e_{\text {red }}\right) \leqslant n \cdot(|\log p|+2)\).

\section*{Proof}
\[
\mathrm{E}\left(e_{\mathrm{red}}\right)=\mathrm{E}\left(\gamma^{\mathrm{red}}(1)\right)+\cdots+\mathrm{E}\left(\gamma^{\mathrm{red}}(n)\right) \leqslant n \cdot \mathrm{E}\left(\gamma^{\mathrm{red}}(1)\right)=n \cdot \mathrm{E}\left(\gamma_{n}^{\mathrm{red}}\right)
\]

By Lemma 3.6,
\[
\mathrm{E}\left(e^{\mathrm{red}}\right)=n \cdot \frac{p}{1-p} \cdot\left(n-\mathrm{E}\left(\gamma_{n}^{*}\right)\right)
\]
(by Lemma 5)
\[
\begin{aligned}
& \leqslant n \cdot \frac{p}{1-p} \cdot\left(n-\left(n+1-\frac{|\log p|+1}{p}\right)\right) \\
& \leqslant n \cdot\left(\frac{|\log p|}{1-p}+1\right)
\end{aligned}
\]
(by Taylor)
\[
\begin{aligned}
& \leqslant n \cdot\left(\frac{(1-p)+\frac{1}{2}(1-p)^{2}+\frac{1}{3}(1-p)^{3}+\cdots}{1-p}+1\right) \\
& \leqslant n \cdot(|\log p|+2) . \quad \square
\end{aligned}
\]

Corollary 3.8. The expected running time of Algorithm B, according to Goralćiková and Koubek [6], is
\[
\mathrm{O}\left(\min \left(n^{2} \cdot(\mid \log p+2), p \cdot n^{3}\right)\right)=\mathrm{O}\left(n^{2} \cdot \log n\right)
\]

Proof. We have, by the preceding discussion, Case \(p>(\log n) / n\) :
\[
\mathrm{E}\left(n \cdot e_{\mathrm{red}}\right) \leqslant n^{2} \cdot(|\log p|+2) \leqslant \mathrm{O}\left(n^{2} \cdot \log n\right)
\]

Case \(p \leqslant(\log n) / n\) :
\[
\mathrm{E}\left(n \cdot e_{\mathrm{red}}\right) \leqslant \mathrm{E}(n \cdot e) \leqslant p \cdot n^{3} \leqslant \mathrm{O}\left(n^{2} \cdot \log n\right)
\]

In the remainder of this section we develop upper bounds for \(\mathrm{E}\left(k \cdot e_{\text {red }}\right)\). Recall that \(k \cdot e_{\text {red }}\) is a product of two dependent random variables. In Lemma 3.12 we will understand \(e_{\text {red }}\) as the dependent variable, i.e., we use the interpretation
\[
\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right)=\mathrm{E}(k) \cdot \mathrm{E}\left(e_{\mathrm{red}} \mid k\right)
\]

This analysis is prepared in the next three lemmas. First we determine the expected size of chain \(Z=Z\left(G_{n, p}\right)\) constructed in Algorithm B. The repeated application of Lemma 3.9 shows that
\[
\mathrm{E}\left(\left|V_{i}\right|\right)=(1-p)^{i-1} \cdot n-h\left(\operatorname{Pr}\left(k\left(G_{n, p}\right) \geqslant i\right)\right) .
\]

By simple transformations we can see that function \(f(i)=\operatorname{Pr}\left(k\left(G_{n, p}\right) \geqslant i\right)\) decreases exponentially.

Now we analyse the construction of the chain decomposition (Algorithm B) more exactly. The algorithm iteratively constructs a chain \(Z=Z(G)\), deletes \(Z\) from \(G\) and starts again with graph \(G^{\prime}=G-Z\). Retain the notations:
\[
\begin{aligned}
& G_{1}=\left(V_{1}, E\right)=G_{n, p}, \quad G_{i}=\left(V_{i}, E\right), \\
& V_{i+1}=V_{i}-Z\left(G_{i}\right)=V_{i}-Z_{i} .
\end{aligned}
\]

For the chain \(Z=Z(G=(V, E))\) there is
(1) \(\min (V) \in Z\), and
(2) \(v \in Z \Rightarrow \min (\operatorname{out}(v)) \in Z\).

