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1. SUMMARY 

In Part I, four ostensibly different theoretical models of induction 
are presented, in which the problem dealt with is the extrapolation of a 
very long sequence of symbols--presumably containing all of the infor- 
mation to be used in the induction. Almost all, if not all problems in 
induction can be put in this form. 

Some strong heuristic arguments have been obtained for the equiva- 
lence of the last three models. One of these models is equivalent to a 
Bayes formulation, in which a priori probabilities are assigned to se- 
quences of symbols on the basis of the lengths of inputs to a universal 
Turing machine that are required to produce the sequence of interest as 
output. 

Though it seems likely, it is not certain whether the first of the four 

models is equivalent to the other three. 

Few rigorous results are presented. Informal investigations are made 

of the properties of these models. There are discussions of their con- 
sistency and meaningfulness, of their degree of independence of the 

exact nature of the Turing machine used, and of the accuracy of their 
predictions in comparison to those of other induction methods. 

In Part II these models are applied to the solution of three problems- 
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NIl1 Grant No. GM 11021-01. 
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3.1 to 3.4 first appeared in Zator Technical Bulletins 138 and 139 of November 
1960 and January 1961, respectively. Seetions 4.1 and 4.2 are more exact presen- 
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prediction of the Bernoulli sequence, extrapolation of a certain kind of 
Markov chain, and the use of phrase structure grammars for induction. 

Though some approximations are used, the first of these problems is 
treated most rigorously. The result is Laplaee's rule of succession. 

The solution to the second problem uses less certain approximations, 
but the properties of the solution that are discussed, are fairly inde- 
pendent of these approximations. 

The third application, using phrase structure grammars, is least exact 
of the three. First a formal solution is presented. Though it appears to 
have certain deficiencies, it is hoped that presentation of this admittedly 
inadequate model will suggest acceptable improvements in it. This 
formal solution is then applied in an approximate way to the determi- 
nation of the "optimum" phrase structure grammar for a given set of 
strings. The results that are obtained are plausible, but subject to the 
uncertainties of the approximation used. 

2. I N T R O D U C T I O N  AND G E N E R A L  DISCUSSION:  T H E  N A T U R E  OF 
T H E  P R O B L E M  

The problem dealt with will be the extrapolation of a long sequence of 
symbols--these symbols being drawn from some finite alphabet. More 
specifically, given a long sequence, represented by T, what is the proba- 
bility that it will be followed by the subsequence represented by a? In 
the language of Carnap (1950), we want c(a, T), the degree of confir- 
mation of the hypothesis that a will follow, given the evidence that T 
has just occurred. This corresponds to Carnap's probability1. 

The author feels that all problems in inductive inference, whether 
they involve continuous or discrete data, or both, can be expressed in 
the form of the extrapolation of a long sequence of symbols. Although 
many examples have been investigated to lend credanee to this hy- 
pothesis, this point is not essential to the present paper, which is limited 
to the problem of extrapolation of sequences of discrete symbols. In all 
cases being considered, the known sequence of symbols is very long, and 
contains all of the information that is to be used in the extrapolation. 

Several methods will be presented for obtaining formal solutions to 
this problem. By a formal solution is meant a mathematical equation 
that in some sense expresses the probability desired as a function of the 
sequences involved. It  will not, in general, be practical to evaluate the 
probability directly from this equation. In most cases, there is some 
question as to whether it is even possible in theory to perform the indi- 



F O R M A L  T H E O R Y  OF I N D U C T I V E  I N F E R E N C E  

cated evaluation. In all cases, however, the equations will suggest 
approximations, and the approximations that have been investigated 
give predictions that seem both qualitatively and quantitatively reason- 
able. 

The "solutions" that are proposed involve Bayes' Theorem. A priori 
probabilities are assigned to strings of symbols by examining the manner 
in which these strings might be produced by a universal Turing machine. 
Strings with short and/or numerous "descriptions" (a "description" of 
a string being an input to the machine that yields that string as output) 
are assigned high a priori probabilities. Strings with long, and/or few 
descriptions are assigned small a priori probabilities. 

Four ostensibly different models of this general nature are presented 
in Sections 3.1, 3.2, 3.3 and 3.4 respectively. 

It should be noted that in these sections, no theorems or rigorous 
proofs are presented. 

Each of the models is described in some detail. Statements are made 
about various properties of these models. In few eases have any rigorous 
proofs been constructed for these statements, but in all eases, they repre- 
sent the author's strong opinions--based for the most part on plausi- 
bility arguments and numerous specific examples. The text will some- 
times give these arguments and examples. 

Occasionally, the phrase, "it can be shown that," will introduce a 
statement for which either a rigorous proof or a very convincing "plausi- 
bility argument" has been found. In such eases, the demonstration will 
not be presented. 

These models all lead to somewhat different expressions for the proba- 
bilities of various possible extrapolations of a given sequence. Although 
it is not demonstrated in the present text, it can be made very plausible 
that the last three methods are equivalent. Whether the first method is 
equivalent to the other three is not, at the present time, certain, though 
the author is inclined to think that it is. 

These alternate formulations of a general theory make it easier to 
understand the operation and application of the theory in a variety of 
types of problems. 

