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Abstract A general method of probabilistic fatigue damage prognostics using limited and partial

information is developed. Limited and partial information refers to measurable data that are not

enough or cannot directly be used to statistically identify model parameter using traditional regres-

sion analysis. In the proposed method, the prior probability distribution of model parameters is

derived based on the principle of maximum entropy (MaxEnt) using the limited and partial infor-

mation as constraints. The posterior distribution is formulated using the principle of maximum rel-

ative entropy (MRE) to perform probability updating when new information is available and

reduces uncertainty in prognosis results. It is shown that the posterior distribution is equivalent

to a Bayesian posterior when the new information used for updating is point measurements. A

numerical quadrature interpolating method is used to calculate the asymptotic approximation for

the prior distribution. Once the prior is obtained, subsequent measurement data are used to perform

updating using Markov chain Monte Carlo (MCMC) simulations. Fatigue crack prognosis prob-

lems with experimental data are presented for demonstration and validation.
ª 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fatigue crack damage of materials exhibits significant uncer-

tainties due to the unstable and stochastic nature of crack
propagation mechanism. Accurate deterministic fatigue
damage prognosis is difficult to achieve under realistic service
conditions. Therefore uncertainty quantification for fatigue

damage prognosis using probabilistic methods is usually
required to obtain reliable results. Uncertainties in fatigue
damage prognostics arise from several sources such as material
properties, loading, environmental conditions and the geome-

try of the cracked-component. Stress intensity factor (SIF)-
driven methods are commonly used to model the fatigue crack
propagation rate. For example, the classical Paris’ equation

and its variants.1–3 To effectively use those models for fatigue
crack prognosis, sufficient fatigue testing data are required to
identify model parameters. Model prediction may be unreli-

able when usage condition is very different from the one under
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which model parameters are calibrated4, and updating
becomes highly useful and necessary. Probabilistic fatigue
damage prognostics using Bayes’ rule requires a prior proba-

bility density function (PDF) of model parameters identified
from a large set of experimental data5–7 and point measure-
ment data.8,9 Whether to choose or obtain a prior PDF

depends on what information is available. For statistical iden-
tification of model parameters, a large set of repeated tests
under the same condition is required which is very expensive.

Another approach, in the absence of any information, is to
construct a homogeneous/uniform probability distribution
that assigns to each region of the parameter space a probability
proportional to the volume of the region, which is also called

non-informative prior in a Bayesian context.10 However, some
non-informative priors cannot be normalized.11–13 In such
cases, methods based on the transformation group14,15 or ref-

erence prior16,17 can be adopted, but analysis of the specific
problem is needed. Limited or partial information, such as
the mean value for a specific function involving model param-

eters, is sometimes available from historical data or field test-
ing. However, there is no formal rule to utilize the partial
information to obtain the prior PDF of model parameters or

to perform updating in the classical Bayesian framework.
To resolve the above difficulties in probabilistic fatigue

damage prognostics, two major extensions are demanded:
(1) a reliable initial estimation method for model parameters,

which allows for estimating the model parameter PDF in a
rational manner under conditions where no enough fatigue
testing data are available, and (2) a general updating rule that

is capable of handling different types of measurement data.
The first aspect is realistic but challenging considering the fact
that exhaustively performing fatigue testing for all usage con-

ditions, particularly for unforeseen usage conditions, is not
practical. The second aspect is also demanding because not
all measurable data are in the form of point measurements

which can directly be incorporated for updating using Bayes’
rule. The objective of this study is thus not to provide a supe-
rior method to the regression method or to argue limitations of
Bayes’ rule. The objective of the study, however, is to develop

a method allowing one to identify the prior PDF of model
parameters using limited or partial information for cases where
the traditional statistical identification is difficult to apply due

to the limited number of data points available for a normal
regression, and to formulate an updating rule that is able to
handle more versatile data from usage monitoring for uncer-

tainty reduction in prognosis results. Therefore, the underlying
assumptions made in this study are: there is no or not enough
of testing data for statistical identification of model parameters
using normal regression methods and partial information is

available for updating. In the study, the probabilistic identifi-
cation of model parameters given limited or partial informa-
tion is proposed based on the principal of maximum entropy

