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Abstract

For a commutative noetherian ring R with residue field k stable cohomology modules Êxt n
R

(k, k) have
been defined for each n ∈ Z, but their meaning has remained elusive. It is proved that the k-rank of any
Êxt n

R
(k, k) characterizes important properties of R, such as being regular, complete intersection, or Goren-

stein. These numerical characterizations are based on results concerning the structure of Z-graded k-algebra
carried by stable cohomology. It is shown that in many cases it is determined by absolute cohomology
through a canonical homomorphism of algebras Ext

R
(k, k) → Êxt

R
(k, k). Some techniques developed in

the paper are applicable to the study of stable cohomology functors over general associative rings.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

A stable cohomology theory over an associative ring R associates to every pair (M,N) of
R-modules groups Êxt n

R(M,N), which are defined for each n ∈ Z and vanish for all n when M

or N has finite projective dimension. Different constructions, have been proposed by Benson and
Carlson, Mislin, and Vogel, and all yield canonically isomorphic theories. However, there have
been few applications outside of group theory and Galois theory, for which the prototype—Tate
cohomology for finite groups—was created in the 1950s.

In the first four sections we develop general techniques for computing stable cohomology. We
approach it through a canonical transformation ι : ExtR → ÊxtR of absolute cohomology into sta-
ble cohomology, which we study by systematically using the compatible multiplicative structures
carried by the two theories. A new feature are extensive applications of a third cohomological
functor, the bounded cohomology ExtR , which appears in a long exact sequence measuring the
kernel and the cokernel of ι. By extending a construction of Eisenbud we show how to track
changes in stable cohomology under factorizations of non-zero-divisors.

The core of the paper is its second part, devoted to stable cohomology over commutative
noetherian local rings. One goal is to investigate if and how this theory reflects or detects prop-
erties of a ring or a module. A second goal is to study the structure of the local cohomology
functors themselves. Historical precedent in commutative algebra points to the residue field k of
a local ring R as the ultimate test case, so the focus is kept on it for much of the second part of
the paper.

When applying the general machinery to a local ring R with residue field k we heavily use the
fact that the absolute cohomology algebra E = ExtR(k, k) is the universal enveloping algebra of a
graded Lie algebra. The existence of such a structure underlies a well documented successful in-
teraction between local algebra and rational homotopy theory. Félix, Halperin, and Thomas have
transplanted from algebra and systematically used in topology a notion of depth of cohomology
modules. We take the concept back into algebra and use it in a different manner. Background
material is developed in Appendix A and Section 5.

In Section 6 we give necessary and sufficient conditions for a local ring R to be regular
(respectively, complete intersection, Gorenstein) in terms of the vanishing (respectively, size,
finiteness) of rankk Êxt n

R(k, k) for a single value n ∈ Z. The last result is surprising: unlike reg-
ularity or complete intersection, Gorensteinness is not recognized even by the entire sequence
(rankk ExtnR(k, k))n�0.

In Section 7 we start the study of the graded k-algebra S = Êxt n
R(k, k). A result of

Martsinkovsky, for which we give a short proof, shows that when R is singular the map of
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graded algebras ι :E → S is injective. We determine Coker(ι) as a left E-module and prove that
depth E ≥ 2 implies S = ι(E) ⊕ T where T is the E-torsion submodule of S , and is the unique
direct complement of ι(E) as a left E-module. In Section 8 this information is used to produce a
nearly complete, explicit computation of the algebra S for complete intersection rings.

It is natural to ask whether the results for complete intersections extend, in some form, to all
singular Gorenstein rings R with codimR ≥ 2. In Section 9 we prove that depth E ≥ 2 implies T
is a two-sided ideal of S with T 2 = 0, is isomorphic to a shift of Homk(E, k) as left E-module,
and S = ι(E) ⊕ T . A similar relationship between the Tate cohomology algebra Ĥ∗(G, k) of a
finite group G and its cohomology algebra H∗(G, k) was discovered by Benson and Carlson. The
parallel is remarkable, as H∗(G, k) is graded-commutative and finitely generated, while E may
be non-finitely generated and almost always is very far from commutative.

One has depth E ≥ 1 for all singular rings, so the condition depth E ≥ 2 is not too special.
We prove that it holds for several classes of Gorenstein rings, including those of codimension 2
or 3, those of minimal multiplicity, and the localizations of Koszul algebras. We are not aware
whether splitting occurs always: Gorenstein rings with depth E = 1 are hard to come by, and for
the known ones E splits off S .

It was noted above that when R is not Gorenstein rankk Êxt n
R(k, k) is infinite for each n, so

over such rings a different structure of S may be expected. As a test case in Section 10 we turn to
Golod rings, whose homological properties are in many respects opposite to those of Gorenstein
rings. We show that depth E = 1 holds for all Golod rings, and for a subclass of such rings we
work out the structure of S in sufficient detail to prove that ι does not split as a map of left
E-module.

1. Cohomology theories

We start by describing notions concerning complexes and, more generally, DG (that is, dif-
ferential graded) modules and algebras. The latter are used to describe composition products
carried by the absolute cohomology functors. We then introduce a bounded cohomology theory
that has not been systematically studied before. Finally, we present Vogel’s construction of stable
cohomology.

1.1. DG algebras and DG modules

To grade a complex C we use subscripts or superscripts. Thus, C can be written either as a se-
quence of maps ∂C

n :Cn → Cn−1, or as a sequence of maps ∂−n
C :C−n → C−n+1, with ∂−n

C = ∂C
n .

Accordingly, an element c ∈ Cn is assigned a lower (or homological) degree n, denoted and an
upper (or cohomological) degree −n; we write �c� = n and 	c
 = −n, respectively. When the
nature of degree does not matter we use |c| in place of either �c� or 	c
.

When z ∈ C is a cycle cl(z) denotes its homology class.
For every s ∈ Z let ΣsC denote the complex with (ΣsC)n = Cn−s and ∂ΣsC

n = (−1)s∂C
n−s ;

let σ s :C → ΣsC be the bijective map Cn � c �→ c ∈ (ΣsC)n+s .
Bimodules have actions from the left and from the right, listed in that order. If A and A′ are

DG algebras and C is a DG A–A′-bimodule, then the formula

a · σ s(c) · a′ = (−1)|a|sσ s(a · c · a′)

turns ΣsC into a DG A–A′-bimodule and σ s into a chain map of DG bimodules. Furthermore,
when B is a DG A–A-bimodule the map
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B ⊗A ΣsC −→ Σs(B ⊗A C)

given by b ⊗ σ s(c) �→ (−1)|b|sσ s(b ⊗ c) is an isomorphism of DG A–A′-modules.
For the rest of the section R denotes an associative ring, M and N are left R-modules, and

F → M and G → N are projective resolutions.

1.2. Absolute Ext

Let HomR(F,G) denote the complex of abelian groups with

HomR(F,G)n =
∏
i∈Z

HomR(Fi,Gi+n) = HomR(F,G)−n

as component of homological degree n (cohomological degree −n), and differential

∂(β) = ∂Gβ − (−1)|β|β∂F .

The induced map HomR(F,G) → HomR(F,N) is a quasi-isomorphism, so one has

H
(
HomR(F,G)

)∼= H
(
HomR(F,N)

)= ExtR(M,N).

1.2.1. Composition of homomorphisms turns HomR(F,F ) and HomR(G,G) into DG algebras,
and HomR(F,G) into a DG HomR(G,G)–HomR(F,F )-bimodule. The composition products
induced in homology can be computed from any pair of projective resolutions. They turn
ExtR(M,M) and ExtR(N,N) into graded algebras, and ExtR(M,N) into a graded ExtR(N,N)–
ExtR(M,M)-bimodule.

1.2.2. The DG algebra HomR(G,G) acts on the complex G by evaluation of homomorphisms.
For every complex C of right R-modules the map

HomR(G,G) ⊗Z (C ⊗R G) −→ C ⊗R G,

α ⊗ (c ⊗ g) �−→ (−1)|α||c|c ⊗ α(g)

endows C ⊗R G with a structure of left DG module over HomR(G,G). Clearly, this structure is
natural with respect to morphisms of complexes C → C′.

1.2.3. Let L be a right R-module. Setting C = L in 1.2.2 one obtains a morphism

HomR(G,G) ⊗Z (L ⊗R G) −→ L ⊗R G.

In homology it induces for all l, n ∈ Z homomorphisms of abelian groups

ExtnR(N,N) ⊗Z TorRl (L,N) −→ TorRl−n(L,N)

that turn TorR(L,N) into a graded left module over Ext (N,N).
R
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1.3. Bounded Ext

A homomorphism β ∈ HomR(F,G) is bounded if βi = 0 for all i � 0. The subset
HomR(F,G) of HomR(F,G), consisting of all bounded homomorphisms, is a subcomplex, with
components

HomR(F,G)n =
∐
i∈Z

HomR(Fi,Gi+n) = HomR(F,G)−n.

The graded abelian group Ext R(M,N) = H(HomR(F,G)) with components

Ext n
R(M,N) = Hn

(
HomR(F,G)

)
,

is called the bounded cohomology of M and N over R.

1.3.1. It is easy to see that HomR(F,G) is a DG subbimodule of HomR(F,G) for the ac-
tions of HomR(F,F ) and HomR(G,G) described in 1.2.1, so Ext R(M,N) becomes a graded
ExtR(N,N)–ExtR(M,M)-bimodule.

The elementary observation below plays a pivotal role in the paper. It should be noted that the
right-hand analog of this statement fails, see Example 10.9.

Lemma 1.3.2. For every τ ∈ Ext R(M,N) there exists an integer j ≥ 0, such that

Ext�j
R (N,N) · τ = 0.

Proof. By hypothesis, τ = cl(β) for some chain map β ∈ HomR(F,G) satisfying β(F ) ⊆ G<j

for some j ≥ 0. For each γ ∈ HomR(G,G)n one then has

(γβ)(F ) = γ
(
β(F )

)⊆ γ (G<j ) ⊆ G<j+n.

Since G<j+n = 0 for n ≤ −j , this implies Ext�j
R (N,N) · cl(β) = 0. �

Some of the DG module structures discussed so far are linked as follows:

Lemma 1.3.3. There is a morphism of DG HomR(G,G)–HomR(F,F )-bimodules

ω : HomR(F,R) ⊗R G −→ HomR(F,G)

with actions on the source given by 1.2.1, 1.2.2, and on the target by 1.3.1.
If the R-module Fi is finite for each i, then ω is bijective.

Proof. It is easy to verify that ω′(φ ⊗ g)(f ) = (−1)|g||f |φ(f )g defines a morphism

ω′ : HomR(F,R) ⊗R G −→ HomR(F,G)

of DG bimodules. The image of ω′ lies in HomR(F,G), so it yields a morphism ω with the
desired source and target. For each n ∈ Z the following equalities
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(
HomR(F,R) ⊗R G

)
n

=
∐

(−i)+j=n

HomR(Fi,R) ⊗R Gj ,

HomR(F,G)n =
∐

j−i=n

HomR(Fi,Gj )

hold by definition. When each R-module Fi is finite, ω restricts to an isomorphism
HomR(Fi,R) ⊗R Gj → HomR(Fi,Gj ) for each pair (i, j). �
1.4. Stable Ext

Using the subcomplex HomR(F,G) described in 1.3, set

ĤomR(F,G) = HomR(F,G)/HomR(F,G).

Following Pierre Vogel, we define the stable cohomology of M and N over R to be the graded
abelian group Êxt R(M,N) = H(ĤomR(F,G)) with components

Êxt n
R(M,N) = Hn

(
ĤomR(F,G)

)
.

The assignment (M,N) �→ Êxt R(M,N) yields a cohomological functor, contravariant in M and
covariant in N , from R-modules to graded Z-modules.

1.4.1. As HomR(F,G) is a DG subbimodule of HomR(F,G) for the left action of HomR(G,G)

and the right action of HomR(F,F ), see 1.3.1, one sees that Êxt R(M,M) and Êxt R(N,N) are
graded algebras, and Êxt R(M,N) is a graded Êxt R(N,N)–Êxt R(M,M)-bimodule.

Stable cohomology over general associative rings took a long time to emerge, and then it
appeared in several avatars. We give a short, incomplete list of sources.

1.4.2. Historically the first example of stable cohomology is Tate’s cohomology theory Ĥn(G,−)

for modules over a finite group G: One has Ĥn(G,−) = Êxt n
ZG

(Z,−), where ZG is the group
ring of G; see [13, Chapter XII]. Tate’s construction is based on complete resolutions of Z.
Buchweitz [12] extended the technique to define a two-variable theory over two-sided noetherian
Gorenstein rings.

The functors Êxt n
R(−,−) were introduced by Vogel in the mid-1980s. The first published ac-

count appears only in [19], where it is called ‘Tate–Vogel cohomology.’ Different approaches
were independently proposed by Benson and Carlson [8] and by Mislin [26]; background and
details can be found in Kropholler’s survey [22, §4].2 We have settled on the name ‘stable co-
homology’ to emphasize the fact that Êxt 0

R(M,N) is a group of homomorphisms of objects in a
stabilization of the category of R-modules, see Beligiannis [7, §§3, 5] for details.

2. Comparisons

In this section R is an associative ring, M and N are left R-modules, F → M and G → N de-
note projective resolutions. The objective is to describe important links between the cohomology
theories introduced in Section 1.