That these kinds of models might be valid is suggested by "Oeeam's 
razor," one interpretation of which is that the more "simple" or "eco- 
nomical" of several hypotheses is the more likely. Turing machines are 
then used to explicate the concepts of "simplicity" or "economy"--the 
most "simple" hypothesis being that with the shortest "description." 
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Another suggested point of support is the principle of indifference. If 
all inputs to a Turing machine that are of a given fixed length, are 
assigned "indifferently equal a priori" likelihoods, then the probability 
distribution on the output strings is equivalent to that imposed by the 
third model described, i.e., that of Section 3.3. 

Huffman coding gives a third rationale for these models. If we start 
out with an ensemble of long strings of a certain type, and we know the 
probability of each of these strings, then ttuffman coding will enable us 
to code these strings, "minimally," so that on the average, the codes for 
the most probable strings are as short as possible. 

More briefly, given the probability distribution on the strings, Huff- 
man tells us how to code them minimally. The presently proposed in- 
ductive inference methods can in a sense be regarded as an inversion of 
Huffman coding, in that we first obtain the minimal code for a string, 
and from this code, we obtain the probability of that string. 

The question of the "validity" of these inductive inference methods 
is a difficult one. In general, it is impossible to prove that any proposed 
inductive inference method is "correct." It is possible to show that one 
is "incorrect" by proving it to be internally inconsistent, or showing 
that it gives results that are grossly at odds with our intuitive evalu- 
ations. 

The strongest evidence that we can obtain for the validity of a pro- 
posed induction method, is that it yields results that are in accord with 
intuitive evaluations in many different kinds of situations in which we 
have strong intuitive ideas. 

The internal consistency and meaningfulness of the proposed methods 
are discussed in the sections following 3.1.1. The author feels that the 
proposed systems are consistent and meaningful, but at the present 
time, this feeling is supported only by heuristic reasoning and several 
nonrigorous demonstrations. 

Evidence for the validity of the methods is principally in the form of 
applications to specific problems. Some of these have been worked out 
in Part II. Although the results of these applications appear to be 
strongly in accord with intuitive evaluations of the problems treated, 
several approximations are used in going from the basic inference 
methods to the final solutions. For this reason, the "correctness" of 
these apparent solutions makes a rather imperfect corroboration of the 
basic inference methods. 

The extrapolation problems dealt with in the present paper are a 
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Bernoulli sequence, and two types of sequences generated by pro- 
gressively more complex formal grammars. 

Success has been obtained in applying the basic methods to problems 
in continuous prediction such as fitting curves to empirical data, and it 
is expected that the results of this work will appear in forthcoming 
papers. 

2.1 AN EVALUATION OF THE VALIDITY OF THE ~V~ETHODS PROPOSED 

There are four types of evidence presented for the validity of the 
proposed models. 

First, there is the general intuitive basis, involving such things as 
Occam's razor, the principle of indifference, and the inversion of Huffman 
codes. This type of evidence is of much less importance than the second 
kind--the application of the methods to specific problems and com- 
parison of the results with intuitive evaluations. The third type is given 
in section 3.4, in which it is made plausible that for a certain "goodness" 
criterion, and a very large body of data, the model is at least as good as 
any other that may be proposed. Any proposed general inductive 
inference system must at least satisfy this condition. 

The fourth type of evidence is the discussion of the consistency and 
meaningfulness of the methods in the sections following 3.1.1. 

Of most importance is the second type of evidence, which is presented 
in Part II. In evaluating a method of induction, we apply it to problems 
in which we have strong intuitive ideas about what the solutions are, or 
about certain properties of the solutions. The degree of correlation 
between our intuitive beliefs and the results obtained through the 
theory, will largely determine our degree of confidence in the theory. 
If this correlation is high in many problems of diverse nature in which 
we have strong intuitive feelings, we will begin to trust the theory in 
cases in which our intuitive feelings are weaker. 

The first application of the present approach is made in section 4.1 of 
Part II. Prediction of the next element of a Bernoulli sequence is shown 
to obtain Laplace's rule of succession. Though this particular result is 
by no means universally accepted, it is not an unreasonable one. 

The second application, in section 4.2, treats a type of sequence in 
which there are certain kinds of intersymbol constraints, and the results 
seem to be very reasonable. 

The third application, in section 4.3, deals with extrapolation through 
the use of context-free phrase structure grammars. Little work has been 
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done in this field, and we have few intuitive ideas about what the 
results should be. However, some of the properties of the results are 
investigated and are found to be intuitively reasonable. 

Another application, which is not dealt with in the present paper, is 
the fitting of curves to empirical data. The results obtained thus far 
agree with results obtained by classical methods. 

3. SEVERAL INDUCTIVE INFERENCE SYSTEMS 

Sections 3.1, 3.2, 3.3 and 3.4 will describe in some detail four osten- 
sibly different systems for extrapolating a long sequence of symbols. 

I t  has been made plausible tha t  the last three methods are essentially 
the same, but  it is not certain as to whether the first one is the same as 
the others. 

Section 3 will define more exactly the concepts "description" and 
"universal machine." 

