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Abstract

The dimensionally regularized massless on-shell planar triple box Feynman diagram with powers of propagato
to one is analytically evaluated for general values of the Mandelstam variabless and t in a Laurent expansion in th
parameterε = (4 − d)/2 of dimensional regularization up to a finite part. An explicit result is expressed in terms of har
polylogarithms, with parameters 0 and 1, up to the sixth order. The evaluation is based on the method of Feynman p
and multiple Mellin–Barnes representation. The same technique can be quite similarly applied to planar triple boxes
numerators and integer powers of the propagators.
 2003 Published by Elsevier B.V.

In the last four years, the problem of analytical evaluation was completely solved for most important cla
two-loop Feynman diagrams with four external lines within dimensional regularization [1]. In the pure ma
case with all end-points on-shell, i.e.,p2

i = 0, i = 1,2,3,4, this was done in [2–7]. The corresponding analyt
algorithms were successfully applied to the evaluation of various two-loop virtual corrections [8]. In th
of massless two-loop four-point diagrams with one leg off-shell the problem of evaluation was solved in
with subsequent applications [11] to the processe+e− → 3jets. A first result for the massive on-shell case w
presented in [12]. (See [13,14] for brief reviews of results on the analytical evaluation of various doub
Feynman integrals and the corresponding methods of evaluation.)

In [14,15], first analytical results on three-loop on-shell massless four-point diagrams within dimen
regularization were obtained. The leading power asymptotic behaviour of the dimensionally regularized m
on-shell planar triple box diagram shown in Fig. 1 in the Regge limitt/s → 0 was analytically evaluated in [15
with the help of the strategy of expansion by regions [16]. Then, in [14], explicit analytical results fo
unexpanded master planar triple box were presented for 1/εj terms of Laurent expansion inε with j = 6,5,4,3
and 2.

The purpose of this Letter is to complete this task, i.e., analytically evaluate the missing 1/ε part and the finite
part. An explicit result will be expressed in terms of harmonic polylogarithms (HPL) [17], with parame
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Fig. 1. Planar triple box diagram.

and 1, up to the sixth order. The evaluation is based on the technique of alpha parameters and Mellin–Bar
representation which was successfully used in [2,4,9,12] and reduces, due to taking residues and shifting
to a decomposition of a given MB integral into pieces where a Laurent expansion of the integrand inε becomes
possible.

The general planar triple box Feynman integral without numerator takes the form

T (a1, . . . , a10; s, t; ε)=
∫ ∫ ∫

ddk dd l ddr

(k2)a1[(k + p2)2]a2[(k + p1 + p2)2]a3

× 1

[(l + p1 + p2)2]a4[(r − l)2]a5(l2)a6[(k − l)2]a7

(1)× 1

[(r + p1 + p2)2]a8[(r + p1 + p2 + p3)2]a9(r2)a10
,

wheres = (p1 + p2)
2 and t = (p2 + p3)

2 are Mandelstam variables andk, l, r are the loop momenta. Usu
prescriptionsk2 = k2 + i0, s = s + i0, etc., are implied.

To resolve the singularity structure of Feynman integrals inε it is very useful to apply the MB representation

(2)
1

(X + Y )ν
= 1

�(ν)

1

2πi

+i∞∫
−i∞

dz
Y z

Xν+z
�(ν + z)�(−z),

that makes it possible to replace sums of terms raised to some power by their products in some powers, a
of introducing extra integrations. By a straightforward generalization of two-loop manipulations [6,12] on
introduce, in a suitable way, MB integrations, first, after the integration over one of the loop momenta,r, then after
the integration overl, and complete this procedure after integration over the loop momentumk. As a result, one
arrives [15] at the following sevenfold MB representation of (1):

T (a1, . . . , a8; s, t; ε)
= (iπd/2)3(−1)a∏

j=2,5,7,8,9,10�(aj )�(4 − a589(10)− 2ε)(−s)a−6+3ε

× 1

(2πi)7

+i∞∫
−i∞

dw
7∏

j=2

dzj

(
t

s

)w
�(a2 +w)�(−w)�(z2 + z4)�(z3 + z4)

�(a1 + z3 + z4)�(a3 + z2 + z4)

× �(2− a12 − ε + z2)�(2− a23 − ε + z3)�(a7 +w − z4)�(−z5)�(−z6)

�(4− a123− 2ε +w − z4)�(a6 − z5)�(a4 − z6)

×�(+a123− 2+ ε + z4)�(w + z2 + z3 + z4 − z7)�(2− a59(10)− ε − z5 − z7)