2 Where Definition 4.2.2 contains a typo: Ωi+nN should be changed to Ωi−nN .
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2.1. By construction, there is an exact sequence of DG bimodules

0 −→ HomR(F,G) −→ HomR(F,G) −→ ĤomR(F,G) −→ 0 (2.1.1)

that is unique up to homotopy. It defines an exact sequence

Ext R(M,N)
η−−→ ExtR(M,N)

ι−→ Êxt R(M,N)

ð−−→ Σ Ext R(M,N)
Ση−−→ Σ ExtR(M,N) (2.1.2)

of graded ExtR(N,N)–ExtR(M,M)-bimodules. Thus, there is an exact sequence

· · · −→ Ext n
R(M,N)

ηn−−→ ExtnR(M,N)
ιn−−→ Êxt n

R(M,N)

ðn−→ Ext n+1
R (M,N)

ηn+1−−−→ Extn+1
R (M,N) −→ · · · (2.1.3)

of abelian groups, and the latter is natural in both module arguments.
Furthermore, ExtR(M,M) → Êxt R(M,M) is a homomorphism of graded algebras, and

ι : ExtR(M,N) → Êxt R(M,N) is an equivariant homomorphism of graded Êxt R(N,N)–
Êxt R(M,M)-bimodules.

It is easy to determine if η is an isomorphism; see also [22, (4.2.4)], [33, (4.5.1)].

Proposition 2.2. The following conditions are equivalent.

(i) M has finite projective dimension.
(ii) Êxt n

R(M,−) = 0 for every n ∈ Z.
(iii) Êxt n

R(−,M) = 0 for every n ∈ Z.

(iv) Êxt 0
R(M,M) = 0.

(v) ηn : Ext n
R(M,−) → ExtnR(M,−) is an isomorphism for every n ∈ Z.

(vi) ηn : Ext n
R(−,M) → ExtnR(−,M) is an isomorphism for every n ∈ Z.

Proof. Choosing a finite resolution F → M one gets HomR(F,G) = HomR(F,G) for every
resolution G. Thus, (i) implies (v) and (vi). The exact sequence (2.1.3) shows that (v) im-
plies (ii), and (vi) implies (iii). It is clear that (ii) or (iii) implies (iv). If (iv) holds, then for
some γ ∈ HomR(F,F )1 and some p ≥ 0 the morphism β = idF − ∂γ + γ ∂ :F → F satisfies
βi = 0 for all i ≥ p. Thus, one gets

0 = Hp
(
HomR(β,−)

)= Hp
(
HomR

(
idF ,−))= idHp(HomR(β,−))

hence ExtpR(M,−) = Hp(HomR(F,−)) = 0; that is, pdR M < p, so (i) holds. �
Next we give a criterion for ι to be an isomorphism in high degrees.

Theorem 2.2. For an integer m the following conditions are equivalent.

(i) ιn : ExtnR(M,−) → Êxt n
R(M,−) is an isomorphism for all n > m and ιm is an epimorphism.

(ii) ExtnR(M,P ) = 0 for all n > m and every projective R-module P .

(iii) Ext n (M,−) = 0 for all n > m.
R
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When M has a resolution by finite projective modules they are also equivalent to

(ii′) ExtnR(M,R) = 0 for all n > m.

Proof. The exact sequence (2.1.3) shows that (i) and (iii) are equivalent. If (iii) holds, then so
does (ii), because ExtnR(M,P ) ∼= Ext n

R(M,P ) by Proposition 2.2. It is clear that (ii) implies (ii′).
The converse holds because the hypothesis on M in (ii′) implies that the functor ExtnR(M,−)

commutes with all direct sums.
To prove that (ii) implies (iii) fix an integer n > m and choose a chain map α ∈ HomR(F,G)n.

Thus, for some fixed s ≥ n and all j ≥ s one has αj = 0, while

∂G
j+1−nαj+1 − (−1)nαj ∂

F
j+1 = 0 holds for all j ∈ Z. (2.2.1)j

We need to find a homomorphism β ∈ HomR(F,G)n−1 that satisfies

∂G
j+2−nβj+1 − (−1)n−1βj∂

F
j+1 = αj+1 for all j ∈ Z. (2.2.2)j

Set βj = 0 for j ≥ s and assume by descending induction on j that we already have maps βj

satisfying (2.2.2)j for some integer i ∈ [n, s] and all j ≥ i. Set δh = (−1)n+1 HomR(∂F
h+1,Gh−n)

for each h. Using (2.2.1)i and (2.2.2)i we get

δi
(
αi − ∂G

i+1−nβi

)= (−1)n+1αi∂
F
i+1 + (−1)n∂G

i+1−nβi∂
F
i+1

= −∂G
i+1−nαi+1 + (−1)n∂G

i+1−nβi∂
F
i+1

= −∂G
i+1−n

(
αi+1 + (−1)n−1βi∂

F
i+1

)
= −∂G

i+1−n∂
G
i+2−nβi+1

= 0.

On the other hand, since one has ExtiR(M,Gi−n) = 0 the sequence

HomR(Fi−1,Gi−n)
δi−1−−→ HomR(Fi,Gi−n)

δi−→ HomR(Fi+1,Gi−n)

is exact, so there exists a homomorphism βi−1 :Fi−1 → Gi−n, such that

αi − ∂G
i+1−nβi = δi−1(βi−1) = −(−1)n−1βi−1∂

F
i .

Thus, βi−1 satisfies (2.2.2)i−1, so the induction step is complete. As a result, for each j ≥
n − 1 we now have a homomorphism βj :Fj → Gj−(n−1) satisfying the equality (2.2.2)j . As
Gj−(n−1) = 0 for j < n − 1, setting βj = 0 we extend the equality to all j ∈ Z. We have proved
Ext n

R(M,N) = 0, as desired. �
2.3. A complete resolution of M is a morphism of complexes ν :T → F such that νi is bijective
for all i � 0, each Ti is projective, and for all n ∈ Z and every projective R-module P one has
Hn(T ) = 0 = Hn(HomR(T ,P )); see [14, (1.1)]. (In some contexts it is assumed, in addition,
that the R-modules Tn are also finite; no such hypothesis is needed or made here.) When such
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a complete resolution exists, H−n(HomR(M,N)) is called the nth Tate cohomology of M with
coefficients in N .

Cornick and Kropholler [14, (1.2)] prove that when Tate cohomology is defined it is naturally
isomorphic to stable cohomology. We deduce this from Theorem 2.2:

Corollary 2.4. If ν :T → F is a complete resolution of M , then one has

Hn
(
HomR(T ,N)

)∼= Êxt n
R(M,N) for each n ∈ Z.

Proof. Fix n ∈ Z and set K = Coker(∂T
n ). For each i ≥ 1 one then has

Hn−1+i
(
HomR(T ,N)

)= ExtiR(K,N), (2.4.1)i

because Σ−(n−1)(T�n−1) is a projective resolution of K . From the condition on T one gets
ExtiR(K,P ) = 0 for all i ≥ 1 and every projective R-module P , so

Ext1R(K,N) ∼= Êxt 1
R(K,N) (2.4.2)

holds by the theorem. Choose p ≥ n with νi bijective for i ≥ p. The R-module L = Ker(∂F
p−1)

is then isomorphic to Ker(∂T
p−1), so there exist exact sequences

0 −→ L −→ Tp−1 −→ · · · −→ Tn −→ Tn−1 −→ K −→ 0,

0 −→ L −→ Fp−1 −→ · · · −→ F1 −→ F0 −→ M −→ 0.

In view of 2.2, the iterated connecting maps defined by these sequences yield

Êxt 1
R(K,N) ∼= Êxt n−p

R (L,N) ∼= Êxt n
R(M,N). (2.4.3)

To finish the proof, concatenate the isomorphisms (2.4.1)1, (2.4.2), and (2.4.3). �
3. Additional structures

In this section we discuss the existence of finer natural structures on stable cohomology
groups, such as rings of operators or internal gradings.

Proposition 3.1. Let R be an algebra over a commutative ring K .

(1) The exact sequence (2.1.2) is one of graded K-modules, and the various pairings of coho-
mology groups are K-bilinear.

If, in addition, K is noetherian, R is finite as a K-module, M and N are finite R-modules, and
n is an integer, then the following assertions also hold.

(2) The K-modules Êxt n
R(M,N) and Ext n+1

R (M,N) are finite simultaneously.

(3) When Ext�0
R (M,R) = 0 the K-module Êxt n

R(M,N) is finite for every n ∈ Z.
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Proof. (1) This is due to the fact that the relevant maps in cohomology are induced by morphisms
of complexes or K-modules.

(2) By (1), the maps in the exact sequence (2.1.3) are K-linear, and under our hypotheses the
K-modules ExtnR(M,N) and Extn+1

R (M,N) are noetherian.
(3) Let F → M and G → N be resolutions by finite projective R-modules. Choose m ≥ 1 so

that H−j (HomR(F,R)) = ExtjR(M,R) = 0 for all j > m; then HomR(F,R) is quasi-isomorphic
to the complex C of right R-modules defined by

Ci =
⎧⎨⎩

HomR(F−i ,R) for 0 ≥ i ≥ −m;

Im HomR(∂F
m+1,R) for i = −m − 1;

0 for i < −m − 1 or i > 0.

As a consequence, HomR(F,R)⊗R G is quasi-isomorphic to C ⊗R G. For each n ∈ Z this gives
the second isomorphism below; Lemma 1.3.3 provides the first one:

Ext n
R(M,N) = Hn

(
HomR(F,G)

)
∼= Hn

(
HomR(F,R) ⊗R G

)
∼= Hn(C ⊗R G).

As (C ⊗R G)n =∐m
j=0 Cj ⊗R Gn−j is a finite K-module for each n, we see that Ext n

R(M,N)

is a finite K-module; by (2), so is Êxt n
R(M,N). �

Stable cohomology behaves predictably under flat base change.

Proposition 3.2. Let R be a commutative noetherian ring, M an R-module that admits a res-
olution by finite projective modules, and R → R′ a homomorphism of rings such that the right
R-module R′ is flat.

For each R-module N there is then a commutative diagram

R′ ⊗R ExtR(M,N)
R′⊗Rι

∼=

R′ ⊗R Êxt R(M,N)

∼=

Ext
R′(R′ ⊗R M,R′ ⊗R N)

ι
Êxt

R′(R′ ⊗R M,R′ ⊗R N).

When N = M all the maps in the diagram are homomorphisms of graded algebras.

Proof. Set (−)′ = (R′ ⊗R −). Let F → M be a resolution by finite projective R-modules and
G → N be a projective resolution. In the commutative square

R′ ⊗R HomR(F,G)
�

R′ ⊗R HomR(F,N)

∼=

HomR′(F ′,G′) �
HomR′(F ′,N ′)

the isomorphism is due to the choice of F . Thus, the left vertical map is a quasi-isomorphism. It
appears in the following commutative diagram where the vertical arrows are induced by the map
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α �→ α′ and the rows are exact, see (2.1.1):

0 R′ ⊗R HomR(F,G)

∼=

R′ ⊗R HomR(F,G)

�

R′ ⊗R ĤomR(F,G) 0

0 HomR′(F ′,G′) HomR′(F ′,G′) ĤomR′(F ′,G′) 0.

The flatness of R′ implies that F ′ → M ′ and G′ → N ′ are R′-projective resolutions, and that the
homology of the right-hand square above is the desired diagram. �

Next we turn to cohomology of graded objects.

3.3. We say that the ring R is internally graded if R =⊕∞
i∈Z

Ri as abelian groups, and RiRj ⊆
Ri+j holds for all i, j . Internal gradings for M,N are defined similarly. By convention, we
allow Mi to be written also as M−i . As usual, we let M(s) denote the graded R-module with
M(s)i = Ms+i for all i ∈ Z.

Assume R, M , and N are internally graded. A homomorphism β :M → N is homogeneous
of internal degree −j if β(Mi) ⊆ Ni−j holds for each i ∈ Z. All such maps form an abelian
subgroup HomgrR(M,N)j of HomR(M,N). Clearly, the sum of these subgroups is direct, so
HomR(M,N) contains as a subgroup the group

HomgrR(M,N) =
⊕
j∈Z

HomgrR(M,N)j .

When M is finitely presented, one has HomgrR(M,N) = HomR(M,N).
Every graded R-module M has a graded free resolution F → M that is, a resolution in which

each Fi is a graded free R-module and differentials are homogeneous of internal degree 0. It
produces a subcomplex HomgrR(F,N) of HomR(F,N), consisting of graded abelian groups
and homomorphisms of internal degree 0.

Assume that each R-module Fi is finite. One then has HomgrR(F,N) = HomR(F,N), and
hence the absolute Ext groups inherit an internal grading:

ExtnR(M,N) =
⊕
j∈Z

ExtnR(M,N)j .

For each n ∈ Z one also has equalities

HomR(F,G)n =
∏
i∈Z

⊕
j∈Z

HomgrR(Fi,Gi+n)
j .

However, there is no induced internal grading on the right-hand side, so extra steps are needed to
introduce such a grading on stable cohomology groups.

Proposition 3.4. Assume R is an internally graded ring, M,N are internally graded R-modules,
and M has a graded free resolution F → M where each Fi is finite (as is the case, for example,
when R is left noetherian and M is finite).
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For each n ∈ Z the abelian groups Êxt n
R(M,N) and Ext n

R(M,N) then have natural internal
gradings, which are preserved by the homomorphisms in the exact sequence (2.1.3) and are
additive under the various products.