Section 3.1 describes an induction system in which an a priori prob- 
ability is assigned to a sequence on the basis of a weighted sum of all 
possible descriptions of that  sequence with all possible continuations of 
it. The weight assigned to a description of length N is 2 -N. Several 
criticisms of this model are discussed--among them, the meaningfulness 
of the formulation and the degree of dependence upon iust what Turing 
machine was used. 

Section 3.2 describes a model of induction that  a t tempts  to explain in 
a uniform way, all of the data tha t  we receive from the universe around 
us. A new type of universal machine, more like an ordinary digital com- 
puter is introduced. I t  is a kind of 3-tape Turing machine, and some of 
its properties are discussed. A comparison is made between the induc- 
tion models being presented, and induction that  is based on the explicit 
formulation of scientific laws. 

Section 3.3 is a model in which the a priori probability assigned to a 
string is proportional to the number of descriptions that  it has of a 
given fixed length. This model may be viewed as a more exact formula- 
tion of "The principle of insufficient reason." 

Section 3.4 is a model whose predictions are a weighted sum of the 
predictions of all describable probability evaluation methods. The 
weights are assigned to a method on the basis of both its past success 
and its a priori probability. 

I t  is then made plausible tha t  this "summation" method under certain 
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conditions, is at least as "good" as any of its component methods for a 
stated "goodness" criterion. 

The methods described will all use universal Turing machines or 
approximations to such machines to detect regularities in the known part 
of the sequence. These regularities will then be used for extrapolation. 

Critical in the concepts of induction considered here is the "descrip- 
tion" of a "corpus" or body of data with respect to a given machine. 

Suppose that we have a general purpose digital computer M1 with a 
very large memory. Later we shall consider Turing machines--es- 
sentially computers having infinitely expandable memories. 

Any finite string of O's and l's is an acceptable input to M1. The 
output of M1 (when it has an output) will be a (usually different) 
string of symbols, usually in an alphabet other than the binary. If the 
input string S to machine M1 gives output string T, we shall write 

M ~ ( S )  = T 

Under these conditions, we shall say that "S is a description of T 
with respect to machine M~ ." MI(S) will be considered to be meaning- 
less if M~ never stops when it is given the input S. 

Next, the concept of "universal machine" will be defined. A "uni- 
versal machine" is a subclass of universal Turing machines that can 
simulate any other computing machine in a certain way. 

More exactly, suppose M2 is an arbitrary computing machine, and 
M~(x) is the output of M2, for input string x. Then if M1 is a "universal 
machine," there exists some string, a (which is a function of M1 and 
M2, but not of x), such that for any string, x, 

M~(~-~) = M2(x) 

a may be viewed as the "translation instructions" from M~ to M2. 
Here the notation £-~ indicates the concatenation of string a and string x. 

I t  is possible to devise a complete theory of inductive inference using 
Bayes' theorem, if we are able to assign an a priori probability to every 
conceivable sequence of symbols. In accord with this approach, it is 
felt that sequences should be given high a priori probabilities if they have 
short descriptions and/or many different descriptions. The methods 
of Sections 3.1, 3.2, 3.3 and 3.4 may be regarded as more exact formula- 
tions of these two ideas; they give, in effect, a relative weighting for 
these two aspects of the descriptions of a sequence. 
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In general, any regularity in a corpus may be utilized to write a 
shorter description of that corpus. Remaining regularities in the de- 
scriptions can, in turn, be used to write even shorter descriptions, etc. 

The simplest example of a description that will be given is in section 
4.1. Here, a Bernoulli sequence is described. 

It  is seen that any "regularities" (i.e., deviations of the relative fre- 
quencies of various symbols from the average), result in shorter and/or 
more numerous descriptions. 

On a direct intuitive level, the high a priori probability assigned to a 
sequence with a short description corresponds to one possible interpre- 
tation of "Occam's Razor." The assignment of high a priori probabilities 
to sequences with many descriptions corresponds to a feeling that if an 
occurrence has many possible causes, then it is more likely. 

3.1 INDUCTIVE INFERENCE SYSTEM[ USING ALL POSSIBLE DESCRIPTIONS 
AND ALL POSSIBLE CONTINUATIONS OF THE CORPUS 

The first method to be discussed will assign a probability to any 
possible continuation of a known finite string of symbols. 

Suppose T is a very long sequence of symbols in some known alphabet, 
A. 

A, the "output alphabet," contains just r different symbols. 
T is the corpus that we will extrapolate, and must contain all of the 

information that we want to use in the induction. 
M1 is a universal machine with output alphabet A, and a binary input 

alphabet. 
a is a finite sequence of symbols of alphabet A, and is therefore a 

possible immediate continuation of sequence T. We want to find the 
probability of this possible continuation. 

P(a, T, M1) might be called "the probability with respect to M1, 
that a will follow T." 

What we wish to call P is not of very much importance. P will be 
defined by Eq. (1), and we will then investigate the properties of the 
quantity defined. It will later appear that this quantity has most (if 
not all) of the qualities desired in an explication of Carnap's probability 
(Carnap, 1950) and so we have chosen to refer to P as a "probability." 
The reader may find it distasteful to refer to P as "probability" until it 
has been proven to have all of the necessary properties--in which 
case he might for the time being mentally read "probability~" when- 
ever P is referred to. 
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C~.k is a sequence of n symbols in the output alphabet of the universal 
machine M1. There are r different symbols, so there are r ~ different 
sequences of this type. C~,~ is the kth such sequence, ]c may have any 
value from 1 to r ~. 