×�(2− a589− ε − z6 − z7)�(a467− 2+ ε +w − z4 − z5 − z6 − z7)�(a9 + z7)

×�(a5 + z5 + z6 + z7)�(4 − a467− 2ε + z5 + z6 + z7)�(a589(10)− 2+ ε + z5 + z6 + z7)

(3)×�(2− a67 − ε −w − z2 + z5 + z7)�(2− a47 − ε −w − z3 + z6 + z7),



V.A. Smirnov / Physics Letters B 567 (2003) 193–199 195

en

idue

a sum of
res
les.
n that a

xt
s pairs of
llowing

of these
q. (4) is

means a

e

where
hese
no more
ion can
d
,

dition
wherea = ∑10
i=1 ai , a589(10)= a5 + a8 + a9 + a10, a123= a1 + a2 + a3, etc., and integration contours are chos

in the standard way.
In the case of the master triple box, we setai = 1 for i = 1,2, . . . ,10 to obtain

T (0)(s, t; ε)≡ T (1, . . . ,1; s, t; ε)

=
(
iπd/2

)3

�(−2ε)(−s)4+3ε

1

(2πi)7

+i∞∫
−i∞

dw
7∏

j=2

dzj

(
t

s

)w
�(1 +w)�(−w)

�(1− 2ε +w − z4)

× �(−ε + z2)�(−ε + z3)�(1+w − z4)�(−z2 − z3 − z4)�(1+ ε + z4)

�(1+ z2 + z4)�(1+ z3 + z4)

× �(z2 + z4)�(z3 + z4)�(−z5)�(−z6)�(w + z2 + z3 + z4 − z7)

�(1− z5)�(1 − z6)�(1 − 2ε + z5 + z6 + z7)

×�(−1− ε − z5 − z7)�(−1− ε − z6 − z7)�(1+ z7)

×�(1+ ε +w − z4 − z5 − z6 − z7)�(−ε −w − z2 + z5 + z7)

(4)×�(−ε −w − z3 + z6 + z7)�(1+ z5 + z6 + z7)�(2+ ε + z5 + z6 + z7).

Observe that, because of the presence of the factor�(−2ε) in the denominator, we are forced to take some res
in order to arrive at a non-zero result atε = 0, so that the integral is effectively sixfold.

Then the standard procedure of taking residues and shifting contours is applied, with the goal to obtain
integrals where one may expand integrands in Laurent series inε. One- and two-loop examples of such procedu
can be found, e.g., in [13]. The poles inε are not visible at once, at a first integration over one of the MB variab
However, the rule for finding a mechanism of the generation of poles is based on the simple observatio
product of two gamma functions�(a + z)�(b − z), wherez is a MB integration variable anda andb depend
on the rest of the variables, generates a pole of the type�(a + b). This means that any contour in the ne
integrations should be chosen according to this dependence. So, the first step is an analysis of variou
gamma functions and various orders of integration in (4). The analysis of the integrand shows that the fo
four gamma functions play a crucial role for the generation of poles inε: �(−ε + z2,3) and�(−1− ε− z6,5 − z7).
The first decomposition of the integral (4) arises when one either takes a residue at the first pole of one
gamma functions or shifts the corresponding contour, i.e., changes the nature of this pole. As a result, E
decomposed as 2T0001+ 2T0010+ 2T0011+ T0101+ 2T0110+ 2T0111+ T1010+ 2T1011+ T1111, where a symmetry
of the integrand is taken into account. Here the value 1 of an index means that a residue is taken and 0
shifting of a contour. The first two indices correspond to the gamma functions�(−ε+ z2) and�(−1− ε− z5 − z7)

and the second two indices to�(−ε + z3) and�(−1− ε − z6 − z7), respectively. The termT0000 is absent becaus
it is zero atε = 0 due to�(−2ε) in the denominator.

Each of these terms is further appropriately decomposed and, eventually, one is left with integrals
integrands can be expanded inε. These resulting terms involve up to five integrations. Taking some of t
integrations with the help of the first and the second Barnes lemmas, one reduces all the integrals to
than twofold MB integrals of gamma functions and their derivatives. In some of them, one more integrat
be also performed in gamma functions. Then the last integration, overw is performed by taking residues an
summing up resulting series, in terms of HPL. Keeping in mind the Regge limit,t/s → 0, let us, for definiteness
decide to close the contour of the final integration, overw, to the right and obtain power series int/s. The
coefficients of these series are (up to(−1)n) linear combinations of 1/n6, S1(n)/n

5, . . . , S1(n)S3(n)/n
2, . . . , where

Sk(n) = ∑n
j=1 j

−k . Summing up these series gives results in terms of HPL of the variable−t/s which can be
analytically continued to any domain from the region|t/s| < 1.