Now we are going to compute the expected size of \(Z\left(G_{n, p}\right)\) in our random graph model.

Lemma 3.9. \(\mathrm{E}\left(\left|Z\left(G_{n, p}\right)\right|\right)=1+p \cdot(|V|-1)\).
Proof. Let \(T \subseteq V=\{1, \ldots, n\}\) with \(T=\left\{1=t_{1}<t_{2}<\cdots<t_{s}\right\}\). Then \(T=Z(G)\) if and only if
\[
\begin{gathered}
(1, h) \notin E, \forall 1<h<t_{2} \wedge\left(1, t_{2}\right) \in E \wedge\left(t_{2}, h\right) \notin E, \forall t_{2}<h<t_{3} \wedge \ldots \\
\wedge\left(t_{s}, h\right) \notin E, \forall t_{\mathrm{s}}<h \leqslant n .
\end{gathered}
\]

Since all these events are independent, we get
\[
\operatorname{Pr}(T=Z(G))=p^{s-1} \cdot(1-p)^{(n-1)-(s-1)}=p^{|T|-1} \cdot(1-p)^{n-|T|}
\]

For \(T_{1}, T_{2} \subseteq V\), we obtain
\[
T_{1}=Z(G) \wedge T_{2}=Z(G) \Rightarrow T_{1}=T_{2}
\]
such that we have \(\forall T_{1}, T_{2} \subseteq V, T_{1} \neq T_{2}\) :
\[
\operatorname{Pr}\left(T_{1}=Z \vee T_{2}=Z\right)=\operatorname{Pr}\left(T_{1}=Z\right)+\operatorname{Pr}\left(T_{2}=Z\right)
\]
and further
\[
\operatorname{Pr}(|Z(G)|=l+1)=\binom{n-1}{l} \cdot p^{\prime} \cdot(1-p)^{(n-1)-l}
\]

But this is a binomial distribution (see [4, Vol. 1, p. 146]), which implies
\[
\mathrm{E}(|Z(G)|)=1+p \cdot(n-1) .
\]

Since removal of \(Z_{1}, \ldots, Z_{i}\) turns a random graph into a random graph, we get, by Lemma 3.9, \(\mathrm{E}\left(\left|Z_{i}\right|\right)=1+p \cdot(j-1)\) on the condition that \(\left|V_{i}\right|=j\). This implies the following lemma.

\section*{Lemma 3.10}
\[
\mathrm{E}\left(\left|V_{i}\right|\right)=(1-p)^{i-1} \cdot n-\sum_{j=1}^{i-1} \operatorname{Pr}(k(G) \geqslant i-j) \cdot(1-p)^{j}
\]