TaC~,k is the same as T a C~,~. 
(Srac,.~)i is the i th description of TaC,.k with respect to machine 

M1. The descriptions can be made in order of length, but the exact 
ordering method is not critical. 

N(~roc~,~)~ is the number of bits in (Srac.,k)~ • 

r ~ - ~ l  ~ 1 }-~=~[( -----e)/2lN(~°c"'~'~ (1) P(a,T, M 1 ) -  lim lira ~ ~ 1 -  

To get some understanding of this rather complex definition we will 
first consider only the numerator of the fight side of Eq. (1). The 
denominator is a normalization factor; without it, the equation gives 
something like the relative probability of the continuation a, as com- 
pared with other possible continuations. Next, set e to zero, and let n 
also equal zero. This gives the very approximate expression 

I t  becomes clear at this point that  if the sequence Ta has a short 
description (i.e., for some i, N(s~o)~ is small), then expression (2) will 
hold a lot of weight for that  description. Furthermore, if there are many 
such short descriptions of Ta, then expression (2) will be given much 
additional weight. 

Unfortunately, it can be shown that  the number of descriptions of 
length m of Ta (or any other sequence) is at  least proportional to 2 ~ 
for large enough m. This causes expression 2 to diverge, and so the 
1 - e factor of Eq. (1) is inserted, giving 

l~n (3) 
e-~0 i = l  

For nonzero e, the effect is to give negligible weight to descriptions 
whose lengths are many times greater than 1/e. 

In the method of Section 3.2, this convergence is obtained in a some- 
what different manner. 

Another way in which Eq. (1) differs from expression (3) is that  
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Eq. (1) considers that the partial sequence Ta might have been the 
beginning of any number of longer sequences that start with Ta. By 
including all possible continuations of Ta--i.e., CA,k, we give the se- 
quence T a a  larger probability if it is capable of being the beginning of a 
longer sequence that is of high probability. An example is the coding of 
the sequence D -- abcdabcdabcdabcdab which can be dealt with using 
the methods of Section 4.2. 

If described in a direct way, the sequence D has a rather lengthy 
description. If, however, we first define the subsequence abcd to be 
represented by the intermediate symbol a, we can write D as Baaac~ab, 
B being a subsequence that defines a to be abed. It  is reasonably likely 
that the sequence D has the continuation cdabcd . . . .  Though the 
sequence Bac~ac~ab is much shorter than the original D, the description 
of the sequence Dcd is Banana,  which is even shorter. The sequences 
like Baaaaab are to be considered as "intermediate codes" for D. 
The method by which they are represented as a single positive in- 
teger -or  a sequence of O's and l 's--is dealt with in Sections 4.1.1 and 
4.2.2. I t  will become clear that the intermediate sequence Banana has 
a far shorter code than Baaaaab, since in the latter case, the symbols 
a and b have not been used much in the intermediate code, and therefore 
are effectively represented by relatively long expressions in the final 
code. 

It must be stressed that while the above reasoning gives some of the 
reasons for the choice of Eq. (1) as a reasonable definition of probability, 
these arguments are meant to be heuristic only. The final decision as to 
whether Eq. (1) is a good definition or not rests to a rather small extent 
upon the heuristic reasoning that gave rise to it, and almost entirely 
upon the results of investigations of the properties of this definition. 
Investigations of this type are presented in Part II. 

The author feels that Eq. (1) is likely to be correct or almost correct, 
but that the methods of working the problems of Sections 4.1 to 4.3 
are more likely to be correct than Eq. (1). If Eq. (1) is found to be 
meaningless, inconsistent, or somehow gives results that are intuitively 
unreasonable, then Eq. (1) should be modified in ways that do not 
destroy the validity of the methods used in Sections 4.1 to 4.3. 

3.1.1. Criticisms and Questions About Eq. (1) 

There are several questions that immediately come to mind when 
equation 1 is proposed as an explication of probability1. 
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3.1.1.1. The terms of the summation do not include descriptions that 
are "meaningless," i.e., inputs to the universal machine M1, for which 
the machine does not stop. Turing (1937) has shown that it is impossible 
to devise a Turing machine that will always be able to tell, in a finite 
time, whether an arbitrary string will be "meaningful" for another 
particular universal Turing machine. This raises the question of whether 
the right side of Eq. (1) defines anything at all. 

3.1.1.2. It has not been shown rigorously that the limit of the right 
side of Eq. (1) exists, as e, n, and i approach their respective limits. 

3.1.1.3. It would seem that the value of P(a, T, M1) would be crit- 
ically dependent upon just what universal machine, M1, was used. 
Is there any particular M1 that we can use that is better than any other? 

3.1.2. Replies to Criticisms of Eq. (1) 

3.1.2.1. I t  is clear that many of the individual terms of Eq. (1) are not 
"effectively computable" in the sense of Turing (1937). It is very reason- 
able to conjecture that the entire right side of Eq. (1) is not "effectively 
computable." This does not mean, however, that we cannot use Eq. 
(1) as the heuristic basis of various approximations. If an approxima- 
tion to Eq. (1) is found that yields intuitively reasonable probability 
values and is effectively computable, we would probably adopt such an 
approximation as a better explication of probabilityt than Eq. (1). 

