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A (0, 1) matrix (a**) is said to be a * matrix i f f  afj = 1 implies a,pj’ = 1 for all 
(i’,j’) satisfying 1 < i’ < i, 1 < j’ < j. (0, 1) matrices permutable to t matrices 
are characterized and counted. Commutivity of matrices which permute to * ma- 
trices is also discussed. 

In [I] we defined * matrices to be matrices (Q) with aij = 0 or 1 and 
aijj, = 1 if aij = 1 and 1 < i’ < i, 1 < j’ < j. For example the matrix 

111100 
111100 

is a * matrix. We note that * matrices are maximal in the sense of Ryser 
[3, p. 621. In this note we wish to consider the numberp(m, n) of m x IZ (0,l) 
matrices from which a * matrix can be obtained by permuting rows and 
columns. We say such a matrix permutes to a * matrix. For example the 
matrix 

110110 
010100 

permutes to the * matrix A. We observe that B contains no submatrix equal 
to [t t] or [i t]. The following theorem shows that this is a charac- 
teristic property of matrices permutable to * matrices. 
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THEOREM 1. A (0, 1) matrix permutes to a * matrix if and only if every 
2 x 2 submatrix is unequal to [i y] and [i t]. 

Proof. Clearly if a matrix has [i i] or [f A] as a submatrix then so 
does every permutation and hence no permutation can be a * matrix. 
Conversely suppose a matrix has neither as a submatrix. Permute the 
columns so that each column has at least as many l’s as the column to the 
right of it. Now permute the rows so that the first column has no 0 above 
a 1. If none of the first k - 1 columns has a 0 above a 1 then rows may be 
permuted so that none of the first k columns has a 0 above a 1. This 
procedure leads to the desired t matrix. 

We note that if in a matrix permutable to a * matrix the O’s are replaced 
by l’s and the l’s by O’s then by the above characterization the resulting 
matrix also permutes to a c matrix. Hencep(m, n) is even. A generalization 
of this result is a consequence of the following theorem. 

S(n, k) is a Stirling number of the second kind for 1 < k < n and is 
defined to be 0 for k > n. 

THEOREM 2. 

Am, 4 = c &!I2 Sh + 1, k + 1) S(n + 1, k + 1) 
GO 

= k-& (- l)n+” k!(k + l)m S(iz, k). 

Proof. For convenience in classifying the matrices counted by p(m, n) 
according to the number of distinct row sums and column sums we 
consider (nz f 1) x (n + 1) matrices obtained by bordering the given 
matrices with a row and column of zeroes; clearly this has no effect on the 
count. 

Let pk be the number of such (0, 1) matrices which permute to a * matrix 
having k “corners,” i.e., exactly k entries aii = 1 with u~+~,~ = 0 = u,,~+~ . 
Now since each matrix counted byp, has exactly k + 1 distinct row sums 
(a zero row sum is guaranteed), an ordered partition of the set 
A4 = {l,..., m + l} into k + 1 parts with m + 1 in the (k + l)-th part is 
defined by letting the i-th part of the partition consist of the indices of 
those rows with the i-th largest row sum. Similarly an ordered partition, 
of which there are k! S(n + 1, k + l), of the set N = {l,..., n + l} into 
k + 1 parts with y1 + 1 in the (k + I)-th part is determined by the columns 
since there are k + 1 distinct column sums also. 

As an example the rows of the previously defined matrix B determine 
the ordered partition R = ({1,4}, {2}, {3}, (5)) of {I,..., 5} while the 
columns of B determine the ordered partition C = ({4}, {2}, (1, 5}, {3,6)) 
of {l,..., 6). 
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Conversely suppose the ordered partitions 

R = ({r,. , . . . . rtJ ,... , {~i~+~ ,..., rtKCl = m i- 1)) 

and 

of M and N, respectively, into k + 1 parts are given. Let R’ and C’ be the 
ordered partitions 

and 
((1 ,..., il} ,..., {ik + l,..., ikfl = m + 1)) 

((I,... ,jd,...,th + L..,.ik+l = n + 1)) 

of M and N, respectively. It suffices now to show there is a unique c matrix 
A determining R’ and C’ for then the matrix B obtained from A by 
applying the row and column permutations s---f rs and t--t ct is the 
unique matrix determining R and C. But the corners of any * matrix 
determining R’ and C’ must lie in rows il ,..., ik and columns j, ,..., j, . 
Hence A must be that (m + 1) x (n + 1) * matrix with corners at 
(4 ,.Q,-., & ,A). 

In the example we have R’ = ((1, 2}, {3}, {4}, (5)) and 

C’ = (UL ca, (3,419 (5, w. 

The matrix determining R’ and C’ has corners at (2,4), (3, 2), and (4, 1) 
and therefore is the c matrix A previously defined. 

The second equality of the theorem can be derived from the identity 

k! S(n + 1, k + 1) = & (-W+j (L) j! SW), 

which is equivalent to one found in [2, p. 2091. The derivation involves 
multiplying both sides by k!S(m + 1, k + l), summing on k, and using 
the identity 

which is easily derived by using the recurrence relation and usual equation 
of definition of the Stirling numbers. 

The folIowing result is an immediate consequence of the theorem. 

COROLLARY 3. 

p(m + p - I, n) = p(m, n)(mod p) fur all primes p. 
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If A and B are per-mutable to * matrices we may have AB = BA 
without having A = B or either of them equal to the zero matrix. For 
example, if C is any n x n * matrix and D is the n x n zero matrix then 
trivially the matrices [g g] and [g ,“I commute since their product is the 
2n x 2n zero matrix. If, however, A = PA’PT, B = PB’PT for n x n 
* matrices A’ and B’ and some permutation matrix P (P’ is its transpose) 
then we must have A = B or A = 0 or B = 0. This follows from the 
fact that PAPTPBPT = PBPTPAPT if and only if AB = BA and from 
the following theorem: 

THEOREM 4. Two * matrices A and B commute if and only if A = B or 
one of them is the zero matrix. 

Proof. Let k be the least integer for which the k-th row of A is not 
equal to the k-th row of B. Let rk be the k-th row sum of A. We may 
assume B has k-th row sum rk + r with r > 0. Then the (rK + 1)-th 
column sum of A is at most k - 1 while that of B is at least k. Commu- 
tativity then requires min(r, , k) = min(r, + r, k - 1) which implies 
rk < k - 1 and this in turn gives rk = k - 1. If k = 1 then A is the zero 
matrix. For k > 1 both A and B have their first column sums c and c’ 
equal to or greater than k. Hence 

k - 1 = min(r, , c’) = min(r, + r, c) > k, 

which is impossible. 
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