Proof. We first show by induction on \(i\) that
\[
\begin{aligned}
& \mathrm{E}\left(\left|V_{i}\right|\right)=(1-p)^{i-1} \cdot n-\sum_{j-1}^{i-1}(1-p)^{j}+\sum_{j=1}^{i-1} \operatorname{Pr}\left(\left|V_{j}\right|=0\right) \cdot(1-p)^{i-j} . \\
& (i=1): \mathrm{E}\left(\left|V_{1}\right|\right)=|V|=n=p^{0} \cdot n-0 . \\
& (i \geqslant 2): \quad \mathrm{E}\left(\left|V_{i+1}\right|\right)=\mathrm{E}\left(\left|V_{i}\right|\right)-\mathrm{E}\left(\left|Z_{i}\right|\right) \\
& =\mathrm{E}\left(\left|V_{i}\right|\right)-\left(\sum_{j=0}^{n} \mathrm{E}\left(\left|Z_{i}\right|| | V_{i} \mid=j\right) \cdot \operatorname{Pr}\left(\left|V_{i}\right|=j\right)\right) \\
& \stackrel{(1.3 .9)}{=} \mathrm{E}\left(\left|V_{i}\right|\right)-\sum_{j=1}^{n}(1-p \cdot(j-1)) \cdot \operatorname{Pr}\left(\left|V_{i}\right|=j\right) \\
& =\mathrm{E}\left(\left|V_{i}\right|\right)-(\underbrace{\sum_{j=0}^{n}(1-p \cdot(j-1)) \cdot \operatorname{Pr}\left(\left|V_{i}\right|=j\right.})-(1-p) \cdot \operatorname{Pr}\left(\left|V_{i}\right|=0\right)) \\
& =1-p+p \cdot \underbrace{\sum_{i=0}^{n} j \cdot \operatorname{Pr}\left(\left|V_{i}\right|=j\right)}_{=\mathrm{E}\left(\left|V_{i}\right|\right)} \\
& =E\left(\left|V_{i}\right|\right)-\left(p \cdot \mathrm{E}\left(\left|V_{i}\right|\right)+(1-p)-(1-p) \cdot \operatorname{Pr}\left(\left|V_{i}\right|=0\right)\right) \\
& =(1-p) \cdot \mathrm{E}\left(\left|V_{i}\right|\right)-(1-p)+(1-p) \cdot \operatorname{Pr}\left(\left|V_{i}\right|=0\right) \\
& \stackrel{(1 . \text {...) }}{=}(1-p)\left((1-p)^{i-1} \cdot n-\sum_{j=1}^{i-1}(1-p)^{i}+\sum_{j=1}^{i} \operatorname{Pr}\left(\left|V_{j}\right|=0\right)(1-p)^{i-j}\right) \\
& -(1-p)+(1-p) \cdot \operatorname{Pr}\left(\left|V_{i}\right|=0\right) \\
& =(1-p)^{i} \cdot n-\sum_{j-1}^{i}(1-p)^{j}+\sum_{j-1}^{i} \operatorname{Pr}\left(\left|V_{j}\right|=0\right) \cdot(1-p)^{i+1-j} .
\end{aligned}
\]

And this ends the induction proof of our first statement. This expression for \(\mathrm{E}\left(\left|V_{i}\right|\right)\) is equivalent to
\[
\begin{aligned}
& \begin{aligned}
\mathrm{E}\left(\left|V_{i}\right|\right)= & (1-p)^{i-1} \cdot n-\sum_{j=1}^{i-1}(1-p)^{i}+\underbrace{\sum_{j=1}^{i-1} \operatorname{Pr}\left(\left|V_{i-i}\right|=0\right) \cdot(1-p)^{\prime}}_{=\sum_{i-1}^{i}+1}
\end{aligned} \\
& =(1-p)^{i-1} \cdot n-\sum_{j-1}^{i=1}(\underbrace{1-\operatorname{Pr}\left(\left|V_{i-j}\right|=0\right)}_{=0) \cdot(1-p)^{i-j}}) \cdot(1-p)^{i} \\
& =\operatorname{Pr}\left(\left|V_{i}\right| \neq 0\right) \\
& =\operatorname{Pr}(k(G) \geqslant i-j) \\
& \begin{aligned}
\mathrm{E}\left(\left|V_{i}\right|\right)=(1-p)^{i-1} \cdot n-\sum_{i=1}^{i-1} \operatorname{Pr}(k(G) \geqslant i-j) \cdot(1-p)^{i} .
\end{aligned}
\end{aligned}
\]

This last lemma allows us to give an upper bound for \(\operatorname{Pr}\left(k\left(G_{n, p}\right) \geqslant i\right)\).

Lemma 3.11. \(\forall 1 \leqslant i \leqslant n\) :
\[
\operatorname{Pr}\left(k\left(G_{n, p}\right) \geqslant i\right) \leqslant(1-p)^{i-1} \cdot n .
\]

Proof. Since \(E\left(\left|V_{i}\right|\right) \geqslant 0\), we infer from Lemma 3.10
\[
\sum_{j-1}^{i-1} \operatorname{Pr}(k(G) \geqslant i-j) \cdot(1-p)^{i} \leqslant(1-p)^{i-1} \cdot n .
\]

Now, note that there is
\[
\operatorname{Pr}(k(G) \geqslant i-1) \leqslant \operatorname{Pr}(k(G) \geqslant i-2) \leqslant \cdots \leqslant \operatorname{Pr}(k(G) \geqslant 1)=1 .
\]