One approach to such an approximation can be made by first con- 
sidering as "meaningful" input to the universal machine, only those 
that complete their output in less than r operations. With such a limita- 
tion, each of the terms of Eq. (1) is "effectively computable." The 
summations on i and k both become finite summations. If we let r ap- 
proach infinity and then let e approach zero we will have some sort of 
approximation to Eq. (1). 

At the present rudimentary state of development of the theory, 
different approximations to Eq. (1) are used for different types of prob- 
lems. It  is hoped that further work in this field may yield a unified, 
useful approximation to Eq. (1). 

3.1.2.2. Though the existence of the limits designated on the right 
side of Eq. (1) has not yet been proved, various approximations to this 
equation have been made which tacitly assume the existence of these 
limits. Some of these approximations are described in Sections 4.1 to 
4.3. 

3.1.2.3. It is likely that Eq. (1) is fairly independent of just what 
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universal machine is used, if T is sufficiently long, and contains enough 
redundanee, and M1 is "fairly good" at expressing the regularities of T. 
Although a proof is not available, an outline of the heuristic reasoning 
behind this statement will give clues as to the meanings of the terms 
used and the degree of validity to be expected of the statement itself. 

Suppose we have a very long sequence T, containing m symbols, and 
we have two universal machines, M1 and M2. We will try to show that 

P(a, T, M~) '~ P(a, T, M~) (4) 

Let N(s,,~) and N(srm > represent the lengths of the shortest codes 
for T, with respect to M1 and M2 respectively. 

Let al be Ms's simulation instructions for M~. 
Let as be Ml's simulation instructions for M2. 

Then for all strings, x, 

and 

Ml(x) = M2(al'-'x) 

Ms(x) = M~(as'~x). 

Let N,  1 and N~ 2 be the number of bits in al and as, respectively. 
Then 

N(sf,1) ~ N(sr,s) --k N,~ (5) 

and 

N(s~,2) ~ N(s~,l) -~- N~I (6) 

To explain Eq. (5), note that MI can always code anything by using 
M2's code, prefixed by a2. Thus Mx's shortest code cannot be more than 
N~2 longer than M2's shortest code for the same sequence. A similar 
argument holds for Eq. (6). 

Suppose that M1 is basically more efficient in coding T. Then if m, 
the number of symbols in T, is sufficiently large, it is plausible to hy- 
pothesize that Ms's shortest code will indeed be obtained by simulating 
M1 and using Ml's shortest code. It is necessary to assume that m is 
very large, because any slight advantage between M~'s and Ms's coding 
methods is accentuated in coding a long sequence. One might suppose 
that for values of m that are not too large, the difference between the 
code lengths are roughly proportional to m. When m becomes large 
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enough so that the difference is about N~I, then the difference remains 
constant, because M2 is forming its minimal code by simulating M1. 

If M2's shortest codes are all N~I bits longer than Ml's shortest codes, 
it is clear that the largest terms of P(a, T, M1) in Eq. (1) (i.e., the 
terms due to the shortest codes) will all be 2 N~ times as large as the 
corresponding terms in a corresponding expression for P(a, T, M2). 
Since these terms occur in both numerator and denominator, this factor 
will approximately cancel out with the result that P(a, T, M1) and 
P(a, T, M2) are approximately equal. 

Though the weak points in the above heuristic arguments are many, 
the reasoning is strong to the extent that 

1. M~ is appreciably more efficient than Ms in coding regularities of 
the type that occur in T. 

2. M2 is "close" to M~ in the sense that Nal is "small". 
3. m is sufficiently large so that Ml's shortest code for T is much longer 

than N~ 1 . 
In using P(a, T, M~) it would seem best to select an M~ that is fairly 

efficient in coding the sequences in which we will be interested. The 
LISP list processing language in which recursive definitions are easily 
implimented, or any of the other computer languages that have been 
devised for convenience in dealing with material in certain large areas 
of science (Green, 1961) might be used as the basis of simulation of M1 • 

3.1.3 A Method of Applying Eq. (1) 

In many situations in which induction is to be applied, the sequence T 
is not constant, but grows in time. The problem is to make many in- 
ferences at different times, each based upon the entire sequence up to 
that time. Instead of having to recode the entire sequence each time to 
obtain the desired inference, it is possible to summarize the previous 
work by modifying the machine M1 suitably and concern one's self only 
with the coding of the new data. More exactly, suppose that T is our 
original sequence, and we have made some inferences based on T alone. 
Later, we are given the subsequence D, which is part of the continua- 

tion of T, and are asked to make inferences based on T D. Then there 
always exists a universal machine, M2 such that 

P(a, T D, M~) = P(a, D, Ms) 

for any conceivable subsequence a. In general, the nature of Ms will 
depend upon both T and M~. 
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M2 can be viewed as a summary of the inductive data of T, with 
respect to MI. 