If M has a complete resolution T by finite projective graded R-modules with differentials ∂T

of degree 0, then the internal gradings of Hn(HomgrR(T ,N)) and Êxt n
R(M,N) are preserved

by the isomorphisms of Corollary 2.4.

Proof. Let G → N be graded free resolution. For all j,n ∈ Z the subgroups

HomgrR(F,G)
j
n =

∏
i∈Z

HomgrR(Fi,Gi+n)
j

of HomR(F,G)n form a subcomplex HomgrR(F,G)j of HomR(F,G). The Comparison
Theorem for graded resolutions shows that the canonical morphism HomgrR(F,G)j →
HomgrR(F,N)j is a quasi-isomorphism. It follows that the complex HomgrR(F,G) =⊕

j∈Z
HomgrR(F,G)j appears in a commutative diagram

HomgrR(F,G)
�

HomgrR(F,N)

HomR(F,G)
�

HomR(F,N)

where the horizontal maps are quasi-isomorphisms, and the equality is due to the finiteness of
the modules Fi . Thus, the left vertical map is a quasi-isomorphism.

Setting HomgrR(F,G)n =⊕
j∈Z

∐
i∈Z

HomgrR(Fi,Gi+n)
j for each n ∈ Z one gets an in-

ternally graded subcomplex HomgrR(F,G) of the internally graded complex HomgrR(F,G).
Thus, ĤomgrR(F,G) = HomgrR(F,G)/HomgrR(F,G) is an internally graded complex. On
the other hand, one has equalities

HomgrR(F,G)n =
⊕
j∈Z

∐
i∈Z

HomgrR(Fi,Gi+n)
j

=
∐
i∈Z

⊕
j∈Z

HomgrR(Fi,Gi+n)
j

=
∐
i∈Z

HomR(Fi,Gi+n) = HomR(F,G)n.

Putting the preceding observations together, one gets a commutative diagram

0 HomgrR(F,G) HomgrR(F,G)

�

ĤomgrR(F,G) 0

0 HomR(F,G) HomR(F,G) ĤomR(F,G) 0.

It implies that the vertical arrow on the right-hand side is a quasi-isomorphism.
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The first assertion of the proposition follows. The remaining ones are easy consequences of
the quasi-isomorphisms above and the definition of products, respectively, the definition of the
isomorphisms Hn(HomR(T ,N)) ∼= Êxt n

R(M,N). �
4. Non-zero-divisors

A staple in basic homological algebra are ‘change-of-rings theorems’ that track the behav-
ior of cohomology groups under passage to quotients modulo non-zero-divisors. An essential
ingredient in such results is the functoriality of absolute Ext groups in the ring argument. Sta-
ble cohomology does not enjoy a similar property, so we approach change of rings through the
natural homomorphisms

ι : ExtR(M,N) −→ Êxt R(M,N)

from (2.1). To simplify notation, we let α̂ denote the image of α under ι.
For absolute cohomology the following result is due to Gulliksen [20].

Theorem 4.1. Let Q be an associative ring, f ∈ Q a central non-zero-divisor, and set R =
Q/(f ). For all R-modules M , N there exist elements

ϑM ∈ Ext2R(M,M) and ϑN ∈ Ext2R(N,N)

with the following properties:

(1) Every ξ in Ext R(M,N) (respectively, ExtR(M,N), Êxt R(M,N)) satisfies

ϑN · ξ = ξ · ϑM.

(2) ϑM is in the center of ExtR(M,M) and ϑN in that of ExtR(N,N).

(3) ϑ̂M is in the center of Êxt R(M,M) and ϑ̂N in that of Êxt R(N,N).

When there is no ambiguity, we let ϑ denote either one of ϑN or ϑM , and ( )ϑ the functor of
graded localization at the multiplicatively closed set {ϑi | i ≥ 0}.

The last assertion of the corollary is due to Buchweitz, see [12, (10.2.3)].

Corollary 4.2. There are induced structures of graded algebras on ExtR(N,N)ϑ and
ExtR(M,M)ϑ (respectively, Êxt R(N,N)ϑ and Êxt R(M,M)ϑ ), and an induced left–right-
bimodule structure on ExtR(M,N)ϑ (respectively, Êxt R(M,N)ϑ ).

The map ι from 2.1 induces isomorphisms of graded algebras

ExtR(N,N)ϑ −→ Êxt R(N,N)ϑ ,

ExtR(M,M)ϑ −→ Êxt R(M,M)ϑ

and an equivariant isomorphism of graded bimodules over them,

ExtR(M,N)ϑ −→ Êxt R(M,N)ϑ .
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If M or N has finite projective dimension over Q, then

Êxt R(M,N)ϑ = Êxt R(M,N).

The notation of the theorem is in force for the rest of this section. In the proofs, presented
later in this section, we use a construction of Eisenbud [15, (1.1)]:

4.3. Let F be a liftable complex of projective R-modules, meaning that there is a graded pro-
jective Q-module F̃ with R ⊗Q F̃ = F ; for example, every complex of free modules is liftable.
Since each F̃i is projective, one can choose a map

∂̃F ∈ HomQ(F̃ , F̃ )−1 with R ⊗Q ∂̃F = ∂F .

As R ⊗Q (∂̃F )2 = (R ⊗Q ∂̃F )2 = 0, for each x ∈ F̃n there exists y ∈ F̃n−2 satisfying (∂̃F )2(x) =
fy. As f is a non-zero-divisor on F̃n−2 (it is one on Q and F̃n−2 is projective), y is defined
uniquely and hence depends Q-linearly on x. Setting θ̃F (x) = y one gets a homomorphism
θ̃F ∈ HomQ(F̃ , F̃ )−2. As f is central, we get

f
(
θ̃F ∂̃F

)= (f θ̃F
)
∂̃F = (∂̃F

)3 = ∂̃F
(
f θ̃F

)= f
(
∂̃F θ̃F

)
.

As f is a non-zero-divisor, this implies θ̃F ∂̃F = ∂̃F θ̃F . Thus, one gets a chain map

θF = R ⊗Q θ̃F ∈ HomR(F,F )−2.

The first assertion of the next result is [15, (1.3)]. An adaptation of the original argument
allows us to handle the other two cases as well.

Lemma 4.4. Let F and G be liftable complexes of projective R-modules and let γ be a homo-
morphism in HomR(F,G).

If γ is a chain map, then θGγ and γ θF are homotopic in HomR(F,G).
If γ is a bounded chain map, then θGγ and γ θF are homotopic in HomR(F,G).
If γ̂ is a chain map, then θGγ̂ and γ̂ θF are homotopic in ĤomR(F,G).

Proof. Set n = �γ � and assume first γ̂ is a chain map. Thus, the map

δ = ∂Gγ − (−1)nγ ∂F ∈ HomR(F,G)n−1 (4.4.1)

satisfies δi = 0 for all i ≥ j and a fixed j ∈ Z. Choose γ̃ ∈ HomQ(F̃ , G̃)n with R ⊗Q γ̃ = γ

and δ̃ ∈ HomQ(F̃ , G̃)n−1 with R ⊗Q δ̃ = δ and δ̃i = 0 for all i ≥ j . There exits then a unique

τ̃ ∈ HomQ(F̃ , G̃)n−1 satisfying

∂̃Gγ̃ = (−1)nγ̃ ∂̃F + δ̃ + f τ̃ .

Using the relation above and the equalities (∂̃F )2 = f θ̃F and (∂̃G)2 = f θ̃G, we get
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f
(
θ̃Gγ̃

)= (∂̃G
)2

γ̃

= (−1)n∂̃Gγ̃ ∂̃F + ∂̃Gδ̃ + ∂̃Gf τ̃

= γ̃
(
∂̃F
)2 + (−1)nδ̃∂̃F + (−1)nf τ̃ ∂̃F + ∂̃Gδ̃ + f ∂̃Gτ̃

= f
(
γ̃ θ̃F + ∂̃Gτ̃ + (−1)nτ̃ ∂̃F

)+ (∂̃Gδ̃ + (−1)nδ̃∂̃F
)
.

Since f is a non-zero-divisor on G̃, the preceding computation yields

θ̃Gγ̃ − γ̃ θ̃F − (∂̃Gτ̃ − (−1)n+1τ̃ ∂̃F
) ∈ HomQ(F̃ , G̃).

The map τ = R ⊗Q τ̃ :F → G then satisfies

θGγ − γ θF − (∂Gτ − (−1)n+1τ∂F
) ∈ HomR(F,G).

In other words, τ̂ ∈ ĤomR(F,G) is a homotopy between θGγ̂ and γ̂ θF .
If γ is a chain map, then (4.4.1) holds with δ = 0, so in the computation above one can choose

δ̃ = 0. The resulting τ is a homotopy between θGγ and γ θF .
When γ is a bounded chain map the map γ̃ can be chosen to be bounded as well, and then τ̃

is necessarily bounded, so the homotopy τ is in HomR(F,G). �
Proof of Theorem 4.1. Let F → M be a liftable projective resolution (for example, choose F

to be free a resolution), and set ϑM = cl(θF ) ∈ Ext2R(M,M).
First we show that ϑM does not depend on the choice of liftable resolution. If F ′ → M is one,

then pick a morphisms of complexes γ :F → F ′ lifting idM . By Lemma 4.4, the maps θF ′
γ and

γ θF are homotopic. Thus, the isomorphisms

H
(
HomR(F ′,F ′)

) ∼=−→ H
(
HomR(F,F ′)

) ∼=←− H
(
HomR(F,F )

)
.

map cl(θF ′
) and cl(θF ) to the same element, which was to be shown.

The other assertions of the theorem follow directly from the lemma. �
One can produce liftable resolutions using a construction of Shamash [28, Section 3]; we

describe it next, following the simplified exposition in [4].

4.5. Let E be a projective resolution of M over Q.
By induction, one gets for each i ≥ 0 a map σ (i) ∈ HomQ(E,E)2i−1, such that

σ (0) = ∂E and
i∑

h=0

σ (h)σ (i−h) =
{

f idE for i = 1;

0 for i ≥ 2.

Let D be a graded Z-module, such that for each i ≥ 0 the Z-module D2i is free with a single
basis element y(i). Let F̃ be the graded projective Q-module with

F̃n =
⊕

En−2i ⊗Z D2i .
i�0



108 L.L. Avramov, O. Veliche / Advances in Mathematics 213 (2007) 93–139
For every i ≥ 0 and each e ∈ En−2i the formula

∂̃n

(
e ⊗ y(i)

)=
∑
h�0

σ (h)(e) ⊗ y(i−h)

defines a Q-linear map ∂̃ : F̃ → F̃ of degree −1. A direct computation yields

∂̃2(e ⊗ y(i)
)= f e ⊗ y(i−1).

As a consequence, one obtains a complex of projective R-modules

(F, ∂) = (R ⊗Q F̃ ,R ⊗Q ∂̃).

It is proved in [4, (3.1.3)] that this a resolution of M over R. This projective resolution is
clearly liftable, and one can define a map θF as in (4.3) by setting

θF
(
r ⊗ e ⊗ y(i)

)= r ⊗ e ⊗ y(i−1).

Proof of Corollary 4.2. The multiplicativity properties follow from the definitions of the various
products in cohomology and the centrality of the element ϑ .

The exact sequence (2.1.2) is the homology sequence of an exact sequence of DG mod-
ules over HomR(N,N). Thus, its maps commute with left multiplication by the element
ϑ = ϑN ∈ Ext2R(N,N). Localizing at {ϑi}i�0 the exact sequence 2.1 we obtain an exact se-
quence of ExtR(N,N)ϑ –ExtR(M,M)ϑ bimodules. Lemma 1.3.2 implies that in this sequence
Ext R(M,N)ϑ vanishes, so ιϑ is bijective.

For the last assertion, we show that if pdQ M is finite, then ϑ̂ ∈ Êxt R(M,M) is invertible. Let
E be a finite projective resolution of M over Q and set

ζ
(
r ⊗ e ⊗ y(i)

)= r ⊗ e ⊗ y(i+1)

in the notation of 4.5. This formula defines a map ζ ∈ HomQ(F,F )2, such that

(∂ζ − ζ∂)(F ) ⊆ (R ⊗Q E ⊗Z Zy(0)
)⊇ (ζθF − idF

)
(F ) and θF ζ = idF .

Thus, ∂(ζ̂ ) = 0 and ζ̂ θ̂F = θ̂F ζ̂ = îdF in ĤomR(F,F ), as desired. �
As another application of Shamash’s construction, we derive an exact sequence used several

times in the paper, for which many other proofs are known.

Proposition 4.6. There is an exact sequence of graded bimodules

Σ−2 ExtR(M,N)
λ−−→ ExtR(M,N) −→ ExtQ(M,N)

−→ Σ−1 ExtR(M,N)
λ−−→ Σ ExtR(M,N)

over Ext (N,N)–Ext (M,M), where λ is given by multiplication with ϑ .
R R
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Proof. Using the notation of 4.5, we form a sequence

0 −→ R ⊗Q E
α−−→ F

θF−−→ Σ2F −→ 0

of morphisms complexes of R-modules, where α(r ⊗ e) = r ⊗ e ⊗ y(0). It is clear that the under-
lying sequence of graded R-modules is split exact. Let G → N be a projective resolution. The
induced sequence of complexes of abelian groups

0 −→ Σ−2 HomR(F,G) −→ HomR(F,G) −→ HomR(R ⊗Q E,G) −→ 0

is then exact, and its cohomology exact sequence is the desired one. �
5. Depth of cohomology modules

Let (R,m, k) be a local ring,3 M a finite R-module, and set

E = ExtR(k, k) and M = ExtR(M,k).