(MaxEnt), and the updating rule that is capable of handling
additional information other than point measurements com-
monly seen in the classical Bayesian analysis is formulated

based on the principal of maximum relative entropy (MRE).
The remainder of the paper is organized as follows. First,

the probabilistic identification of model parameters using lim-

ited or partial information is derived to obtain the prior PDF
of model parameters. To evaluate the prior PDF, a numerical
quadrature interpolating method is proposed. Next, the updat-
ing rule is formulated according to the principle of MRE for
probability updating given additional data such as response
measures to reduce the uncertainty in prognostics. The result-
ing posterior PDF from updating can be evaluated either by

analytical solution (if there exists one) or approximation meth-
ods such as Markov chain Monte Carlo (MCMC) simulations.
Following that, a few fatigue prognosis problems with experi-

ment data are presented to demonstrate and validate the effec-
tiveness of the overall method.

2. Probabilistic model parameter identification with limited or

partial information

Under the condition that there is no fatigue testing data avail-

able to identify the prior PDF of model parameters using the
normal regression method, it is possible that sparse response
measurements, such as one crack size measurement from a

few cracked components being monitored, are sometimes
available. It is not possible to conduct parameter estimation
using regression since the number of data points is one and
the number of model parameters is larger than one (e.g.,

two-parameter Paris’ equation). The key idea is to treat the
mean value of the one response measure associated with each
individual target system as a mathematical expectation of the

mechanism model output. The expectation value can be con-
sidered as a constraint to formulate the prior PDF using the
principle of MaxEnt. Given a random variable h and its prob-

ability distribution pðhÞ 2 Rþ, the information entropy18 of
h 2 H is defined as

HðhÞ ¼ �
Z

H
pðhÞ ln pðhÞdh ð1Þ

The principle of MaxEnt states that the desired probability
distribution is the one that maximizes the entropy subject to all

constraints.19 The usual constraints are the mathematical
expectations of some functions that involve the variable h.
For example, the first and second order moments of h, such
as EpðhÞðhÞ and EpðhÞðh2Þ or more general EpðhÞðfðhÞÞ can serve

as the constraints. Here fð�Þ represents a general real-valued
function. The desired prior distribution pðhÞ can be derived

using the method of Lagrange multipliers. Given a general
expectation constraint EpðhÞðfðhÞÞ ¼ F, the Lagrangian K reads

K¼�
Z

H
pðhÞ lnpðhÞdhþa

Z
H
pðhÞdh�1

� �
þk

Z
H
pðhÞfðhÞdh�F

� �
ð2Þ

Maximizing K by dK=dpðhÞ ¼ 0 to obtain

pðhÞ ¼ 1

Z
expðkfðhÞÞ ð3Þ

where Z ¼
R

H expðkfðhÞÞdh is the normalizing constant, and a
and k are Lagrange multipliers. The term k is calculated by
solving

o ln
R

H expðkfðhÞÞdh
� �

ok
¼ F ð4Þ

The solution also holds true when h is a vector of variables

and fðhÞ is a set of real-valued functions. For polynomial type

of functions, such as fkðhÞ ¼
Pk

i¼0 aih
i, Eq. (4) has an analyti-

cal expression when k 6 2. Higher order moments or a more

complicated form of function can only be solved by numerical
methods.20,21 As mentioned above, the mechanism model can
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be used as the function in the constraint EpðhÞðfðhÞÞ ¼ F. By uti-

lizing the mean value of the first measure associated with a few
number of target systems as the expectation of model predic-

tions, the prior PDF can be obtained. Denote the model as
M, model parameter as h, and the computed crack size as
MðhÞ, the prior PDF can then be expressed as.

pðhÞ / expðkMðhÞÞ ð5Þ

where k is computed as

o lnð
R

H expðkMðhÞÞdhÞ
ok

¼ �a ð6Þ

where �a is the mean value of the measurements. For example,

given the first crack size measurements from three cracked-
components working in a similar condition,
�a ¼ ða1 þ a2 þ a3Þ=3. Here ai represents the first crack size

measurement of ith cracked-component. It is noted that the
proportional relationship is used in Eq. (5) without the nor-
malizing constant Z as shown in Eq. (3). This is due to the fact

that the normalizing constant does not necessarily to be eval-
uated when MCMC simulations are used to draw samples
from the (unnormalized) PDF.