Though it has been possible to prove that at least one M2 exists 
satisfying the requirements described, the M2 thereby obtained makes 

the problem of finding short codes for Da just as difficult as the problem 

of finding short codes for T Da. It is clear that the M2 obtained in this 
way does not summarize, in any useful way, the information contained 
in the sequence T. It  is felt, however, that if suitable approximations to 
Eq. (1) are used, it is indeed possible to have M2 summarize in a useful 
manner the information contained in T. A trivial example occurs if the 
only regularity in T is contained in the frequencies of its various sym- 
bols. If M2 contains a listing of the number of occurrences of each of the 
symbols of T, it will then contain a summary of T in a form that is 
adequate for most additions of new data on the continuation of T. 

I t  is possible, however, that data that seems to summarize the regu- 
larities of T, does not do so, in view of new data. For example, if we 
had "summarized" T by the frequencies of its various symbols, we 
would not be able to notice the exact repetition of the entire sequence 
T, if it occurred later. 

3.2 SYSTEM IN THE FORM OF A ~/[ODEL TO ACCOUNT FOR ALL 

REGULARITIES IN THE OBSERVED UNIVERSE 

Suppose that all of the sensory observations of a human being since 
his birth were coded in some sort of uniform digital notation and written 
down as a long sequence of symbols. Then a model that accounts in an 
optimum manner for the creation of this string, including the interac- 
tion of the man with his environment, can be formed by supposing that 
the string was created as the output of a universal machine of random 
input. 

Here "random input" means that the input sequence is a Markov 
chain with the probability of each symbol being a function of only pre- 
vious symbols in the finite past. The input alphabet may be any finite 
alphabet. 

In the simplest case, the input will be a binary sequence with equal 
probabilities for zero and one. This situation appears, at first glance, to 
be identical to Eq. (1), with this equation being used for Bayes' inference, 
given equal a priori probabilities to all possible input sequences of the 
same length. 
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There is, however, an important difference in that the present case deals 
with infinitely long inputs, while Eq. (1) deals with finite inputs only. 
The meaningfulness of "a legal output" of the machine with infinitely 
long inputs must then be defined. In Eq. (1), any finite input leading 
to a nonterminating output is effectively given a priori probability zero. 
For an infinitely long input, however, the output is often nonterminating. 

In the present case, we shall regard an input as "meaningful" if 
every symbol of the output takes only a finite number of operations to 
compute it. It  is easiest to give this a more rigorous meaning in machines 
that have separate tapes for infinite input, infinite output and infinitely 
expandable memory. In such a 3-tape machine we can stipulate that an 
output symbol, once written, can never be erased, and so we need ask 
that for each output symbol not more than a finite time elapse before 
that symbol is written. 

There appears to be a difference between the present method and 
that of Section 3.1, in that the present method only considers part of 
the future of the sequence to be extrapolated--it does not consider its 
extension into the infinite future, as does Section 3.1. 

To compare the method of the present section with that of Eq. (1), 
first consider the following definitions, which are to be used in the present 
section only. 

M2 is a 3-tape machine with unidirectional output and input tapes. 
T is a possible output sequence containing just m symbols. 
S is a possible input sequence. 
Then we shall say that "S is a code of T (with respect to M2)," if 

the subsequence composed of the first m symbols of M~(S) is identical 
to T. 

We shall say that "S is a minimal code of T" if (a) S is a code of T 
and (b) if the last symbol of S is removed then the resultant sequence is 
no longer a code of T. 

Since every minimal code of T is directly representable as a positive 
integer, these minimal codes can be linearly ordered. 

Let N(T, i) be the number of bits in the ith minimal code of T. 
Then using the model previously described in the present section, and 

a simple application of Bayes' theorem, it is found that the probability 
that the sequence T will be followed by the subsequence a, is 

P'(a, T, M2) =-- ~ 1  2 -N(T~'i) ~ 2_~(~, + (7) 
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The apparent simplicity of Eq. 7 over Eq. 1 is due to two factors: 
first, Eq. (7) has a very simple automatic device for considering possible 
continuations of Ta. This device is built into the definition of the "mini- 
real codes of Ta." Second, there are no problems of convergence, since 
the sums of both numerator or denominator are bounded by unity. This 
makes the 1 -- e factor of Eq. (1) unnecessary. 

I t  should be noted that M~ of Eq. (7) is somewhat different from M1 
of Eq. (1). If T = Ms(S) then if we adjoin more symbols to the right 

of S, as S a, then S a will still be "a code of T," and M~(S a) will con- 

sist of the string T b, where b is a finite, infinite or null string. 
This condition if not true of M1, which is an unconstrained universal 

machine. If M~(S) = T, then little, if anything, can be said about 

M~(S a). MI(S  a) could be longer or shorter than T; it may even be the 
null sequence. These properties of M~ make it difficult to define "a 
minimal code of T (with respect to M 0 , "  in the sense that it was de- 
fined for Ms. 

At the beginning of the present section, it was mentioned that the 
present model would account for the sequence of interest, in "an op- 
timum manner." 

By "optimum manner" it is meant that the model we are discussing 
is at least as good as any other model of the universe in accounting 
for the sequence in question. Other models may devise mechanistic 
explanations of the sequence in terms of the known laws of science, or 
they may devise empirical mechanisms that optimumly approximate 
the behavior and observations of the man within certain limits. Most of 
the models that we use to explain the universe around us are based 
upon laws and informal stochastic relations that are the result of in- 
duction using much data that we or others have observed. The induction 
methods used in the present paper are meant to bypass the explicit 
formulation of scientific laws, and use the data of the past directly to 
make inductive inferences about specific future events. 