This implies
\[
\begin{aligned}
& \operatorname{Pr}(k(G) \geqslant i-1) \cdot \sum_{j=1}^{i-1}(1-p)^{i} \leqslant(1-p)^{i-1} \cdot n \\
& \quad \Rightarrow \operatorname{Pr}(k(G) \geqslant i-1) \cdot(1-p) \cdot\left(\frac{1-(1-p)^{i}}{1-(1-p)}\right) \leqslant(1-p)^{i-1} \cdot n \\
& \quad \Rightarrow \operatorname{Pr}(k(G) \geqslant i-1) \leqslant(1-p)^{i-2} \cdot n . \quad \square
\end{aligned}
\]

Lemma 3.11 leads to the first upper bound for \(\mathrm{E}\left(k \cdot e_{\text {red }}\right)\).
Lemma 3.12. Let \(k_{o}={ }_{\text {del }}\lceil-(4 \cdot \log n) / \log (1-p)\rceil\). Then
\(\mathrm{E}\left(k \cdot e_{\text {red }}\right) \leqslant k_{0} \cdot \mathrm{E}\left(e_{\text {red }}\right)+1\).
Proof. Let \(k_{0}=\lceil-(4 \cdot \log n) / \log (1-p)\rceil\); then we get by, Lemma 3.11,
\[
\begin{align*}
\operatorname{Pr}\left(k(G) \geqslant k_{0}+1\right) & \leqslant(1-p)^{k_{11} \cdot n} \\
& \leqslant(1-p)^{-(4 \cdot \log n) / \log (1-p)} \cdot n \\
& \leqslant \frac{n}{\exp (4 \cdot \log n)} \leqslant \frac{1}{n^{3}} . \tag{14}
\end{align*}
\]

This implies for our product \(k \cdot e_{\text {red }}\) :
\[
\begin{aligned}
\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right)= & \sum_{l=1}^{n} l \cdot E\left(e_{\mathrm{red}} \mid k(G)=l\right) \cdot \operatorname{Pr}(k(G)=l) \\
= & \sum_{l=1}^{k_{0}} l \cdot E\left(e_{\mathrm{red}} \mid k(G)=l\right) \cdot \operatorname{Pr}(k(G)=l) \\
& +\sum_{l=k_{1,+1}}^{\sum_{i=1}^{n} l \cdot \mathrm{E}\left(e_{\mathrm{red}} \mid k(G)=l\right) \cdot \operatorname{Pr}(k(G)=l)} \\
\leqslant & k_{0} \cdot \underbrace{\sum_{i=1}^{k_{0}} \mathrm{E}\left(e_{\mathrm{red}} \mid k(G)=l\right) \cdot \operatorname{Pr}(k(G)=l)}_{\leqslant \mathrm{E}\left(e_{\mathrm{red}}\right)}+n^{3} \cdot \underbrace{\sum_{l=k_{0}+1}^{n} \operatorname{Pr}(k(G)=l)}_{=\operatorname{Pr}\left(k(G) \geqslant k_{0}+1\right)}
\end{aligned}
\]
(by (14))
\[
\leqslant k_{0} \cdot \mathrm{E}\left(e_{\mathrm{red}}\right)+n^{3} \cdot \frac{1}{n^{3}} .
\]

We need a better bound for small \(p\) 's.
Lemma 3.13. \(\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right) \leqslant n \cdot \mathrm{E}(|\operatorname{out}(1)|) \cdot(\mathrm{E}(k)+1)\).
Proof. First we need an upper bound for \(\mathrm{E}(k(G) \mid \gamma(1)=l)\).
We claim
\[
\begin{equation*}
\mathrm{E}\left(k\left(G_{n, p}\right) \mid \gamma(1)=l\right) \leqslant 1+\mathrm{E}\left(k\left(G_{n, p}\right)\right) . \tag{15}
\end{equation*}
\]
\((l=0)\) : Then \(Z_{1}\left(G_{n, p}\right)=\{1\}\) and \(G-\{1\}\) is a random graph with \(n-1\) vertices. So we get
\[
\mathrm{E}\left(k\left(G_{n, p}\right) \mid \gamma(1)=0\right)=1+\mathrm{E}\left(k\left(G_{n-1 . p}\right)\right) \leqslant 1+\mathrm{E}\left(k\left(G_{n, p}\right)\right) .
\]
\((l \geqslant 1)\) : Then \(\gamma(1) \geqslant 1\) implies \(\left|Z_{1}\left(G_{n, p}\right)\right| \geqslant 2\) and \(G-Z_{1}(G)\) is a random graph with \(\leqslant n-2\) vertices. We have
\[
\mathrm{E}\left(k\left(G_{n, p}\right) \mid \gamma(1)=l\right) \leqslant 1+\mathrm{E}\left(k\left(G_{n-2, p}\right)\right) \leqslant 1+\mathrm{E}\left(k\left(G_{n, p}\right)\right)
\]