3. Probability updating based on principle of MRE

Once the prior distribution is constructed, the posterior distri-

bution can be calculated using the principle of MRE. Let p0ðhÞ
be the prior distribution of the parameter under model M.
Probability updating on p0ðhÞ can be performed when new
information is available. The information may be a response

measure and/or the mathematical expectation of a function
of h. Let pðxjhÞ be the conditional probability distribution of
observation x 2 X given h. The joint distribution of x and h
is p0ðx; hÞ ¼ p0ðhÞpðxjhÞ. Let pðx; hÞ be the optimal posterior
distribution given new information as constraints. The search
space for this optimal distribution is X�H. The relative infor-

mation entropy (or the equivalent mathematical form of
Kullback–Leibler (KL) divergence22) of the desired optimal
posterior distribution pðx; hÞ with respect to the prior distribu-
tion of p0ðx; hÞ is defined as

Iðpjjp0Þ ¼
Z
X�H

pðx; hÞ ln pðx; hÞ
p0ðx; hÞ

dxdh ð7Þ

The principle of MRE22,23 states that given new facts, the
new distribution pðx; hÞ should be chosen which is as difficult
to discriminate from the original distribution p0ðx; hÞ as possi-
ble. The method of Lagrange multipliers can be used to obtain
pðx; hÞ by minimizing Eq. (7) under given constraints. The
direct response measure of the event x ¼ x0 can be formulated

as the constraint
R

H pðx; hÞdh ¼ dðx� x0Þ. Combining the nor-

malization constraint
R
X�H pðx; hÞdxdh ¼ 1, the Lagrangian

can be expressed as

K ¼
Z
X�H

pðx; hÞ ln pðx; hÞ
p0ðx; hÞ

dxdhþ a
Z
X�H

pðx; hÞdxdh� 1

� �

þ
Z
X

bðxÞ
Z

H
pðx; hÞdh� dðx� x0Þ

� �
dx ð8Þ

The optimal distribution pðx; hÞ is obtained by
dK=dpðx; hÞ ¼ 0 as
pðx; hÞ ¼ 1

Z0

pðx; hÞ expð�bðxÞÞ ð9Þ

where Z0 ¼
R
X�H p0ðx; hÞ expð�bðxÞÞdxdh is the normalization

constant. Substituting pðx; hÞ in Eq. (9) into the constraint ofR
H pðx; hÞdh ¼ dðx� x0Þ; integrating over h yields

pðhÞ / p0ðhÞpðx0jhÞ ð10Þ

which is identical to the usual Bayesian posterior distribution

for h given that the response measure x0. The term pðx0jhÞ in
Eq. (10) is also referred to as the likelihood function. Denote
the deterministic model prediction for event (response mea-

sure) x as M. Considering the statistical mechanism modeling
uncertainty e1 and the measurement uncertainty e2, the proba-
bilistic description of x can be expressed as

x ¼MðhÞ þ e1 þ e2 ð11Þ

Without loss of generality, terms e1 and e2 are usually
described by independent Gaussian variables with the standard
deviations of re1 and re2 , respectively. The likelihood function

for n independent response measures is formulated as

pðx1; x2; . . . ; xnjhÞ ¼
1

ð
ffiffiffiffiffiffi
2p
p

reÞ
n exp � 1

2

Xn
i¼1

xi �MiðhÞ
re

� �2
" #

ð12Þ

where re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e1
þ r2

e2

q
. Substituting Eq. (3) for the prior distri-

bution and Eq. (12) for the likelihood function into Eq. (10),

the posterior distribution is now

pðhÞ / expðkfðhÞÞ exp � 1

2

Xn
i¼1

xi �MiðhÞ
re

� �2
" #

ð13Þ

If sufficient experimental data are available, function fðhÞ
can be chosen as h or h2 and the prior distribution becomes

the commonly used exponential family distribution. For exam-

ple, given EpðhÞðhÞ ¼ /1 and EpðhÞðh2Þ ¼ /2 only, the prior dis-

tribution expðkfðhÞÞ is the usual normal distribution with the

mean value of /1 and variance of /2 � /2
1. For realistic system

and structures, several issues must be addressed. First, the
direct statistical identification of h may be difficult to apply
because the response measures are usually not h but some indi-
rect variables. Second, the accurate statistical identification of

h may also require a large set of experimental data. Based on
those considerations, the response measure prediction model
MðhÞ is used for fðhÞ in the prior distribution. The posterior

distribution becomes

pðhÞ / expðkMðhÞÞ exp � 1

2

Xn
i¼1

xi �MiðhÞ
re

� �2
" #

ð14Þ

In many engineering problems, the parameter h is multi-
dimensional and direct evaluation of Eq. (4) for the