In the twofold MB integrals where one more integration (over a variable different fromw) can be hardly
performed in gamma functions, one performs it withw in a vicinity of an integer pointw = n = 0,1,2, . . . ,
in expansion inz = w − n, with a sufficient accuracy. Then one obtains powers series where, in ad



196 V.A. Smirnov / Physics Letters B 567 (2003) 193–199

s
, realized
cessary
to 1/n6, S1(n)/n
5, . . . , quantities likeSik(n) = ∑n

j=1 j
−iSk(j), Sikl (n) = ∑n

j=1 j
−iSkl(j) appear. These serie

are also summed up in terms of HPL. Here one could use procedures connected with nested sums
in FORM [18] and described in [19] (see also [20]). (I preferred, however, to derive and check the ne
summation formulae myself because do not use FORM.)

Eventually we arrive at the following result:

(5)T (0)(s, t; ε)= − (iπd/2e−γEε)3

s3(−t)1+3ε

6∑
i=0

cj (x,L)

εj
,

whereγE is the Euler constant,x = −t/s, L = ln(s/t), and

c6 = 16

9
, c5 = −5

3
L, c4 = −3

2
π2,

c3 = 3
(
H0,0,1(x)+LH0,1(x)

) + 3

2

(
L2 + π2)H1(x)− 11

12
π2L− 131

9
ζ3,

c2 = −3
(
17H0,0,0,1(x)+H0,0,1,1(x)+H0,1,0,1(x)+H1,0,0,1(x)

)
−L

(
37H0,0,1(x)+ 3H0,1,1(x)+ 3H1,0,1(x)

) − 3

2

(
L2 + π2)H1,1(x)

−
(

23

2
L2 + 8π2

)
H0,1(x)−

(
3

2
L3 + π2L− 3ζ3

)
H1(x)+ 49

3
ζ3L− 1411

1080
π4,

c1 = 3
(
81H0,0,0,0,1(x)+ 41H0,0,0,1,1(x)+ 37H0,0,1,0,1(x)+H0,0,1,1,1(x)+ 33H0,1,0,0,1(x)+H0,1,0,1,1(x)

+H0,1,1,0,1(x)+ 29H1,0,0,0,1(x)+H1,0,0,1,1(x)+H1,0,1,0,1(x)+H1,1,0,0,1(x)
)

+L
(
177H0,0,0,1(x)+ 85H0,0,1,1(x)+ 73H0,1,0,1(x)+ 3H0,1,1,1(x)

+ 61H1,0,0,1(x)+ 3H1,0,1,1(x)+ 3H1,1,0,1(x)
)

+
(

119

2
L2 + 139

12
π2

)
H0,0,1(x)+

(
47

2
L2 + 20π2

)
H0,1,1(x)+

(
35

2
L2 + 14π2

)
H1,0,1(x)

+ 3

2

(
L2 + π2)H1,1,1(x)+

(
23

2
L3 + 83

12
π2L− 96ζ3

)
H0,1(x)+

(
3

2
L3 + π2L− 3ζ3

)
H1,1(x)

+
(

9

8
L4 + 25

8
π2L2 − 58ζ3L+ 13

8
π4

)
H1(x)− 503

1440
π4L+ 73

4
π2ζ3 − 301

15
ζ5,

c0 = −(
951H0,0,0,0,0,1(x)+ 819H0,0,0,0,1,1(x)+ 699H0,0,0,1,0,1(x)+ 195H0,0,0,1,1,1(x)

+ 547H0,0,1,0,0,1(x)+ 231H0,0,1,0,1,1(x)+ 159H0,0,1,1,0,1(x)+ 3H0,0,1,1,1,1(x)

+ 363H0,1,0,0,0,1(x)+ 267H0,1,0,0,1,1(x)+ 195H0,1,0,1,0,1(x)+ 3H0,1,0,1,1,1(x)

+ 123H0,1,1,0,0,1(x)+ 3H0,1,1,0,1,1(x)+ 3H0,1,1,1,0,1(x)+ 147H1,0,0,0,0,1(x)

+ 303H1,0,0,0,1,1(x)+ 231H1,0,0,1,0,1(x)+ 3H1,0,0,1,1,1(x)+ 159H1,0,1,0,0,1(x)