This implies for the product
\[
\mathrm{E}\left(k \cdot e_{\text {red }}\right) \leqslant \mathrm{E}(k \cdot e)=\mathrm{E}(k \cdot \gamma(1))+\cdots+\mathrm{E}(k \cdot \gamma(n)) \leqslant n \cdot \mathrm{E}(k \cdot \gamma(1))
\]
which implies
\[
\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right) \leqslant n \cdot \sum_{l=0}^{n-1} l \cdot \mathrm{E}(k(G) \mid \gamma(1)=l) \cdot \operatorname{Pr}(\gamma(1)=l)
\]
(by (15))
\[
\begin{aligned}
& \leqslant n \cdot \sum_{l=0}^{n-1} l \cdot(\mathrm{E}(k(G))+1) \cdot \operatorname{Pr}(\gamma(1)=l) \\
& \leqslant n \cdot(\mathrm{E}(k(G))+1) \cdot \mathrm{E}(\gamma(1)) .
\end{aligned}
\]

\section*{4. Conclusion}

We presented an improved algorithm for computing the transitive closure of an acyclic digraph with running time \(\mathrm{O}\left(k \cdot e_{\mathrm{red}}\right)\), where \(e_{\text {red }}\) is the number of edges in the transitive reduction and \(k\) is the width of the chain decomposition, a partition of \(V\) into distinct paths. To analyse the expected values of \(k, e_{\mathrm{red}}, e^{*}, k \cdot e_{\mathrm{red}}\) we used the \(G_{n, p}\) model of a random graph. We found
\[
\begin{aligned}
& \operatorname{Pr}\left(k\left(G_{n, p}\right) \geqslant i\right) \leqslant(1-p)^{i-1} \cdot n \quad \forall 1 \leqslant i \leqslant n, \\
& \mathrm{E}(k)=\mathrm{O}\left(\frac{\log (p \cdot n)}{p}\right), \quad \mathrm{E}\left(\gamma^{*}\right)=\Omega\left(n-\frac{\log p}{p}\right), \\
& \mathrm{E}\left(\gamma_{n}^{\mathrm{red}}\right)=\frac{p}{1-p} \cdot\left(n-\mathrm{E}\left(\gamma_{n}^{*}\right)\right), \\
& \mathrm{E}\left(e_{\mathrm{red}}\right)=\mathrm{O}\left(\min \left(n \cdot|\log p|, p \cdot n^{2}\right)\right)=\mathrm{O}(n \cdot \log n),
\end{aligned}
\]
\[
\mathrm{E}\left(k \cdot e_{\mathrm{red}}\right)= \begin{cases}\mathrm{O}\left(n^{2}\right) & \text { for } \log ^{2} n / n \leqslant p<1 \\ \mathrm{O}\left(n^{2} \cdot \log \log n\right) & \text { otherwise }\end{cases}
\]

Our data structure for representing the transitive closure, namely niv(v) for a vertex \(v\), the map \(\operatorname{id}(v)\) and the chain decomposition \(Z_{1}, \ldots, Z_{k}\) only used space \(\mathrm{O}(n \cdot k)\) in contrast to \(\mathrm{O}\left(e^{*}\right)\) of previous methods. Nevertheless we can execute the test " \(w \in\) out \(^{*}(v)\) " in time \(\mathrm{O}(1)\). Moreover, with this data structure it is easy to compute, e.g., out* \((v) \cap\) out \(^{*}(v)\) in time \(\mathrm{O}(k)\) and in general \(k\) is very much smaller than \(\mid\) out \({ }^{*}(w)|+|\) out \({ }^{*}(v) \mid\)

\section*{5. Further remarks}

We think that the following questions are interesting:
- \(\mathrm{E}\left(k \cdot e_{\text {red }}\right) \leqslant \mathrm{E}(k) \cdot \mathrm{E}\left(e_{\text {red }}\right)\) ? Conjecture: Yes.
- Do simple limit theorems exist for the \(k\)-, or \(\gamma^{*}\)-distribution?