The depth of M over E is defined by means of the formula

depthE M = inf
{
n ∈ N

∣∣ ExtnE (k,M) �= 0
}
.

We systematically write depth E in place of depthE E .
The use of depth to study the structure of E was pioneered by Félix, Jacobsson, Halperin,

Löfwall, and Thomas in the important paper [16]. Their main result is the finiteness of depth E ; to
prove it they develop methods for obtaining upper bounds on depth. To study stable cohomology
we mostly need lower bounds.

General properties of depth of graded modules used in the paper are collected in Appendix A.
In this section we focus on additional properties stemming from the cohomological nature of E
and M.

5.1. Universal enveloping algebras

Let π be a graded Lie algebra over k, such that rankk πi is finite for all i ∈ Z and πi = 0 for
i ≤ 0, and let D be the universal enveloping algebra of π ; for definitions of these notions see
[4, (10.1.2)].4

5.1.1. The k-algebra D has an increasing multiplicative filtration, whose pth stage is the k-linear
span of products involving at most p elements of π . By the Poincaré–Birkhoff–Witt Theorem,
see [30, Thm. 2, Cor.], the associated graded k-algebra is isomorphic to Λk(π

odd) ⊗k Sk(π
even),

where Λk and Sk denote, respectively, exterior algebra and symmetric algebra functors over k.
Directly from the Poincaré–Birkhoff–Witt isomorphism one gets:

3 Recall that this means that R is a commutative noetherian ring with unique maximal ideal m and residue field
k = R/m.

4 Where condition (3) contains a typo: both − signs should be changed to + signs.
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5.1.2. There is an equality of formal power series

∞∑
n=0

(
rankk Dn

)
tn =

∏
i�0(1 + t2i+1)rankk π2i+1∏
i�0(1 − t2i+2)rankk π2i+2 .

5.1.3. If D′ is the universal enveloping algebra of a graded Lie subalgebra π ′ of π , then D is
free as a left D′-module and as a right D′-module. In particular, every ζ ∈ πeven \ {0} is a left
non-zero-divisor and a right non-zero-divisor.

A theorem of Milnor and Moore, André, and Sjödin, see [30] or [4, (10.2.1.5)] for proofs,
introduces graded Lie algebras into the study of local rings.

5.1.4. The graded k-algebra E = ExtR(k, k) is the universal enveloping algebra of a graded Lie
algebra, denoted πR and called the homotopy Lie algebra of R.

In low degrees the components of πR are easy to describe.

5.1.5. A minimal Cohen presentation of the m-adic completion R̂ of R is an isomorphism R̂ ∼=
Q/a, where (Q,n, k) is a complete regular local ring and a is an ideal contained in n2. Cohen’s
Structure Theorem shows that one always exists.

There are isomorphisms of k-vector spaces, see e.g. [4, (10.2.1.2), (7.1.5)]:

π1
R

∼= Homk

(
m/m2, k

)∼= Homk

(
n/n2, k

)
, (5.1.5.1)

π2
R

∼= Homk(a/na, k). (5.1.5.2)

Recall that the number codimR = edimR − dimR is called the codimension of R. Krull’s
Principal Ideal Theorem and the catenarity of the regular ring Q give

rankk π2
R ≥ height(a) = dimQ − dim R̂ = edimR − dimR = codimR. (5.1.5.3)

A specific subalgebra of E will prove useful in computations.

Lemma 5.1.6. The graded subspace π
�2
R of πR is a Lie ideal, and the universal enveloping

algebra D of π
�2
R satisfies depth D = depth E .

Proof. For degree reasons, π
�2
R is a graded Lie ideal of πR . Thus, one has D�1E = ED�1.

The Poincaré–Birkhoff–Witt Theorem 5.1.1 implies that the right D-module E is free and
E/(E ·D�1) ∼= Λk(π

1) holds. Now apply Corollary A.8. �
The following known simple consequence of 5.1.4 is used throughout the paper.

Lemma 5.1.7. The ring R is singular if and only if some element ϑ ∈ E2 is a left and right
non-zero-divisor on E , if and only if depth E ≥ 1.

Proof. When R is singular so is R̂, hence π2
R �= 0 by (5.1.5.2), so 5.1.3 yields a left and right

non-zero-divisor ϑ ∈ E2; in view of A.5 the existence of ϑ implies depth E ≥ 1. On the other
hand, depth E ≥ 1 implies R is singular: assuming the contrary one gets E i = 0 for i � 0, hence
Γ E = E �= 0, contradicting A.5. �
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The next result is due to Martsinkovsky [25, Theorem 6]. We give a short proof.

Theorem 5.1.8. When R is singular for each n ∈ Z there is an exact sequence

0 −→ ExtnR(k, k)
ι−→ Êxt n

R(k, k)
ð−−→ Ext n−1

R (k, k) −→ 0.

Proof. We prove η = 0 in the exact sequence of graded left ExtR(k, k)-modules

Ext R(k, k)
η−−→ ExtR(k, k)

ι−→ Êxt R(k, k)
ð−−→ Σ Ext R(k, k)

Ση−−−→ Σ Êxt R(k, k)

given by 2.1. In view of A.5, Lemmas 1.3.2 and 5.1.7 imply the equalities

Ext R(k, k) = Γ Ext R(k, k) and Γ ExtR(k, k) = 0,

where Γ denotes the section functor A.4. The ExtR(k, k)-linearity of η now yields

η
(
Ext R(k, k)

)= η
(
Γ Ext R(k, k)

)⊆ Γ ExtR(k, k) = 0. �
5.2. Regular elements

Fix an element g ∈ m, let M be an R-module annihilated by g. We view M also as a module
over R′ = R/(g), and set:

E ′ = ExtR′(k, k) and M′ = ExtR′(M,k).

The canonical homomorphism of rings R → R′ induces a homomorphism

ρk :E ′ −→ E

of graded k-algebras and a ρk-equivariant homomorphism of graded modules

ρM :M′ −→M.

5.2.1. If g is R-regular Theorem 4.1 and Proposition 4.6 yield an exact sequence

Σ−2M′ λM−−−→ M′ ρM−−−→M −→ Σ−1M′ ΣλM−−−−→ ΣM′

of graded left E ′-modules, with λM induced by multiplication on M′ with a central element
ϑ ′ ∈ E ′2. Thus, one then has Ker(ρk) = ϑ ′E ′ = E ′ϑ ′ and Ker(ρM) = ϑ ′M′.

It is useful to know how depth changes when passing from the E-module M to the E ′-
module M′. In two cases we provide complete—and contrasting—answers.

Proposition 5.2.2. If g /∈ m2 is R-regular, then ρk and ρM are injective,

depth E ′ = depth E and depthE ′ M′ = depthE ′ M.
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Proof. It is proved in [3, (2.8)] that ρk and ρM are injective. Set D = ρk(E ′).
The exact sequence in 5.2.1 and A.2 yield depthDM′ = depthDM.
As ρk is injective, applied to M = k the same sequence yields

∞∑
n=0

(
rankk En

)
tn = (1 + t)

∞∑
n=0

(
rankk Dn

)
tn.

As D is the universal enveloping algebra of the Lie subalgebra π ′ = ρk(πR′) ⊆ πR , from 5.1.2
we deduce rankk π1

R = rankk π ′1 +1 and rankk πn
R = rankk π ′n for all n ≥ 2. Thus, πR = π ′ ⊕ kε

for some ε ∈ π1
R , so π ′ is an ideal for degree reasons, and hence D is normal in E . The sequence

in 5.2.1 also produces an isomorphism E ∼= D ⊕ Σ−1D of left D-modules, so Corollary A.8
gives depthD = depth E . �
Proposition 5.2.3. If g ∈ m2 is R-regular, then the central element ϑ ′ ∈ E ′2 from 5.2.1 is central
also in S , is regular on E ′, and one has

E ′/(ϑ ′) ∼= E and depth E ′ = depth E + 1.

When g ∈ mAnnR M the element ϑ ′ is a regular also on M′ and one has

M′/ϑ ′M′ ∼= M and depthE ′ M′ = depthE M+ 1.

Proof. By Theorem 4.1 the element ϑ ′ is central in S , and by [3, (2.8)] it is regular on E ′ and M′.
The isomorphisms come from 5.2.1, the equalities from A.3(2). �

A last variation on the preceding theme is proved by elementary arguments:

Lemma 5.2.4. If M = L/gL for some R-module L and an L-regular element g ∈ m, and L
denotes the E-module ExtR(L, k), then one has depthE M = depthE L.

When g is also R-regular, one has depthE ′ M′ = depthE ′ L as well.

Proof. For the first equality apply A.2 to the exact sequence of graded E-modules

0 −→ Σ−1L−→M −→ L−→ 0.

It is induced by exact sequence 0 → L
g−→ L → M → 0 of R-modules because one has

ExtR(g idM,k) = 0. For the second equality, note the isomorphism M′ ∼= L. �
5.3. Residue field extensions

For depth computations one can sometimes adjust the ring R while preserving essential ho-
mological properties.
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Lemma 5.3.1. When R → (R′,m′, k′) is a flat homomorphism of local rings with mR′ = m′
there is a commutative diagram of homomorphisms of graded k′-algebras

k′ ⊗k E
k′⊗kι

∼=

k′ ⊗k S
∼=

E ′ ι
S ′

where S = Êxt R(k, k), E ′ = Ext
R′(k′, k′) and S ′ = Êxt

R′(k′, k′); in particular,

depth E ′ = depth E and depthE ′ S ′ = depthE S.

Proof. Proposition 3.2 provides the commutative diagram. It implies the equalities of depths, in
view of standard change of rings formulas. �

Recall that edimR denotes the embedding dimension of R, that is, the minimal number of
generators of m, and multR denotes the multiplicity of R.

Lemma 5.3.2. There exists a complete local ring R′ with algebraically closed residue field,
multR = multR′, edimR′ = edimR − depth R, depth R′ = 0, and

depth
(
ExtR′(k′, k′)

)= depth E .

Proof. Let k′ be an algebraic closure of k. There always is a flat local homomorphism R →
S with S/mS = k′, see [10, Chapitre IX, Appendice, Théorème 1, Corollaire]. One then has
depth Ext

Ŝ
(k′, k′) = depth E , see Lemma 5.3.1, and depth Ŝ = depth R.

If depth R is positive, then multT = multS for T = S/(g) and some regular element
g /∈ (nŜ)2. In that case edimT = edimR − 1 and depth T = depth R − 1 also hold, while Propo-
sition 5.2.2 gives depth ExtT (k′, k′) = depth Ext

Ŝ
(k′, k′). �

6. Finiteness of stable cohomology

In this section (R,m, k) is a local ring. Classical results characterize ring-theoretical proper-
ties of R in terms of vanishing of absolute Ext modules. Here we establish analogs for stable Ext
modules. Remarkably, the key turns out to be a better understanding of bounded cohomology.

Theorem 6.1. For each R-module N there is an isomorphism

Ext R(k,N) ∼= ExtR(k,R) ⊗k TorR(k,N) (6.1.1)

of graded left ExtR(N,N)-modules. In particular, there is an isomorphism

Ext n
R(k,N) ∼=

∞∐
i−j=n

ExtiR(k,R) ⊗k TorRj (k,N) (6.1.2)

of k-vector spaces for every n ∈ Z.
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Remark. The reader will notice that the graded algebra ExtR(k, k) acts from the right on both
Ext R(k,N) and ExtR(k,R), and from the left on TorR(k,N). We do not know whether these
structures are related.

Proof. Let G → N and F → k be free resolutions, with Fn finite for each n, and let R → J be
an injective resolution. These resolutions induce quasi-isomorphisms

HomR(F,R) ⊗R G � HomR(F,J ) ⊗R G

� HomR(k, J ) ⊗R G

∼= HomR(k, J ) ⊗k (k ⊗R G)

that commute with the action of HomR(G,G). From Lemma 1.3.3 and the Künneth formula one
now obtains isomorphisms of graded left ExtR(N,N)-modules

Ext R(k,N) ∼= H
(
HomR(F,R) ⊗R G

)∼= ExtR(k,R) ⊗k TorR(k,N). �
The Bass numbers of R, defined by μn = rankk ExtnR(k,R), appear in some of the most useful

characterizations of the Gorenstein property, recalled below.

6.2. The ring R is Gorenstein if it satisfies the following equivalent conditions:

(i) μn = 1 for n = depth R and μn = 0 for all n �= depth R.
(ii) μn = 0 for some n > depth R.

(iii) idR R < ∞.

Corollary 6.3. If the k-vector space Êxt n
R(k,N) is finite for some n ∈ Z, then N has finite

projective dimension or R is Gorenstein.

Remark. It is tempting to ask whether finiteness conditions on Êxt n
R(M,k) imply homological

restrictions on the module M or the ring R. A negative answer is given in Example 6.9.