+ 3H1,0,1,0,1,1(x)+ 3H1,0,1,1,0,1(x)+ 87H1,1,0,0,0,1(x)+ 3H1,1,0,0,1,1(x)

+ 3H1,1,0,1,0,1(x)+ 3H1,1,1,0,0,1(x)
)

−L
(
729H0,0,0,0,1(x)+ 537H0,0,0,1,1(x)+ 445H0,0,1,0,1(x)+ 133H0,0,1,1,1(x)

+ 321H0,1,0,0,1(x)+ 169H0,1,0,1,1(x)+ 97H0,1,1,0,1(x)+ 3H0,1,1,1,1(x)

+ 165H1,0,0,0,1(x)+ 205H1,0,0,1,1(x)+ 133H1,0,1,0,1(x)+ 3H1,0,1,1,1(x)

+ 61H1,1,0,0,1(x)+ 3H1,1,0,1,1(x)+ 3H1,1,1,0,1(x)
)
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−
(

531

2
L2 + 89

4
π2

)
H0,0,0,1(x)−

(
311

2
L2 + 619

12
π2

)
H0,0,1,1(x)−

(
247

2
L2 + 307

12
π2

)
H0,1,0,1(x)

−
(

71

2
L2 + 32π2

)
H0,1,1,1(x)−

(
151

2
L2 − 197

12
π2

)
H1,0,0,1(x)−

(
107

2
L2 + 50π2

)
H1,0,1,1(x)

−
(

35

2
L2 + 14π2

)
H1,1,0,1(x)− 3

2

(
L2 + π2)H1,1,1,1(x)

−
(

119

2
L3 + 317

12
π2L− 455ζ3

)
H0,0,1(x)−

(
47

2
L3 + 179

12
π2L− 120ζ3

)
H0,1,1(x)

−
(

35

2
L3 + 35

12
π2L− 156ζ3

)
H1,0,1(x)−

(
3

2
L3 + π2L− 3ζ3

)
H1,1,1(x)

−
(

69

8
L4 + 101

8
π2L2 − 291ζ3L+ 559

90
π4

)
H0,1(x)−

(
9

8
L4 + 25

8
π2L2 − 58ζ3L+ 13

8
π4

)
H1,1(x)

−
(

27

40
L5 + 25

8
π2L3 − 183

2
ζ3L

2 + 131

60
π4L− 37

12
π2ζ3 + 57ζ5

)
H1(x)

(6)+
(

223

12
π2ζ3 + 149ζ5

)
L+ 167

9
ζ 2

3 − 624607

544320
π6.

Hereζ3 = ζ(3), ζ5 = ζ(5) andζ(z) is the Riemann zeta function. The functionsHa1,a2,...,an(x)≡H(a1, a2, . . . , an;
x), with ai = 1,0,−1, are HPL [17] which are recursively defined by

H(a1, a2, . . . , an;x)=
x∫

0

f (a1; t)H(a2, . . . , an; t),

where

f (±1;x)= 1

1∓ x
, f (0;x)= 1

x
, H(±1;x)= ∓ ln(1∓ x), H(0;x)= lnx.

In (6), only HPL with parameters 0 and 1 are involved. If a given HPL involves only parametersai = 0 and 1 and
the number of these parameters is less or equal to four, it can be expressed [17] in terms of usual polylo
Li(x) [21] and generalized polylogarithms [22]

Sa,b(x)= (−1)a+b−1

(a − 1)!b!
1∫

0

lna−1(t) lnb(1− xt)

t
dt .

(See [14] where the coefficientscj , with j � 2 are expressed in terms of (generalized) polylogarithms.)
The above result was confirmed [23] with the help of numerical integration in the space of alpha paramet

Another natural check of the result is its agreement with the leading power Regge asymptotic behaviour [15
was evaluated by an independent method based on the strategy of expansion by regions [16].

The procedure described above can be applied, in a similar way, to the calculation of any massless p
shell triple box. At a first step, one has to take care of the following four gamma functions in (3):

�(2− a12 − ε + z2), �(2 − a23 − ε + z3), �(2− a59(10)− ε − z5 − z7), �(2− a589− ε − z6 − z7).

This procedure gives a decomposition similar to 2T0001+ 2T0010+ · · · . Next steps will be also generalizations
the corresponding steps in the evaluation of (4). Hopefully, such a procedure can be made automatic by
computer algebra.
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diagrams
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The result presented above shows that analytical calculations of four-point on-shell massless Feynman
at the three-loop level are quite possible so that one may think of evaluating three-loop virtual corrections to
scattering processes.
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