Lagrange multiplier k in the prior distribution is difficult.
More general numerical methods, such as Monte Carlo simu-
lations are usually used. To illustrate and validate the pro-

posed procedure for building the entropic prior and
posterior for fatigue damage prognostics, a practical example
with experimental data is presented next.
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4. Fatigue damage prognostics with limited or partial

information

The fatigue crack damage propagation is one of the major fail-

ure modes for many engineering systems and the damage state
and the crack growth need to be quantified to avoid catas-
trophic events. Many fatigue crack growth models are semi-

empirical because the underlying mechanisms are either too
sophisticated to be modeled exactly or the resulting models
are too computationally intensive for practical use.4

Therefore, updating the parameter using measurement data

becomes an effective and efficient way to reduce the uncer-
tainty in prognostics. In practice, parameters in the fatigue
crack growth model are usually obtained through standard

testing. In the standard testing, the geometry of the specimen
has a specific configuration. The parameter value obtained in
this manner is not generic to be used for other geometry or

loading configurations. Therefore, using the parameter value
obtained in one dataset to a different geometry and loading
configuration may lead to unreliable results.4 On the other

hand, conducting the testing for the target component of inter-
est may not be practical due to the economic and time
constraints.

In this section, a practical fatigue crack growth example is

presented based on the above considerations. First, given no
testing data, the prior is obtained directly using response mea-
sures from a limited number of target components using fati-

gue crack growth model as the constraint function. The prior
can reflect uncertainties associated with the target components
as a whole. Then the subsequent measurement data associated

with the target component of interest can be used to perform
updating. The updating uses the component-specific measure-
ment data and the updated results become more specific as

more data are used in the updating process. Eventually, the
measurement data diminish the effects from the prior informa-
tion and become more relevant to the target component. To
demonstrate the applicability of the proposed method, three

commonly used fatigue crack growth models are included in
this example. Two experimental datasets are used to validate
the effectiveness of the proposed method.

4.1. Fatigue crack growth models

Three commonly used fatigue crack growth models, namely
Paris’ model,1 Forman’s model,2 and McEvily’s model,3 are

used here to demonstrate the applicability of the proposed
method. The three models are briefly introduced for the com-
pleteness of the paper. More details about the models can be

found in the referred articles. Paris’ model is given as

da

dN
¼ cðDKÞm ð15Þ

where a is the crack size, N is the number of applied cyclic
loads, and c and m are model parameters. Following the con-

vention, parameter ln c is generally used instead of c when fit-

ting the model parameters. The term DK ¼
ffiffiffiffiffiffi
pa
p

Drgða=wÞ is
the range of stress intensity factor during one cycle. The term
Dr is the range of applied stress during one cycle, gða=wÞ the
geometric correction term, and w the width of the specimen.
Paris’ model describes the lg–lg linear region in the
da=dN� DK coordinate.

Forman’s model is stated as

da

dN
¼ cðDKÞm

ð1� RÞKcr � DK
ð16Þ

where R is the load ratio, Kcr the fracture toughness of the
material, and c and m are two parameters of the Forman’s

model.
McEvily’s model is defined as

da

dN
¼ cðDK� DKthÞ2 1þ DK

Kcr � Kmax

� �
ð17Þ

where DKth is the threshold stress intensity range below which
cracks either propagate at an extremely low rate or do not
propagate at all. Knowledge of DKth permits the calculation

of permissible crack lengths and applied stresses in order to
avoid fatigue crack growth.4 Kmax is the maximum stress inten-
sity in one cyclic load. It should be noted that parameters c and

m take different values in different models and they are usually
obtained by experimental data via regression analysis.
Statistical identification of the parameters usually requires a
large number of coupon tests under the same conditions. It

is worth mentioning that a PDF can be uniquely determined
by the method of maximum a posterior estimation (MPE) with
the first fourth moments, and the PDF may not be unique

since different PDFs of parameters may lead to the same mean
of the crack size when only using the first moment as a con-
straint. Since choosing constraints is entirely subjectively, it

should be made based on the data available and the problem.
When only limited crack growth curve is available, e.g., two or
three curves, the statistical identification for the variance or