\section*{Acknowledgment}

This paper owes much to the help that I have received from Kurt Mehlhorn. My thanks to him for this support. Philippe Flajolet has published a paper on "Probabilitic counting" [5]. In this paper he has dealt with the \(k\)-distribution independently from our work. In particular, he has obtained the term in Lemma 3.4 and shown that the variance of the \(k\)-distribution is very small.

\section*{A. Appendix}

\section*{Claim A. 1}
\[
\sum_{j=1}^{l-1} \frac{1}{(1 p)^{j}}=\frac{1}{p} \cdot\left(\left(\frac{1}{1 \quad p}\right)^{l-1}-1\right) \quad \forall l \in \mathbb{N} .
\]

\section*{Proof}
\[
\begin{aligned}
\sum_{j=1}^{1-1} \frac{1}{(1-p)^{j}} & =\sum_{j=1}^{l-1}\left(\frac{1}{1-p}\right)^{j}=\left(\frac{1}{1-p}\right) \cdot\left(\sum_{j=0}^{1-2}\left(\frac{1}{1-p}\right)^{j}\right) \\
& =\left(\frac{1}{1-p}\right) \cdot\left(\frac{1-(1-p)^{-(1-1)}}{1-(1-p)^{-1}}\right)=\frac{1}{p} \cdot\left(\left(\frac{1}{1-p}\right)^{1-1}-1\right) .
\end{aligned}
\]

\section*{Claim A. 2}
\[
\varphi(x)=\frac{1}{p} \cdot\left(\left(\frac{1}{1-p}\right)^{x-1}-1\right) \Rightarrow \varphi^{-1}(x)=\frac{\log (p \cdot x-1)}{-\log (1-p)}+1 .
\]

\section*{Proof}
\[
\begin{aligned}
\varphi\left(\varphi^{-1}(x)\right) & =\frac{1}{p} \cdot\left(\left(\frac{1}{1-p}\right)^{(\log (p \cdot x+1) /(-\log (1-p))+1)-1}-1\right) \\
& =\frac{1}{p} \cdot\left(\left(\frac{1}{1-p}\right)^{\log (p \cdot x+1) /(\log 1-\log (1-p))}-1\right) \\
& =\frac{1}{\mathrm{p}} \cdot\left(\left(\left(\frac{1}{1-\mathrm{p}}\right)^{1 /-\log (1-p)}\right)^{\log (p \cdot x+1)}-1\right) \\
& =\frac{1}{p} \cdot(\exp (\log (p \cdot x+1))-1) \\
& =\frac{1}{p} \cdot(p \cdot x+1-1)=x .
\end{aligned}
\]

\section*{References}
[1] I.N. Bronstein and K.A. Semendjajew, Taschenbuch der Mathernatik (Deutsch, Frankfurt/Main, 1981).
[2] M. O'hEigeartaigh, J.K. Lenstra and A.H.G. Rinnooy Kan, Combinatorial Optimization (Wiley, New York, 1985).
[3] P. Erdös and J. Spencer, Probabilistic Methods in Combinatorics (Academic Press, New York, 1974).
[4] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1-2 (Wiley, New York, 1960 and 1966).
[5] Ph. Flajolet, Approximate counting: a detailed analysis, BIT 25 (1985) 113-134.
[6] A. Goralćíková and V. Koubek, A reduct and closure algorithm for graphs, in: Proc. Conf. on Mathematical Foundations of Computer Science (1979) Lecture Notes in Computer Science 74 (Springer, Berlin, 1979) 301-307.
[7] A.J. Jammel and H.G. Stiegler, On expected costs of deadlock detection, Inform. Process. Lett. 11 (1980) 229-231.
[8] K. Mehlhorn, Data Structures and Algorithms, Vol. 2: Graph Algorithms and NP-Completeness, EATCS Monographs in Computer Science 2 (Springer, Berlin, 1984).
[9] C.P. Schnorr, An algorithm for transitive closure with linear expected time, SIAM J. Comput. 7 (1978) 124-133.```