Proof. When rankk Êxt n
R(k,N) is finite so is rankk Ext n+1

R (k,N); see Proposition 3.1(2). In
view of Eq. (6.1.2) this implies TorRj (k,N) = 0 for all j � 0 or μi = 0 for all i � 0; that is, N

has finite projective dimension or R is Gorenstein. �
Even the entire sequence (rankk ExtnR(k, k))n�0 does not recognize the Gorenstein prop-

erty of R, see Example 6.10, so the next result is rather surprising. The expression for
rankk Êxt n

R(k, k) in the next result is known, see [6, (9.2)].

Theorem 6.4. The ring R is Gorenstein if rankk Êxt n
R(k, k) < ∞ for some n ∈ Z, only if the

module Êxt n
R(M,N) is finite for every n ∈ Z and all finite modules M,N .

If R is Gorenstein and singular, then for d = depth R and each n ∈ Z one has

rankk Êxt n
R(k, k) = rankk ExtnR(k, k) + rankk Extd−1−n

R (k, k).
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Proof. If rankk Êxt n
R(k, k) is finite for some n ∈ Z, then R is Gorenstein by Corollary 6.3. If R

is Gorenstein, then it has finite injective dimension as R-module, see 6.2, so by Theorem 3.1(3)
the module Êxt n

R(M,N) is finite when M and N are.
Theorem 5.1.8 provides the first equality in the following chain:

rankk Êxt n
R(k, k) = rankk ExtnR(k, k) + rankk Ext n−1

R (k, k)

= rankk ExtnR(k, k) + rankk TorRd−1−n(k, k)

= rankk ExtnR(k, k) + rankk Extd−1−n
R (k, k).

For the others use formulas (6.1.2) and 6.2(i), and vector space duality. �
Theorem 6.5. The ring R is regular if Êxt n

R(k, k) = 0 for some n ∈ Z, only if Êxt n
R(M,N) = 0

for every n ∈ Z and all R-modules M,N .

Proof. When R is regular it has finite global dimension, so Êxt n
R(M,N) = 0 for all M , N ,

and n by 2.2. When R is singular ExtiR(k, k) �= 0 for all i ≥ 0. Assuming Êxt n
R(k, k) = 0 for

some n, part (3) of the theorem shows that R is Gorenstein. Part (2) yields ExtnR(k, k) = 0 =
Extd−1−n

R (k, k), implying d < 0, which is absurd. �
It is well known that polynomial growth of the sequence (rankk ExtnR(k, k))n�0 recognizes a

smaller class of rings, whose definition we proceed to recall.

6.6. The ring R is complete intersection if in some minimal Cohen presentation of R̂ ∼= Q/a,
see 5.1.5, the ideal a is generated by a Q-regular set.

Next we strengthen the recognition criterion for complete intersections.

Theorem 6.7. Let R be a local ring, set d = dimR and c = codimR.
For each n ∈ Z there is an inequality

rankk ExtnR(k, k) ≥
d∑

i=0

(
d

i

)(
c + n − i − 1

c − 1

)
. (6.7.1)n

When R is complete intersection equalities hold for all n ≥ 0.
If equality holds for a single n ≥ 2, then R is complete intersection.

Remark 6.7.2. For every ring R easy computations yield rankk Ext0R(k, k) = 1 and
rankk Ext1R(k, k) = edimR = c + d . This shows that in (6.7.1)n equality always holds for
n = 0,1, so the condition on n cannot be dropped from the last assertion.

Proof of Theorem 6.7. Let R̂ ∼= Q/a be a minimal Cohen presentation and set r = rankk a/na.
As c + d = edimR = rankk π1

R and r = rankk π2
R , see 5.1.5, from 5.1.2 one gets the first

coefficient-wise inequality of formal power series below:

∞∑
n=0

rankk ExtnR(k, k)tn = (1 + t)c+d

(1 − t2)r

∏
i�1(1 + t2i+1)rankk π2i+1∏
i�1(1 − t2i+2)rankk π2i+2

� (1 + t)c+d

2 r
(1 − t )
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= (1 + t)d

(1 − t)c

1

(1 − t2)r−c

� (1 + t)d

(1 − t)c
+ (r − c)t2 (1 + t)d

(1 − t)c
.

The second inequality holds because r − c is non-negative, see (5.1.5.3).
Comparing coefficients, one obtains for every n ≥ 0 a numerical inequality

rankk ExtnR(k, k) ≥
d∑

i=0

(
d

i

)(
c + n − i − 1

c − 1

)
+ (r − c)

d∑
i=0

(
d

i

)(
c + n − i − 3

c − 1

)
,

which shows that the inequality in (6.7.1)n holds for every n ≥ 0.
If equality holds for some n ≥ 2, then the last formula yields r = c, so by the Cohen–Macaulay

Theorem the ideal a is generated by a regular sequence.
When R is complete intersection one has r = c, and Tate [32, Theorem 6] proves

∞∑
n=0

rankk ExtnR(k, k) tn = (1 + t)d

(1 − t)c
.

This equality of power series means that (6.7.1)n holds for each n ≥ 0. �
Regular local rings are precisely the complete intersection rings of codimension 0, and every

complete intersection ring is Gorenstein. This hierarchy may also be observed by comparing the
next result with Theorems 6.5 and 6.4.

Theorem 6.8. For each n ∈ Z there is an inequality

rankk Êxt n
R(k, k) ≥

d∑
i=0

(
d

i

)((
c + n − i − 1

c − 1

)
+
(

c + d − n − i − 2

c − 1

))
. (6.8.1)n

When R is complete intersection equalities hold for each n ∈ Z.
If equality holds for a single n ≤ d − 3 or n ≥ 2, then R is complete intersection.

Remark 6.8.2. For d ≥ 4 there are no restrictions on n in the last assertion, so the value of
rankk Êxt n

R(k, k) for any n ∈ Z determines whether R is complete intersection. On the other
hand, when d satisfies 0 ≤ d ≤ 3 Remark 6.7.2 and Theorem 6.4 show that for each n in the
non-empty interval [d − 2,1] the value of rankk Êxt n(k, k) is the same for all Gorenstein rings
with dimR = d .

Proof of Theorem 6.8. Theorems 6.4 and 6.7 show that inequalities always hold in (6.8.1)n, and
they become equalities when R is complete intersection.

If equality holds in (6.8.1)n for some n ≥ 2 (respectively, n ≤ d−3), then Theorem 6.4 implies
that equality holds in (6.7.1)n with n ≥ 2 (respectively, in (6.7.1)d−1−n with d − 1 − n ≥ 2), so
R is complete intersection by Theorem 6.7. �
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To put in context some results in this section we provide two examples. The first one and
Corollary 6.3 shows that finiteness of stable cohomology is not symmetric.

Example 6.9. Let (S,n, k) be an arbitrary local ring and set R = S[x]/(x2). The R-module
M = R/(x) then has Êxt n

R(M,k) ∼= k for every n ∈ Z.
Indeed, the following sequence clearly is a complete resolution of M over R:

T = · · · −→ R
x−−→ R

x−−→ R
x−−→ R −→ · · ·

so Corollary 2.4 yields Êxt n
R(M,k) ∼= Hn(HomR(T , k)) ∼= k for each n ∈ Z.

The next example should be compared to Theorems 6.4 and 6.7.

Example 6.10. Let k be a field and e a non-negative integer. The ring

R = k[t1, . . . , te]
({t2

i − t2
i+1}1≤i≤e−1 ∪ {ti tj }1≤i<j≤e)

is artinian and Gorenstein for every e ≥ 2, the ring

S = k[t1, . . . , te]
({t2

1 } ∪ {t1tj }3≤j≤e ∪ {ti tj }2≤i≤j≤e)

is artinian, not Gorenstein for each e ≥ 3, and the following equalities

∞∑
n=0

rankk ExtnR(k, k)tn = 1

1 − et + t2
=

∞∑
n=0

rankk ExtnS(k, k)tn,

hold for all e ≥ 2, see [24, Theorem 2] and [18, Corollary, p. 38], respectively.

7. Structure of stable cohomology algebras

This is the first of four sections devoted to the structure of the stable cohomology algebra of a
local ring (R,m, k). We fix the following notation.

7.1. As in 2.1, let ι be the canonical homomorphism of graded k-algebras

ι :E → S where E = ExtR(k, k) and S = Êxt R(k, k).

To describe the position of ι(E) in S we use the left torsion submodule of S :

T = {σ ∈ S
∣∣ E�i · σ = 0 for some i ≥ 0

}
.

Note that one has T = Γ S , see A.4, and that T is an E-subbimodule of S .
Set I = Homk(E, k). This is a graded E-bimodule with the canonical actions:

(ε · e)(ε′) = (−1)|ε|(|e|+|ε′|)e(ε′ · ε)
(e · ε)(ε′) = e(ε · ε′) for all ε, ε′ ∈ E and e ∈ I.

The left action of E on I is of prime importance in later developments.
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Regular rings are excluded from the theorem because for them S = 0, see Theorem 6.5.

Theorem 7.2. Let R be a singular local ring and set depth R = d .

(1) There is an exact sequence of left E-modules

0 −→ E ι−→ S ð−−→
∞∐

i=d−1

(
Σ−iI

)μi+1 −→ 0

where μi = rankk ExtiR(k,R), and there are equalities

S = ι(E) + E · S<0 and ι(E) ∩ T = 0.

(2) If S = ι(E) ⊕ T ′ for some graded left E-submodule T ′ ⊆ S , then T ′ = T and

T ∼=
∞∐

i=d−1

(
Σ−iI

)μi+1
as graded left E-modules.

(3) If depth E ≥ 2, then S = ι(E) ⊕ T as graded E-bimodules.
(4) If R̂ = Q/(f ) for some singular local ring (Q,n, k) and a non-zero-divisor f ∈ n2, then

depth E ≥ 2 and T is a two-sided ideal of S , such that

S = ι(E) ⊕ T and T · T = 0.

For the proof we need a lemma. It is well known and easy to show that ExtR(k, k) and
TorR(k, k) are dual graded vector spaces. A more precise statement is contained in the next result,
which represents a version of Tate duality. It can be derived, with a little work, from [23, (2.1)].
We provide a direct argument.

Lemma 7.3. The graded left E-modules TorR(k, k) and I described in 1.2.3 and 7.1, respectively,
have the following properties.

(1) There is a natural isomorphism δ : TorR(k, k) ∼= I .
(2) If ϑ is a right non-zero-divisor on E , then I = ϑi · I for each i ≥ 0.

Proof. (1) Let � :G → k be a minimal free resolution.
Setting C = k in 1.2.2 one obtains the first map below:

HomR(G,G) ⊗R (k ⊗R G) −→ k ⊗R G
k⊗R�−−−→ k ⊗R k = k.

In homology the composition induces a morphism of graded k-vector spaces

E ⊗k TorR(k, k) −→ k

and hence a morphism of graded k-vector spaces
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δ : TorR(k, k) −→ I given by δ(1 ⊗ g)
(
cl(α)

)= (−1)|g||α|�α(g).

A routine computation shows that δ is E-linear.
Any non-zero cycle in k ⊗R Gn has the form 1 ⊗ g for some g ∈ Gn \ mGn. Choose an R-

linear map β :Gn → k with β(g) = 1. The Comparison Theorem for resolutions yields a chain
map α :G → G of degree −n with �αn = β; in particular,

δ(1 ⊗ g)
(
cl(α)

)= ±β(g) = ±1 �= 0.

Thus, the k-linear map δn : k ⊗R Gn → In is injective. Since the k-vector spaces TorRn (k, k) and
ExtnR(k, k) have the same finite rank, δn is even bijective.

(2) When ϑ is a right non-zero-divisor on E the map ε �→ ε · ϑi is a k-linear injection E → E .
Its dual is a surjection I → I given by υ �→ ±ϑi · υ , so I = ϑi · I . �
Proof of Theorem 7.2. (1) Theorem 5.1.8 and 2.1 yield an exact sequence

0 −→ E ι−→ S ð−−→ ΣB −→ 0 (7.3.1)

of graded E-bimodules with B = Ext R(k, k); the proof of the theorem also shows

B = Γ B and Γ E = 0. (7.3.2)

Theorem 6.1 and Lemma 7.3 yield isomorphisms of left E-modules

Σ−1 Coker(ι) ∼= B ∼= ExtR(k,R) ⊗k TorR(k, k) ∼= ExtR(k,R) ⊗k I

∼=
∞∐

i=d

(
Σ−iI

)μi

. (7.3.3)

From the definition of Γ and (7.3.2) we obtain

ι(E) ∩ T = Γ
(
ι(E)

)∼= Γ E = 0. (7.3.4)

Next we set N = E ·S<0 and prove S = ι(E)+N . Note that for each n < 0 the map ðn yields
N n = Sn ∼= Bn−1. Let ϑ ∈ E2 be a right non-zero-divisor, see Lemma 5.1.7. As ΣB is a direct
sum of shifts of I , Lemma 7.3(2) implies

ΣB = ϑiΣB for each i ≥ 0. (7.3.5)

Let σ be an arbitrary element of S . By the remarks above, one has ð(σ ) = ϑiυ for some
υ ∈ (ΣB)<0 and i ≥ 0, and ð(ν) = υ for some ν ∈ N . Thus,

ð
(
σ − ϑiν

)= ð(σ ) − ϑiυ = 0,

hence σ − ϑiν is in Ker(ð) = ι(E), so one gets σ ∈ ϑiν + ι(E) ⊆ N + ι(E).
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(2) By hypothesis, S = ι(E) ⊕ T ′ for some left E-submodule T ′ ⊆ S , so (7.3.1) yields
T ′ ∼= ΣB . From (7.3.2) we get T ′ = Γ T ′ ⊆ Γ S = T , hence ι(E) ∩ T ′ = 0 by (7.3.4). These
relations imply T ′ = T and yield a direct sum of E-bimodules

S = ι(E) ⊕ T . (7.3.6)

The expression for T comes from the equality above and the isomorphisms in (7.3.3).
(3) If depth E ≥ 2 holds, then one has Ext1E (ΣB,E) = 0, see Proposition A.6, so the se-

quence (7.3.1) of graded left E-modules splits, hence S = ι(E) ⊕ T , see (2).
(4) By Lemma 5.3.1 we may assume R = Q/(f ), so we obtain

depth E = depth ExtQ(k, k) + 1 ≥ 2

by referring to Proposition 5.2.3 and Lemma 5.1.7. Part (3) now yields a direct sum decomposi-
tion (7.3.6) of E-bimodules. Next we prove T · T = 0.