higher order moments is not reliable. This scenario is typical
for practical problems where the component is usually differ-
ent from the specimen in the standard testing. The mean crack
measurement can be a reasonable approximation for mathe-

matical expectation of the model prediction. Higher order
moments can also be applied when they can be reliably esti-
mated. In this study only the most reliable constraint is applied

to demonstrate the development of the method; therefore, the
constraint is formulated as Ep0ðhÞ MðhÞð Þ ¼ �a. The prior distri-

bution can be expressed, according to Eq. (3), as

p0ðhÞ / expðkMðhÞÞ ð18Þ

where h is the model parameter and MðhÞ is the model predic-
tion. For example, using Paris’ model, h ¼ ðln c;mÞ and MðhÞ
is the crack size computed by Eq. (4). p0ðhÞ is the prior distri-
bution of the model parameter and Ep0ðhÞðMðhÞÞ represents the
mathematical expectation of MðhÞ under the distribution of
p0ðhÞ. �a is the mean value of the crack size measures. The
Lagrange multiplier k is obtained by solving

o lnð
R

H kMðhÞdhÞ
ok

¼ �a ð19Þ
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4.2. Compact tension (CT) specimen testing data and
prognostics

The testing data reported in Ref.24 includes crack growth tra-
jectories for 2024-T351 aluminum alloy compact tension spec-

imens. The dimensions of the specimens are 50.0 mm wide and
12.0 mm thick, with nominal yield strength and ultimate yield
strength of 320 MPa and 462 MPa, respectively. The initial
crack length is 18.0 mm. Sinusoidal signals with the maximum

force of 4.5 kN and the minimal force of 0.9 kN are used as the
input loads. The loading frequency is 15 Hz. In order to reflect
the largest uncertainty in specimens, three crack growth

curves with the fastest, moderate, and the slowest crack growth
rate are chosen from the dataset to represent the only
available testing data. The three crack growth curves are

shown in Fig. 1, where Specimens 1–3 represent specimens
with the fastest, moderate, and slowest crack growth rate,
respectively.

Assume the crack size for the three specimens at 104 cycles
are measured and the results are 18.71 mm, 18.92 mm, and
19.19 mm associated with the slow, medium and fast rate
curves, respectively. With this information only (the first

response measure for the three specimens), the deterministic
values for parameters in Paris’ model for the three specimens
cannot be obtained since the number of unknowns is larger

than the measured points. However, the entropic prior distri-
bution can be constructed according to Eqs. (18) and (19) by
Table 1 Values of �aki for different ki calculated using numerical qu

Model �aki

ki = �0.20 ki = �0.19 ki = �0.18
Paris 18.432 18.481 18.546

Forman 18.244 18.266 18.294

McEvily 18.265 18.290 18.321

Model �aki

ki = �0.14 ki = �0.13 ki = �0.12
Paris 19.087 19.349 19.696

Forman 18.528 18.642 18.794

McEvily 18.574 18.697 18.858

Fig. 1 Three crack growth curves of compact tension specimens

(data source is from Ref.24).
treating the mean values of the three crack measures as the
expectation of Paris’ model prediction. Therefore, in Eq.
(19), �a ¼ ð18:71þ 18:92þ 19:19Þ=3 ¼ 18:94 mm. In the case

where only one measurement point is available for each of
those models, the classical statistical and deterministic method
for parameter estimation is difficult to apply because the num-

ber of unknowns is larger than the minimal required data
points. For example, the Paris’ model has two parameters
ðln c;mÞ whereas only one equation Mðln c;mÞ ¼ 18:71 mm is

available.
Solving for the Lagrange multiplier k in Eq. (19) is an opti-

mization problem in nature. Classical gradient-based optimiza-
tion algorithms can be directly applied. For problems with a

small number of parameters, numerical quadrature is efficient

to obtain the integral of
R

H kMðhÞdh in Eq. (19) for a given

value of k. For problems with a large number of parameters,
simulation-based method can be used to evaluate this integral.
Since the solution of k (i.e., the Lagrange multiplier) is

unique25, interpolation can also be adopted to reduce the total
number of integral evaluations. Denote the value of
Ep0ðhÞðMðhÞÞ associated with a specific value of k as �ak. Given

k taking a set of different values, the corresponding �ak can
be obtained either by numerical quadrature or simulation-