I t  should be noted, then, that if the present model of the universe is 
to compete with other models of the universe that use scientific laws, 
then the sequence used in the present model must contain enough data 
of the sort that gave rise to the induction of these scientific laws. 

The laws of science that have been discovered can be viewed as sum- 
maries of large amounts of empirical data about the universe. In the 
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present context, each such law can be transformed into a method of 
compactly coding the empirical data that gave rise to that law. 

Instead of including the raw data in our induction sequence, it is 
possible, using a suitable formalism, to write the laws based on this data 
into the sequence and obtain similar results in induction. Using the raw 
data will, however, give predictions that are at least as good, and 
usually better, than using the summaries of the data. This is because 
these summaries of the data are almost always imperfect and lose much 
information through this imperfection. 

I t  may, at this point, seem gratuitous to claim that the proposed 
model is optimum with respect to all other conceivable models, many of 
which have not yet been discovered. I t  would seem to be impossible to 
compare the present model with the undiscovered models of the future, 
and thus claim optimMity. We will, however, give in Section 3.4 a 
model of induction, apparently equivalent to the present one, in which 
all possible induction models are formally considered. The predictions of 
each possible induction model are used in a weighted sum to obtain 
predictions that are at least as "good" (in a certain stated sense) as 
any of the component induction models. 

3.2.1 The concept of stochastic languages (Solomonoff, 1959) sug- 
gests another way of looking at the induction model of Section 3.2. A 
stochastic language is an assignment of probability values to all finite 
strings of some finite Mphabet. Though a specific type of stochastic 
language is dealt with in Section 4.3, we can characterize the most general 
possible stochastic language through the use of a 3-tape universal ma- 
chine, with binary input, and an output in the alphabet of the desired 
language. 

Let D be an arbitrary finite binary sequence, let M1 be such a 3-tape 
universal machine, and let R~ be a random infinite binary sequence, 
with equal probability for zero or one. 

MI(D R~) will define a probability distribution on all possible output 
strings. This distribution will then consitute a stochastic language. The 
string D, can be considered to be a description of this language with 
respect to M1. 

The independence of the induction methods of the present paper upon 
the exact nature of the Turing machine used can be put in a particularly 
compact form using this concept. If [a~'] is the set of "translation instruc- 
tions" from M1 to all other possible universal machines, Mj ,  then we 
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may say that the stochastic language defined by MI (aj Ri) is fairly 
independent of a~ for very long sentences, and for a3" within a rather 
large class. 

3.3 SYSTEM USING A UNIVERSAL ~V~ACHINE WITH ALL POSSIBLE INPUT 
STRINGS OF A FIXED LENGTH 

Consider a very long string T of m symbols drawn from an alphabet 
of r different symbols. We shall first obtain a method for assigning a priori 
probabilities to all strings longer than T. On this basis we can use Bayes' 
theorem to obtain a probability distribution for various possible con- 
tinuations of T. As before, it is desirable that T contain much redundance, 
and that it contain all of the information that we expect to use, either 
directly or indirectly, in our induction. 

Choose some large number, R, such that 

2 ~ >> r ~ (8) 

In this way, binary strings of length R can be expected to contain 
more "information" than the string T. In the following development, we 
shall allow R to approach infinity. 

Suppose M to be a universal machine with binary input alphabet, 
and an output alphabet that is the same as that of T. We shall con- 
sider M to be either of the ordinary type, M1, described in Section 3.1, 
or the 3-tape type, M2, described in Section 3.2. In the present case, it 
has been proved that these two machine types give equivalent results. 

Consider all binary strings of length R. Say N~ of them are meaningful 
inputs to M--i.e., they cause M to stop eventually. Of these NR meaning- 
ful inputs to M, say N ,  of them result in outputs whose first m symbols 
are, respectively, identical to the m symbols of T. Then the a priori 
probability assigned to T will be 

N~./NR (9) 

This ratio will become more exact as R approaches infinity, but will 
usually be good enough if R satisfies Eq. (8). 

I t  can be proved that the present inductive inference model is identical 
to that of Section 3.2, if M is a machine of either type M1 or of type M2. 

Although it has not been rigorously proved, it seems likely, at the 
present time, that the methods of the present section give results iden- 
tical to those of Section 3.1. 
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An equation that follows from Eq. (9) that is, however, similar to 
Eq. (1), is 

P"(a ,  T, M1) - lim ~--~:~ ~-~:i ~-~¢~[(1 - -  ~)/2]~(sr~c~,k)~ (10) 

A corresponding expression for the probability that the subsequence 
a (rather than any other subsequence) will follow T, that is based on 
Eq. (9), is 

NTa (NT~ -1 ,, NTa 
--= • = l g n -  ( 1 1 )  P"(a, T, MI) \N. /  

The formulation of the induction system as a universal machine with 
input strings of fixed length has an interesting interpretation in terms 
of "the principle of insufficient reason." If we consider the input sequence 
to be the "cause" of the observed output sequence, and we consider all 
input sequences of a given length to be equiprobable (since we have no 
a priori reason to prefer one rather than any other) then we obtain the 
present model of induction. 