Let ϑ ∈ E2 be the central non-zero-divisor defined by the equality R = Q/(f ), see Propo-
sition 5.2.3. Let τ be an element of T . Choosing i ≥ 0 so that ϑi · τ = 0 holds, we get
τ · ϑi = ϑi · τ = 0. On the other hand, (7.3.1) implies T ∼= ΣB as left E-modules, so from
(7.3.5) we get T = ϑi · T . Thus, we obtain

τ · T = τ · (ϑi · T )= (τ · ϑi
) · T = 0 · T = 0.

As τ ∈ T was chosen arbitrarily, we conclude T · T = 0, as desired.
To finish the proof we apply the remark below. �

Remark 7.3.7. If S = ι(E) + T and T · T = 0, then T is a two-sided ideal of S .
Indeed, T is stable under multiplication on either side with elements of E , because it is an

E-bimodule, and by its own elements, as T · T = 0; thus, S · T ⊆ T ⊇ T · S .

The following example provides applications for Theorem 7.2(3).

Example 7.4. Let k be a field, let S and T be localizations of finitely generated k-algebras at
k-rational maximal ideals. In this case, S ⊗k T is a local ring.

Set F = ExtS(k, k) and G = ExtT (k, k). Standard Künneth arguments give an isomorphism
ExtS⊗kT

(k, k) ∼= F ⊗k G of graded k-algebras, so [16, (3.1.iii)] yields

depth ExtS⊗kT
(k, k) = depthF + depth G.

Thus, for singular S and T one has depth ExtS⊗kT
(k, k) ≥ 2, see Lemma 5.1.7.

Applications of Theorem 7.2(4) are discussed in the next section.

8. Stable cohomology algebras of complete intersection rings

In this section we provide an explicit and nearly complete computation of the structure of the
stable cohomology algebra of a complete intersection local ring. This is achieved by combining
results from this paper with already available information on the absolute cohomology algebra.
We fix notation for the entire section.



L.L. Avramov, O. Veliche / Advances in Mathematics 213 (2007) 93–139 121
8.1. Let (R,m, k) be a complete intersection local ring. Fix a presentation R̂ = Q/(f ) with
(Q,n, k) a regular local ring and f = {f1, . . . , fc} is a Q-regular sequence in n2. One then has
edimR = e, codimR = c, and dimR = e − c.

Fix a minimal generating set {t1, . . . , te} for n and write

fh ≡
∑

1�i�j�e

ahij ti tj
(
mod n3) with ahij ∈ Q for 1 ≤ h ≤ c.

As in 7.1, we set E = ExtR(k, k) and S = Êxt R(k, k).
Sjödin [29] has completely described the algebra E ; we recall his result below.

8.2. The algebra E = ExtR(k, k) is generated by elements ξ1, . . . , ξe of degree 1 and ϑ1, . . . , ϑc

of degree 2, subject only to the relations

ξ2
i =

c∑
h=1

āhiiϑh for 1 ≤ i ≤ e;

ξiξj + ξj ξi =
c∑

h=1

āhijϑh for 1 ≤ i < j ≤ e;

ϑhξi = ξiϑh for 1 ≤ h ≤ c and 1 ≤ i ≤ e;
ϑgϑh = ϑhϑg for 1 ≤ g ≤ h ≤ c,

where āhij denotes the image of ahij in k; see [29, Theorem 5] or [4, (10.2.2)].
The next lemma determines the applicability of Theorem 7.2(4).

Lemma 8.3. For R as in 8.1 one has depth E = codimR.

Proof. By Lemma 5.3.1 we may assume R = Q/(f ) for a regular local (Q,n, k) ring and a
Q-regular set f ⊆ n2, with card(f ) = codimR. Proposition 5.2.3 and Lemma 5.1.7 now yield
depth E = depth ExtQ(k, k) + codimR = codimR. �

For complete intersection rings of codimension one, also known as hypersurface rings, S was
computed by Buchweitz [12, (10.2.3)]. We recover his result:

Proposition 8.4. Let R be a singular hypersurface ring of dimension d .
The k-algebra S has generators ξ1, . . . , ξe of degree 1, a generator ϑ = ϑ1 of degree 2 and a

generator ϑ ′ of degree −2, subject to the relations in 8.2 and to

ϑϑ ′ = 1 = ϑ ′ϑ.

In particular, for each n ∈ Z one has rankk Sn = 2d and ExtnE (k,S) = 0.

Proof. By Lemma 5.3.1 we may assume R ∼= Q/(f ) with (Q,n, k) regular local and f ∈
n2 \{0}. By Corollary 4.2 the algebra S is the localization of E at {ϑs | s ≥ 0}, so the presentation
of E in 8.2 yields the presentation above.
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The k-rank of Sn can be obtained from this presentation, or directly from Theorem 6.8. As ϑ

is a central element in E and is invertible in S , A.3(1) yields

depthE S = depthE (S/Sϑ) + 1 = depthE 0 + 1 = ∞. �
In higher codimension the structure of stable cohomology is completely different.

Proposition 8.5. Let R be a complete intersection ring with codimR = c ≥ 2.
The graded k-algebra S has the form S ∼= E ⊕ T , where E is the graded algebra from 8.2,

T =⋃
i�1{τ ∈ S | S�iτ = 0} is an ideal with T · T = 0, T ∼= Homk(E, k) as graded left E-

module, and τ · ϑh = ϑh · τ for all τ ∈ T .

Proof. Theorem 7.2(4) gives everything but the last assertion, which amounts to saying that
each element ι(ϑh) is central in S . To see this note that ϑh ∈ E2 can be defined by the canonical
surjection Q/(f \ {fh}) → R and apply Theorem 4.1. �

Still missing from Proposition 8.5 for a full description of the structure of S are data on the
products τ · ξj . Specifically, we ask:

Question 8.6. Is T isomorphic to Σ1−d Homk(E, k) as graded E-bimodules?

Here is a case where a positive answer is available from other sources.

Example 8.7. Let k be a field of characteristic p > 0, let u1, . . . , ue be positive integers, and set
qi = pui . For R = k[x1, . . . , xe]/(xqe

1 , . . . , x
q1
1 ) the algebra S is graded-commutative, so one has

T ∼= Homk(E, k) as graded E-bimodules.
Indeed, one has R ∼= kG, where G is the abelian group

∏e
i=1 Z/(pui ), and compatible isomor-

phisms of graded k-algebras E ∼= H∗(G, k) and S ∼= Ĥ∗(G, k), with the ordinary cohomology and
the Tate cohomology of G; see [11, (V.4.6)], [11, (VI.6.2)] and [9, (6.11)]. The algebra Ĥ∗(G, k)

is graded-commutative; see [13, (XII.5.3)].

9. Stable cohomology algebras of Gorenstein rings

In this section (R,m, k) is a Gorenstein local ring of dimension d .
The leading theme here would come as no surprise: stable cohomology is simpler over Goren-

stein rings. Numerically, this has already been made precise by Theorem 6.4. We back it up by
showing that the structure of the stable cohomology algebra of a Gorenstein ring is much more
rigid than might have been expected a priori. Although not as explicit as the in the special case of
complete intersections, treated in Section 8, the results here are significantly sharper than those
in Section 7.

The following notation and terminology is in force for the entire section.

9.1. Set E = ExtR(k, k) and S = Êxt R(k, k), let ι :E → S denote the canonical homomorphism
of graded k-algebras, T the torsion subbimodule Γ S ⊆ S and I the graded left E-module
Homk(E, k) with the natural action, see 7.1

We say that the algebra S splits if T is a two-sided ideal of S , such that

T · T = 0, S = ι(E) ⊕ T , and T ∼= Σ1−dI as graded left E-modules.
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The structure of S for Gorenstein rings R with codimR ≤ 1 is completely known, see Propo-
sition 8.4, so this case is excluded from the next theorem.

Theorem 9.2. Let R be a Gorenstein local ring with dimR = d and codimR ≥ 2.

(1) There is an exact sequence of left E-modules

0 −→ E ι−→ S ð−−→ Σ1−dI −→ 0

and there are equalities S = ι(E) + E · S<0 and ι(E) ∩ T = 0.
(2) If S = ι(E) ⊕ T ′ for some graded left E-submodule T ′ ⊆ S , then T ′ = T and the algebra S

splits.
(3) If depth E ≥ 2, then the algebra S splits.
(4) If ζ · E = E · ζ for some left non-zero-divisor ζ ∈ E�1, then S splits and

T = E · S<0.

The proof is presented after a few remarks.

Remark 9.2.1. The theorem above should be compared to Theorem 7.2, applied to a Gorenstein
ring R. Part (1) is a simple specialization. On the other hand, in Theorem 9.2 the conclusions of
parts (2) through (4) are stronger, while the hypothesis of (4) is weaker, see Proposition 5.2.3.

Remark 9.2.2. Theorem 9.2 offers striking parallels to results of Benson and Carlson [8] relating
the structure of the Tate cohomology algebra Ĥ∗(G, k) of a finite group G to that of the absolute
cohomology algebra H∗(G, k).

Such similarities are unexpected, as the corresponding algebras have completely different
properties. Indeed, H∗(G, k) and Ĥ∗(G, k) are graded commutative algebras, and the first one is
also finitely generated over H0(G, k) = k. In stark contrast, the algebra ExtR(k, k) may not be
finitely generated; it is noetherian if and only if R is complete intersection; it is commutative if
and only if R̂ ∼= Q/a, with (Q,n, k) regular and a generated by a Q-regular sequence contained
in n3.

Remark 9.2.3. Parts (3) and (4) of Theorem 9.2 do not cover all cases when the algebra S splits;
see Example 9.13 and Question 9.3.

Proof of Theorem 9.2. (2) If S = ι(E) ⊕ T ′ as left E-modules, then Theorem 7.2(2) yields an
equality T ′ = T and a decomposition S = ι(E) ⊕ T as E-bimodules.

To prove T · T = 0 we fix a right non-zero divisor ϑ ∈ E2, see Lemma 5.1.7. Let τ be an
element of T . As T is an E-subbimodule of S , and for j ≥ d one has T j ∼= Ij+1−d = 0, we
get τ · ϑi ∈ T 	τ
+2i = 0 for all i � 0. Fix an integer i with this property. Lemma 7.3(2) yields
I = ϑi · I , so (1) implies T = ϑi · T , and hence

τ · T = τ · (ϑi · T )= (τ · ϑi
) · T = 0 · T = 0.

As τ ∈ T was arbitrary, this implies T · T = 0, so T is an ideal by Remark 7.3.7.
(3) This follows from (2), in view of Theorem 7.2(3).
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(4) Set N = E · S<0. As ι(E) +N = S by Theorem 7.2(1), it suffices to prove ι(E) ∩N = 0,
see (2). Assuming the contrary means that one can write

0 �=
u∑

h=1

εh · νh ∈ ι(E)

with εh ∈ E , νh ∈ S<0, and εh · νh �= 0. Set s = 	ζ
 and choose i ≥ 0 so that

is + 	νh
 > d holds for h = 1, . . . , u.

As ζ is a non-zero-divisor on E and ζ · E = E · ζ , there exist ε′
h ∈ E such that

0 �=
u∑

h=1

ζ i · εh · νh =
u∑

h=1

ε′
h · ζ i · νh.

Choose l ∈ [1, u] with ε′
l · ζ i · νl �= 0, then set ν = νl and n = 	ν
; one then has

0 �= ζ i · ν ∈ S is+n ⊆ S>d = ι(E)>d ⊆ ι(E)�1.

The map ð in (1) induces a bijection S<0 → (Σ1−dI)<0. Set r = rankk N n. As I = ζ 2rI by
Lemma 7.3(2), we may choose ν′ ∈ N n−2rs with ζ 2r · ν′ = ν.

Let D be the universal enveloping algebra of the graded Lie subalgebra πeven
R of πR . By 5.1.3,

it has no zero-divisors (different from 0) and E is a free graded D-module. Thus, D2j and D2j ·
ζ i · ν are isomorphic k-spaces for each j ∈ Z. From

D2rs ∼= D2rs · ζ i · ν1 = D2rs · ζ i+2r · ν′

⊆ E2rs · ζ i+2r · ν′ = ζ i+2r · E2rs · ν′

⊆ ζ i+2r ·N n

we get rankk D2rs ≤ rankk N n = r . Set ri = rankk πi
R . We have r2 ≥ codimR ≥ 2, see (5.1.5.3),

so 5.1.2 yields coefficient-wise inequalities of formal power series

∞∑
j=0

(
rankk D2j

)
t2j = 1

(1 − t2)2
· 1

(1 − t2)r2−2
∏

j�2(1 − t2j )r2j

� 1

(1 − t2)2
=

∞∑
j=0

(j + 1)t2j .