based methods. Therefore, given the actual measured value
of �a = 18.94 mm, the desired solution for k can be interpo-
lated. In this paper, a numerical quadrature interpolating

method is used to obtain the Lagrange multiplier k.
Parameters ln c and m are related to crack growth properties
of the material. Theoretically the integration ranges for ln c
and m are ð�1;þ1Þ and ð0;þ1Þ, respectively. Due to prac-

tical and empirical considerations of model parameters, ln c is
bounded in the range of [�35, �5] and m is bounded in [1, 5] to
improve numerical efficiency. The chosen bounds in this study

are conservative enough compared with the observed ones
from experimental data. For example, typical metal materials
have a value of M around 2.5 to 4 and ln c around �26 to

�20.26 As long as the chosen range covers most of the proba-
bility mass of a variable, the variation of the calculated results
due to the change of integration range is small enough and the
results can still remain the precision for engineering purposes.

To interpolate the Lagrange multiplier k associated with
�a ¼ 18:94 mm, a set of ki uniformly takn from [�0.2, �0.1]
is used in Eq. (19) to evaluate the corresponding �aki . In this

study, aki is calculated using the quadrature functions of

MATLAB 2008a and results are shown in Table 1. It is
adrature.

ki = �0.17 ki = �0.16 ki = �0.15
18.630 18.742 18.890

18.331 18.379 18.443

18.361 18.413 18.484

ki = �0.11 ki = �0.10
20.154 20.755

18.988 19.271

19.077 19.372
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expected that the measurement data will dominate the crack
growth predictions when more and more data are used for
updating. As a result, the influence of the prior PDF becomes

weak. Although the three specimens share the same prior PDF,
the predicted crack growth trajectory will gradually converge
to its physical one with continuous updating.

For �a ¼ 18:94 mm, the corresponding k is obtained from
interpolation as �0.1471, �0.1126, and �0.1158 for Paris’
model, Forman’s model, and McEvily’s model, respectively.
Fig. 2 Fatigue crack growth progn
The general posterior distribution for multiple response mea-
sures can then be written as

pðhÞ / expðkMðhÞÞ exp � 1

2

Xn
i¼1

ai �MiðhÞ
re

� �2
" #

ð20Þ

where ai is the subsequent new measurement data on crack
length associated with the target component, re the standard
ostics update using Paris’ model.
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deviation of Gaussian likelihood and n the total number of

subsequent measures of crack size. For example, using Paris’
model, h ¼ ðln c;mÞ and k ¼ �0:1471.

Three measurement data points are arbitrarily chosen to

represent the actual measures of crack sizes. Those data are
used for updating using the posterior distribution in
Fig. 3 Fatigue crack growth prognos
Eq. (20). Once a new measurement is available, MCMC simu-
lations with the Metropolis–Hastings algorithm27,28 are
employed to draw samples from the posterior distribution.

The fatigue crack growth prognostics can readily be evaluated
using the resulting MCMC samples. At each updating,
25 · 104 samples are generated. For the purpose of illustration,
tics update using Forman’s model.



Fig. 4 Fatigue crack growth prognostics update using McEvily’s model.
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term re is explicitly set to 0.30 mm for general fatigue prognos-
tic problems.7 Alternatively, the actual value for re can be esti-
mated using historical data or the calibration uncertainty of

the measurement equipment. The results of crack growth prog-
nostics update using Paris’ model are presented in Fig. 2.
Median predictions and 95% bounds predictions are shown.
Although the three components have the same prior distribu-
tion, the final prognosis results for each of the components

are different. Forman’s model and McEvily’s model produce
results given in Figs. 3 and 4, respectively. As more and more
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measures are used for updating, the data become dominant
and they will diminish the effect from the prior eventually.
From a practical point of view, it is shown that reasonable

prognostic results can be obtained using the prior based on
partial information.

In realistic applications, the model is generally sophisti-

cated and the prior distribution with an exponential model
with no analytical solution might be slow for numerical
evaluation of the posterior distribution. On the other hand,

if physical justification can be made in the form of the
parameter distribution, it would be convenient to transform
the samples to a particular type of distribution. For exam-
ple, in the application example shown above, it is appropri-

ate to consider ln c as a normal variable and m as a
truncated normal variable. MCMC samples after the first
updating can be used to fit the distributions. In fact, the

parameters in Paris’ model are considered as normal
variables in Ref.29 Fitting MCMC samples into an analytical
distribution may introduce additional uncertainties and in

some cases it might be risky for prognostics and decision-
making.
Fig. 5 Five crack growth curves of center-through cracked

specimens (data source is from Ref.30).