3.4 A SYSTEM EMPLOYING ALL POSSIBLE PROBABILITY EVALUATION 
METHODS 

An inductive inference system will be described that makes proba- 
bility evaluations by using a weighted mean of the evaluations given by 
all possible probability evaluation methods. The weight given to any 
particular evaluation method depends upon two factors. The first factor 
is the success that method would have had in predicting the now known 
sequence. The second is the a priori probability of that probability evalu- 
ation method. It is approximately measured by the minimum number 
of bits required to describe that method. 

3.4.1 A More Detailed Description of the System 

Consider the extrapolation of a long string, T, containing m symbols, 
drawn from an alphabet, A, containing r different symbols, b~(i = 
1, 2, --- , r). 

A "probability evaluation method" (which we will henceforth desig- 
nate as "a PEM")  is a method of assigning a priori probability values to 
any sequence of symbols in A. From these probability assignments it is 
then possible, using Bayes' theorem, to find the probability of any 
specified continuation of a known sequence. 
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A normalized PEM (which we will henceforth designate as a 
"NPEM")  is one in which the sum of the probabilities of all possible 
continuations of a sequence is equal to the probability of that sequence. 
More exactly, let P~(B) be the a priori probability assigned to string B 
by a certain PEM, Q~. 

If, for all strings, a, 

and 

then Q~ is a NPEM. 

Pi(a bj) = Pi(a) 
j = l  

Pi(b~) = 1 
j = l  

To compute with respect to Q~ the probability that string T will have 
the continuation a, we can use Bayes' theorem to obtain the value 

P~( T a)/P~(T) (12) 

If Q~ is a NPEM, we shall define Di,  to be '% binary description of 
f - - .  E - ~  

Qi, with respect to machine M2 ," if for all strings, a, M2(D~ A a) is an 
infinite string giving the binary expansion of P~(a). The symbols of D~ 
are to be drawn from a binary alphabet, and A is a special symbol that 
is used to tell M2 where D~ ends and a begins. 

In order that it be meaningful for Ms to have an infinite output 
sequence, we will specify that Ms be a 3-tape universal machine of the 
type that was discussed in Section 3.2. 

Consider all binary strings of length R. For a given large value of R, 
a certain fraction of these strings will be binary descriptions with respect 
to M2, of the NPEM, Qi • We will assume (and this assumption can be 
made plausible) that this fraction approaches a limit, f~, as R approaches 
infinity. 

The inductive inference system that shall be proposed is 

P'tlt(a, T, M2) =- ~_ff=l f~P~(T a) (13) 

Here, the summations in numerator and denominator range over all 
possible NPEM's, Qi. 
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Though it is not difficult to show that P#~P defines a NPEM, this 
NPE1V[ is not "effectively computable" (in the sense of Turing (1937) 
and so it does not include itself in the summations of equation 13. 

3.4.2 A Comparison of the Present System with Other PEM's 

An important characteristic of Eq. (13) is illustrated, if we write it 
in the form 

j = l  

Here, PI(T a)/Pi(T) is the probability that T will have continuation 
a, in view of PEM, Q~. This is the same as expression (12). Equation 
(14) is then a weighted sum of the probabilities for the continuation a, 
as given by all possible PEM's. The factor fiP~(T) gives the weight of 
PEM Qi, and 1/ ~7=lfiPj( T) is the normalizing factor for all of the 
weights. 

It  would seem, then, that if T is a very long string, PP'" will make an 
evaluation based largely on the PEM of greatest weight. This is because 
while the f / s  are independent of T, P~(T) normally decreases expo- 
nentially as T increase in length. Also, if Qi and Qj are two different 
PEM's  and Q~ is "better" than Qj, then usually P~( T)/Pj(T) increases 
exponentially as T increases in length. Of greater import, however, 
f~P~(T)/fsPj(T), which is the relative weight of Q~ and Qi, increases 
to arbitrarily large values for long enough T's. This suggests that for 
very long T, Eq. (14) gives almost all of the weight to the single "best" 
PEM. 

Here we define "best" using one of the criteria defined by McCarthy 
(1956), i.e., PEM Q~ is "better" than PEM Qs with respect to string T, 
if Pi (T)  > P / T ) .  

This suggests that for very long T's, P "  gives at least about as good 
predictions as any other PEM, and is much better than most of them. 

There are some arguments that make it plausible that P"P' is a close 
approximation to P" of Eq. (11). If this is so, then it becomes likely 
that the PEM's of Sections 3.2 and 3.3 are also, for "sufficiently long 
T's," at least as good as any other PEM. 

I t  should be noted that the arguments used to suggest the superiority 
of pt,, over other PEM's is similar to that used in Section 3.1.2.3 for 
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the  p laus ib i l i ty  t h a t  P (of Eq .  ( 1 ) )  is l a rge ly  mach ine  i n d e p e n d e n t  for 
long enough T. B o t h  a r g u m e n t s  are,  of course,  ex t r eme ly  informal ,  and  
are  m e a n t  on ly  to  suggest  how a proof  m i g h t  poss ib ly  be found.  
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