In particular, we get rankk D2rs > r , and hence the desired contradiction. �
We proceed to test the hypotheses of the preceding theorem. In the rest of this section the

discussion revolves around the following question:
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Question 9.3. Does the cohomology algebra S = Êxt R(k, k) split for every Gorenstein local ring
(R,m, k) with codimR ≥ 2?

We start with a case when Theorem 9.2(4) applies.

Example 9.4. If R̂ ∼= Q/a is a minimal Cohen presentation and the R̂-module a/a2 has a non-
zero free direct summand, then Iyengar [21, Main Theorem] provides a non-zero central element
in π2

R , hence a central non-zero-divisor in E , cf. 5.1.3.
It might be noted that a/a2 has a non-zero free direct summand whenever R̂ is isomorphic to

Q/(f ) for some local ring (Q,n, k) and non-zero-divisor f ∈ n2. This case is covered already
by Theorem 7.2(4), but it is not known whether all free direct summands of a/a2 arise in this
way.

The first application of Theorem 9.2(3) mirrors Example 7.4.

Example 9.5. Let k be a field, and let S and T be localizations of finitely generated k-algebras
at k-rational maximal ideals. If S and T are singular Gorenstein rings, then so is the local ring
S ⊗k T , and Example 7.4 yields

depth ExtS⊗kT
(k, k) ≥ 2.

To exhibit further classes of Gorenstein rings satisfying the hypothesis of Theorem 9.2(3) we
use Koszul duality, see [31, §5] for a concise introduction.

9.6. Let k be a field, and let A =⊕
i�0 Ai be a commutative internally graded k-algebra, see

(3.3), with A0 = k, A = k[A1], and rankk A1 < ∞.
Recall that A is said to be Koszul if ExtnA(k, k)i = 0 for n �= i. Its Koszul dual is the internally

graded k-algebra B with Bi = ExtiA(k, k)i and multiplication induced by the composition product
of ExtA(k, k); the algebra B is Koszul as well, and its own Koszul dual is canonically isomorphic
to A.

If A is a Gorenstein Koszul algebra with rankk A < ∞, then

ExtnB(k,B) ∼=
{

k for n = sup{n ∈ N | An �= 0};
0 otherwise.

Indeed, this follows by Koszul duality from [31, (5.10), (4.3.1)].

Proposition 9.7. Let R be the localization of a commutative Gorenstein graded k-algebra A =⊕
i�0 Ai at the maximal ideal A+ =⊕i�1 Ai . If A is Koszul, then

depth E ≥ 2

holds, unless A ∼= k[x1, . . . , xe]/(f ) for some quadratic form f ( possibly equal to 0).

Proof. Assuming depth E ≤ 1, we induce on dimA to prove that A has the desired special form
above. When dimA = 0 one has rankk A < ∞, so 9.6 yields Ai = 0 for i ≥ 2. As A is Gorenstein,
this is only possible if A ∼= k or A ∼= k[x]/(x2).
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Suppose dimA = d ≥ 1 and the assertion holds for algebras of dimension d −1. Let k → k′ be
a field extension. The k′-algebra A′ = k′ ⊗k A is clearly Koszul. Let R′ be its localization at A′+.
The canonical map R → R′ is flat and R′/mR′ ∼= k′, so Lemma 5.3.1 yields depth Ext

R′(k′, k′) =
depth E . Thus, we may assume k is infinite, and so find a non-zero-divisor g ∈ A1. Now A =
A/(g) is Koszul with dimA = d −1. Since g/1 ∈ R is R-regular and not in m2, for R = R/(g/1)

Proposition 5.2.2 yields depth Ext
R
(k, k) = depth E . As R is the localization of A at

⊕
i�1 Ai ,

the induction hypothesis yields A ∼= k[x̄1, . . . , x̄e−1]/(f̄ ) for some quadratic form f̄ . It follows
that A has the desired property. �

Let multR denote the multiplicity of R. A Gorenstein ring R has multiplicity 1 if and only
if it is regular, and multiplicity 2 if and only if it is a quadratic hypersurface; else, it satisfies
multR ≥ codimR + 2.

The case of minimal multiplicity is covered by the next result.

Proposition 9.8. If R is Gorenstein and multR = codimR + 2, then

depth E =
{

1 when R is a hypersurface ring;

2 otherwise.

Proof. One has codimR = 1 if and only if R is a hypersurface, and when this is the case
Lemma 8.3 applies. For the rest of the proof assume codimR ≥ 2. In view of Lemma 5.3.2
we may further assume dimR = 0. Our hypothesis then implies isomorphisms m3 = 0 and
m2 = AnnR m ∼= k, and non-degeneracy of the map

μ :
(
m/m2)⊗k

(
m/m2)−→ m2 ∼= k

induced by the product of R. Thus, A = k ⊕ (m/m2) ⊕ m2 is a Gorenstein graded k-algebra,
with rankk A1 = codimR. By [24, (3.1)] both E and ExtA(k, k) are isomorphic to the tensor
algebra of (A1)

∨ over k, modulo the quadratic form Homk(μ, k)(idk) ∈ (A1)
∨ ⊗k (A1)

∨. Thus,
we may replace R by A. The description of ExtA(k, k) shows that as an algebra over Ext0A(k, k) =
k it is generated by Ext1A(k, k). This graded vector space has Ext1A(k, k)j = 0 for j �= 1, so
ExtiA(k, k)j = 0 for j �= i, so A is Koszul, hence depth E = 2 by 9.6. �

Recall that if R is Gorenstein with codimR ≤ 2, then R is complete intersection, so
Lemma 8.3 gives depth E = codimR. In the next codimension we prove:

Proposition 9.9. If R is Gorenstein and codimR = 3, then

depth E =
{

3 when R is complete intersection;

2 otherwise.

Proof. By Proposition 8.3 we may assume R is not complete intersection. By Lemma 5.1.6 it
suffices to prove depthD = 2, where D is the universal enveloping subalgebra of π

�2
R . It follows

from [1, (3.3)] that π
�2 is isomorphic to πA, where A = ⊕3

i=0 Hi (K) and K is the Koszul
R
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complex on a minimal set of generators of m. There exist bases {e1, . . . , er} of A1; {f1, . . . , fr}
of A2; {g} of A3, such that

eifi = g = fiei for 1 ≤ i ≤ r

and all other products of basis elements vanish, see [1, (8.4)]. Thus, A is a Gorenstein local ring
of minimal multiplicity, so Proposition 9.8 yields depthD = 2. �

In the balance of this section we deal with artinian rings.

Proposition 9.10. For an artinian Gorenstein local ring (R,m, k) with m �= 0 the following
conditions are equivalent.

(i) S is split.
(ii) T = S<0.

(iii) S<0 is a left E-submodule of S .
(iv) E is generated as an algebra over E0 = k by a set E ⊆ E�1, such that ε · Sj = 0 holds for

all pairs (ε, j) ∈ E × Z satisfying −	ε
 ≤ j < 0.

Proof. From the exact sequence in Theorem 9.2(1), or from Theorem 2.2, one gets ι(E) = S�0,
hence ι(E) has a unique complement in S as a graded k-vector space, namely, S<0. Thus, when
S is split one has T = S<0, and hence (i) implies (ii).

It is clear that (ii) implies (iii). If S<0 is a left E-submodule of S , then it is necessarily a direct
complement of ι(E), so (iii) implies (i) by Theorem 9.2(2).

It is clear that (iii) implies the validity of (iv) for every set of generators E ⊆ E�1, in particular,
for E = E�1. Conversely, assume that (iv) holds for some E, pick an arbitrary σ ∈ S<0, and
ε1, . . . , εs be elements of E. If one has 	σ
 < −∑s

i=1	εi
, then ε1 · · · εs · σ ∈ S<0 holds for
degree reasons. Else, there is an integer r with

1 ≤ r ≤ s and −
s∑

i=r

	εi
 ≤ 	σ
 < −
s∑

i=r+1

	εi
.

Thus, σ ′ = εr+1 · · · εs · σ satisfies −	εr
 ≤ 	σ ′
 < 0, hence

ε1 · · · εs · σ = (ε1 · · · εr−1) · (εr · σ ′) = 0.

It follows that S<0 is a left E-submodule of S , that is, (iii) holds. �
When dimR = 0 it is easy to write down a complete resolution of k, see 2.3.

9.11. Let (R,m, k) be an artinian Gorenstein ring with m �= 0.
If ε :F → k is a minimal free resolution and (−)∗ = HomR(−,R), then

T = · · · −→ F1
∂1−−→ F0

ε∗
0 ◦ε0−−−→ F ∗

0
∂∗

1−→ F ∗
1 −→ · · ·

where T0 = F0, is a complete resolution of k satisfying ∂(T ) ⊆ mT .
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Indeed, one has ∂(T ) ⊆ mT by construction. The exactness of T follows easily from the
self-injectivity of R, which then implies the exactness of HomR(T ,R).

We finish with an example obtained through the dictionary between local algebra and rational
homotopy theory; see [5]. For a topological space Y let Hn(Y ;Q) and Hn(Y ;Q) denote its singu-
lar (co)homology, ΩY its loop space, and H∗(ΩY ;Q) its Pontryagin algebra with multiplication
induced by composition of loops.

The construction below was communicated to us by Yves Félix, in answer to our question
whether there exists a formal CW complex Y with depth H∗(ΩY ;Q) = 1.

9.12. Let S2 denote the standard 2-sphere, # a connected sum of smooth manifolds. The follow-
ing manifolds are formal topological spaces:

X = S2 × S2 × S2 = X′ and Y = X # X′.

Using a suitable CW decomposition of X # X′, Félix exhibits H∗(ΩY ;Q) as a free product of
three commutative polynomial algebras:

H∗(ΩY ;Q) ∼= Q[ξ1, ξ2, ξ3] ∗ Q
[
ξ ′

1, ξ
′
2, ξ

′
3

] ∗ Q[ϑ], (9.12.1)

where H∗(ΩX;Q) = Q[ξ1, ξ2, ξ3], and H∗(ΩX′;Q) = Q[ξ ′
1, ξ

′
2, ξ

′
3] with �ξi� = 1 = �ξ ′

j �, and
ϑ ∈ H4(ΩY ;Q) arises from the identification in Y = X # X′ of the orientations of X and X′.
None of these algebras equals Q, so [17, (36.e.2)] yields

depth H∗(ΩY ;Q) = 1. (9.12.2)

Next we translate Félix’s example into commutative algebra.

Example 9.13. Let k be a field of characteristic 0. The ring

R = k[t1, t2, t3, t ′1, t ′2, t ′3]
({t2

i , ti t
′
j , t ′2

j }1≤i,j≤3, t1t2t3 − t ′1t ′2t ′3)

is Gorenstein with codimR = 6, m3 �= 0 = m4, and rankk R = 14.
Its cohomology algebra E satisfies depth E = 1 and Eζ �= ζE for every non-zero ζ ∈ E�1, and

its stable cohomology algebra S is split.
Indeed, the properties of R are clear. By Lemma 5.3.1 we may assume k = Q.
Endow R with an internal grading by assigning (lower) degree −2 to the variables ti and t ′j one

gets an isomorphism R ∼=⊕6
n=0 Hn(Y ;Q) of internally graded rings, where Y is the manifold

from (9.12). Since Y is formal, there are isomorphisms⊕
l+m=−n

ExtlR(Q,Q)m ∼= Hn(ΩY ;Q)

of Q-vector spaces that combine into an isomorphism of graded Q-algebras

ExtR(Q,Q) ∼= H∗(ΩY ;Q).

Thus, one obtains depth E = 1 from (9.12.2).
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To analyze S we note that a minimal graded free resolution F of Q starts as

· · · −→ R(4)(
3+3

2 ) ⊕ R(4)3+9+3 ⊕ R(6) −→ R(2)3+3 −→ R −→ 0

where the standard basis of R(2)3+3 maps to the generators t1, t2, t3 and t ′1, t ′2, t ′3 of m, that of

R(4)(
3+3

2 ) to the Koszul relations between these generators, that of R(4)3+9+3 to the syzygies
defined by the quadratic relations of R, and that of R(6) to the syzygy defined by the cubic
relation. The complete resolution T constructed in 9.11 from the minimal resolution F now
yields isomorphisms

E2 = S2 ∼= Q(4)30 ⊕ Q(6), E0 = S0 ∼= Q, S−1 ∼= Q(−6),

E1 = S1 ∼= Q(2)6, S−2 ∼= Q(−8)6.

The isomorphism (9.12.1) shows that the algebra E is generated over E0 = Q by elements from
E1 and E2. As the action of E on S is compatible with internal gradings, see Proposition 3.4,
degree considerations yield the following equalities:

E1 · S−1 = 0, E2 · S−1 = 0, E2 · S−2 = 0.

Proposition 9.10 now shows that the stable cohomology algebra S is split.