Table 2 Values of �aki for different ki calculated using numerical qu

Model �aki

ki = �0.040 ki = �0.038 ki = �0.036
Paris 11.218 11.599 12.096

Forman 10.062 10.222 10.431

McEvily 10.185 10.358 10.584

Model �aki

ki = �0.028 ki = �0.026 ki = �0.024
Paris 16.093 17.921 20.263

Forman 12.157 12.968 14.027

McEvily 12.439 13.308 14.442
4.3. Compact tension specimen testing data and prognostics

The center-through cracked specimen testing data for
aluminum 2024-T3 materials provided by Ref.30 are used.
The dataset consists of 68 sample trajectories, each contain-

ing 164 measurement points. The entire specimen has the
same geometry, i.e., an initial crack size of 9 mm, length
L ¼ 558:8 mm, width w ¼ 152:4 mm and thickness
t ¼ 2:54 mm. The stress range during each test is constant

Dr ¼ 48:28 MPa and the stress ratio is R ¼ 0:2. The failure
criterion is that the crack size equals 49.8 mm. Five specimens
from the dataset are arbitrarily chosen to represent the target

components and they are shown in Fig. 5.
Assume the crack size for the five specimens at 105

cycles are measured. The crack lengths are 14.662 mm,

14.380 mm, 13.862 mm, 12.983 mm, and 12.998 mm for
Specimens 1–5, respectively. The mean value of the model
output at 105 cycles is �a ¼ 13:777 mm. Following the same

procedure as shown in the compact tension specimen data-
set, the values of Lagrange multiplier k are obtained as
�0.0316 mm, �0.0244 mm, and �0.0251 mm for Paris’
model, Forman’s model and McEvily’s model, respectively.

The detailed values for interpolating ki are shown in
Table 2.

Four data points are chosen to represent the subsequent

measurements to perform updating. For illustration pur-
poses, only Paris’ model results are presented here. Other
models follow the same procedure as Paris’ model. The

results for fatigue crack growth associated with the five
specimens are shown in Fig. 6. Although the five specimens
share the same entropic prior distribution, the subsequent
fatigue crack growth curves are quite different. As more

measurement points are used to perform updating, the
effect of prior gradually reduces. The 95% bounds of the
crack growth curves also narrow, indicating the uncertainty

in prognostics reduces. In addition, the median prediction
of the crack growth curves also becomes closer to the
actual crack growth curve as more data points are used

for updating.
adrature.

ki = �0.034 ki = �0.032 ki = �0.030
12.742 13.583 14.676

10.706 11.065 11.538

10.880 11.267 11.775

ki = �0.022 ki = �0.020
23.238 26.976

15.407 17.193

15.914 17.817



Fig. 6 Crack growth prognostics update using Paris’ model.
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5. Conclusions

The paper presents a method of fatigue crack damage prognos-
tics using limited or partial information. The proposed method

formulates the prior using the fatigue crack growth model and
the first response measurement data as constraint. When only
point measurement data are used in updating, the updating

rule is equivalent to Bayes’ rule. The overall method is demon-
strated using fatigue problems with experimental data. The
results suggest that the proposed procedure provides a feasible
way of conducting prognostics using limited or partial infor-

mation. Based on the current investigation, two conclusions
are drawn.

(1) It is feasible to construct a prior distribution for proba-
bilistic inference using limited or partial information
obtained directly from the target components. This is

achieved by using the mechanism model as the con-
straint function. The average value of the first response
measures from the target components is treated as the

mathematical expectation for the model prediction.
(2) Realistic prognostics may be performed using simple

models with limited known information on model
parameters. The key is to transform the limited informa-

tion or data into the prior and perform continuous
updating to reduce the uncertainty in prognostics. It
should be noted that the proposed method is to provide

a rational approach for probabilistic fatigue prognostics
with limited or partial information. For regular cases
where enough data are available for classical statistical

analysis, conventional methods are preferred and the
complicated numerical evaluations of the proposed
method can be avoided. More efficient algorithms will

be investigated in the future to reduce the computational
demands of the proposed method.
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