10. Stable cohomology algebras of Golod rings

In this section (R,m, k) denotes a local ring. The codepth of R is the integer codepthR =
edimR − depth R. Once again, we consider the graded k-algebras

E = ExtR(k, k) and S = Êxt R(k, k)

and let ι :E → S denote the canonical homomorphism of graded algebras.
For all rings R with codepthR ≥ 2 analyzed so far in this paper, ι(E) has a direct complement

in S as a left E-submodule. Here our goal is to produce a ring R for which this fails. We search
for it among Golod rings, as their homological properties are in many respects antithetical to
those of Gorenstein rings.

Golod rings are usually defined in terms of the series
∑

n�0 rankk Entn, see [4, §5] for details
and examples. Here it is useful to take as definition their characterization in terms of the structure
of the graded k-algebra E .

10.1. The ring R is said to be Golod if the universal enveloping algebra D of the Lie algebra π
�2
R

is a free associative k-algebra, [2, Corollary, p. 59].
We will also use a defining homological property of free k-algebras.

10.2. Let A be a free associative k-algebra on a set Ξ of elements of positive upper degree. Let
{bξ | 	bξ 
 = 	ξ
 + 1}ξ∈Ξ be a linearly independent set over A. There is then an exact sequence
of graded left A-modules:

0 −→
∐

Abξ
∂−→A −→ k −→ 0 with ∂(bξ ) = ξ. (10.2.1)
ξ∈Ξ
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It is clear that R is Golod when codepthR = 0 (because then R is regular, so D = k), or when
codepthR = 1 (because then R is a singular hypersurface ring, so D = k[ϑ], see Example 8.4).
When R is Golod with codepthR ≥ 2 Theorem 9.2 does not apply, because R is not Gorenstein.
Neither does Theorem 7.2(3):

Proposition 10.3. If R is a Golod ring with codepthR ≥ 2, then depth E = 1.

Proof. If D is the universal enveloping algebra of π
�2
R , then depth D ≤ 1, see 10.1 and 10.2, so

depth E ≤ 1 by Lemma 5.1.6; equality holds by Lemma 5.1.7. �
Thus, new tools are needed to study stable cohomology over Golod rings of higher codimen-

sion. Local rings with radical square zero are the simplest example of Golod rings. They are the
subject of the next theorem, proved at the end of the section; its notation and hypotheses are in
force for the rest of the section.

Theorem 10.4. Let (R,m, k) be a local ring with m2 = 0 and edimR = e ≥ 2.
The following assertions then hold.

(1) The exact sequence of Theorem 7.2(1) has the form

0 −→ E ι−→ S ð−−→ (ΣI)e ⊕
∞∐
i=0

(
Σ−iI

)ei (e2−1) −→ 0.

(2) The left E-submodule ι(E) has no direct complement in S .
(3) One has ExtnE (k,S) = 0 for all n ∈ Z.

For the next lemma we introduce shorthand notation: When β,β ′ :M → N are R-linear maps
we write β ′ ≡ β (mod m) in place of (β ′ − β)(M) ⊆ mN .

Lemma 10.5. Let δ :U → R be the composition of a projective cover U → m of the R-module
m with the inclusion m ⊆ R. For i ∈ Z, let ∂i+1 be the R-linear map

Fi+1 = U⊗(i+1) = U ⊗R U⊗i δ⊗RU⊗i−−−−−→ R ⊗R U⊗i = U⊗i = Fi

where U⊗i denotes the ith tensor power of U over R, with the conventions U⊗0 = R and
U⊗i = 0 for i < 0. The following then hold.

(1) The pair (F, ∂) is a minimal R-free resolution of k.
(2) There are equalities ∂(Fi+1) = mFi for all i ∈ Z.
(3) When h and i are integers, such that i ≥ max{0,−h}, a diagram

U ⊗R Fi Fi+1
∂i+1

β ′

Fi

β

U ⊗R Fi+h Fh+i+1
∂h+i+1

Fh+i

of R-linear maps commutes if and only if β ′ ≡ U ⊗R β (mod m).
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Remark. When R is a k-algebra, the minimal resolution F described in part (1) of the theorem
coincides with the bar construction of R over k.

Proof. (2) This follows directly from the definition of ∂ .
(1) From m2 = 0 one gets ∂2 = 0. For i ≥ 1 set Bi−1 = ∂i(Fi) and Zi = Ker(∂i). From

(2) one obtains �(Bi−1) = ei , where � denotes length over R. The exact sequence 0 → Zi →
Fi → Bi−1 → 0 yields �(Zi) = (e + 1)ei − ei = ei+1 = �(Bi). Thus, Hi (F ) = 0 for i ≥ 1 and
H0(F ) = k, so F is a minimal free resolution of k.

(3) Pick u ⊗ v ∈ U ⊗R Fi = Fi+1. By definition, one has

β∂i+1(u ⊗ v) = β
(
δ(u)v

)= δ(u)β(v) = ∂h+i+1
(
u ⊗ β(v)

)
.

Therefore, an equality β∂i+1(u ⊗ v) = ∂h+i+1β
′(u ⊗ v) holds if and only if one has

β ′(u ⊗ v) − u ⊗ β(v) ∈ Ker(∂h+i+1).

As (1) and (2) yield Ker(∂h+i+1) = ∂h+i+2(Fh+i+2) = mFh+i+1, the inclusion above is equiva-
lent to the relation β ′ ≡ U ⊗R β (mod m). �
Lemma 10.6. Let F denote the minimal free resolution from the preceding lemma, let � ∈
HomR(F,F )h be a homomorphism of complexes, let �̂ denote its image in ĤomR(F,F )h, and
set m = max{0,−h}. The following then hold.

(1) The map � (respectively, �̂) is a boundary if and only if for i = m (respectively, for some
i ≥ m) and for all j ≥ 0 one has

�i+j ≡ 0 (mod m).

(2) The map � (respectively, �̂) is a cycle if and only if for i = m (respectively, for some i ≥ m)
and for all j ≥ 0 one has

�i+j ≡ U⊗j ⊗R (−1)hj�i (mod m).

Proof. (1) By definition, � (respectively, �̂) is a boundary if and only if there exists a homomor-
phism χ ∈ HomR(F,F ) of degree h + 1, such that an equality

�i+j = ∂h+i+j+1χi+j + (−1)hχi+j−1∂i+j (10.6.3)

holds for i = m (respectively, for some i ≥ m) and for all j ≥ 0.
If χ exists, then �i+j ≡ 0 (mod m) for i, j as above, because ∂ ≡ 0 (mod m).
Conversely, assume �i+j ≡ 0 (mod m) holds for i, j as above. We construct χi+j by induction

on j . Setting χi+j = 0 for j < 0, we may assume that χi+j−1 has been defined for some j ≥ 0.
One then has the relations(

�i+j − (−1)hχi+j−1∂i+j

)
(Fi+j ) ⊆ mFh+i+j + χi+j−1(mFi+j−1)

⊆ mFh+i+j

= ∂h+i+j+1(Fh+i+j+1)
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with equality given by Lemma 10.5(2). Since Fi+j is free, one can find a homomorphism
χi+j :Fi+j → Fh+i+j+1 satisfying (10.6.3).

(2) By definition, � (respectively, �̂) is a cycle if and only if ∂h+i+j �i+j = (−1)h�i+j−1∂i+j

holds for i = m (respectively, for some i ≥ m) and for all j ≥ 0. Iterated applications of 10.5(3)
yield the desired assertion. �

It is convenient to describe E and S as subrings of infinite matrix rings.

10.7. For every pair (m, r) ∈ Z × N, satisfying m + r ≥ 0, let Mer×er+m(k) denote the k-vector
space of er × er+m matrices with elements in k. Let M∞(k) be the k-algebra of all row-and-
column-finite matrices with elements in k, under ordinary matrix product. For every matrix
C = (cij ) ∈ Mer×er+m(k) let C∞ = (c∞

pq) ∈ M∞(k) be the matrix with blocks C along a line
of slope e−m:

c∞
pq =

{
cij if p = i + ler and q = j + ler+m for some l ≥ 0;
0 otherwise.

It is clear that for each m ∈ Z the following subset of M∞(k) is a k-subspace:

Cm = {C∞ ∈ M∞(k)
∣∣ C ∈ Mer×er+m(k) for some pair (m, r) with m + r ≥ 0

}
.

A key observation is that, furthermore, the following relations hold:

Cm · Cn ⊆ Cm+n for all m,n ∈ Z;
Cm ∩ Cn = 0 when m �= n.

Indeed, let C∞ ∈ Cm be as above, and let D∞ ∈ Cn be obtained from a matrix D ∈
Mes×es+n(k), where (n, s) ∈ Z × N satisfy n + s ≥ 0. One then has C∞ = C′∞, where C′ ∈
Mer+s×er+s+m(k) is the block diagonal matrix with es copies of C along a line of slope e−m; also,
D∞ = D′∞ where D′ ∈ Mer+s+m×er+s+m+n(k) is the block diagonal matrix with er+m copies of D

along a line of slope e−n. Thus, we get

C′D′ ∈ Mer+s×er+s+m+n(k) and C∞ · D∞ = (C′D′)∞ ∈ Cm+n.

This proves the inclusion. For the equality, assume C∞ = D∞ ∈ Cm ∩ Cn with m �= n. Since
the lines with slopes e−m and e−n diverge, for l � 0 the blocks C forming the matrix C∞ are
entirely contained in an area of the matrix D∞ where every element is equal to 0. Thus, one has
C = 0, and consequently C∞ = 0.

In view of the discussion above, C = (Cm)m∈Z is a graded k-algebra with unit 1∞.
We define a graded subalgebra A of C as follows. Set

A
(m)
i = (E(m)

i

)
∞ ∈ Cm for each pair (m, i) ∈ N × [1, e], where

E
(m) = [0, . . . ,0,1,0, . . . ,0] ∈ M1×em(k) with 1 in ith position.
i
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Let A be the subalgebra generated over k1∞ by A
(1)
1 , . . . ,A

(1)
e ∈ C1. It is easy to see:

A
(m)
i A

(n)
j = A

(m+n)
(i−1)en+j .

Thus, A has a k-basis consisting of matrices with precisely one non-zero entry in every row, and
in distinct basis elements this entry occurs in a different column.

Part (2) of the next lemma is known: For a k-algebra R it is obtained by computing ExtR(k, k)

as the cohomology of the cobar construction, which in this case is the tensor algebra on
Homk(m/m2, k) with zero differential; the general case can be found in [27, Theorem 1, Corol-
lary 3]. A proof is included for completeness.

Lemma 10.8. In the notation of 10.7 the following hold.

(1) There is an isomorphism of graded k-algebras S ∼= C, inducing ι(E) ∼= A.
(2) The associative k-algebra E is freely generated over k by a k-basis of E1.
(3) One has ExtnE (k,E) = 0 if n �= 1 and

rankk Ext1E (k,E)i =
⎧⎨⎩

0 for i ≤ −2;
e for i = −1;
ei(e2 − 1) for i ≥ 0.

Proof. Let F → k be the minimal free resolution from Lemma 10.5. We fix a basis X1 =
{x1, . . . , xe} of U over R. For each i ≥ 0 it canonically provides a basis Xi of Fi = U⊗i over R,
and thus a basis Xi of Fi/mFi over k.

(1) Each σ ∈ Sh is the class of a cycle �̂ ∈ ĤomR(F,F )−h, where � :F → F is a homomor-
phism of complexes of R-modules of degree −h. Thus, ��s :F�s → F�s−h is a chain map for
some integer s. It induces a k-linear map

Hs(�) = �̄s :U⊗(s+h)/mU⊗(s+h) −→ U⊗s/mU⊗s .

Let S ∈ Mes×es+h(k) be the matrix of �̄s in the bases Xs+h and Xs , and form the matrix S∞ ∈ Ch.
Lemma 10.6 shows that S∞ does not depend on the choices of � or s, so setting α(σ) = S∞
one obtains a map α :S → C. The definitions of the products in S and C imply that α is a
homomorphism of algebras. Part (1) of Lemma 10.6 shows that α is injective and part (2) that it
is surjective.

Let {ξ1, . . . , ξe} be the basis of E1 dual to the basis X1 of U/mU . By definition, α(ι(ξj )) =
A

(1)
j for j = 1, . . . , e, so α maps the subalgebra of E generated by {ξ1, . . . , ξe} surjectively onto

the subalgebra A of C. Thus, for each i ∈ Z one has

ei = rankk E i ≥ rankk Ai = ei,

with equalities given by the constructions in Lemma 10.5 and in 10.7, respectively. Thus, α re-
stricts to an isomorphism ι(E) ∼= A.

(2) As shown above, rankk E i = ei and E is generated by e elements of degree 1. It follows
that there are no relations between the generators of E .
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(3) In view of (2), the exact sequence of 10.2 yields ExtnE (k,E) = 0 for n �= 0,1 and an exact
sequence of graded vector spaces

0 −→ HomE (k,E) −→ E ∂∗−−→ ΣEe −→ Ext1E (k,E) −→ 0

where ∂∗(ρ) = (ξ1ρ, . . . , ξeρ). We see that HomE (k,E) = 0. Counting k-ranks in the sequence
above we now get the desired expressions for Ext1E (k,E)i . �

Proof of Theorem 10.4. The notation from the preceding proof stays in force.
(1) Theorem 7.2(1) yields an exact sequence of graded left E-modules

0 −→ E ι−→ S ð−−→
∞∐

i=−1

(
Σ−iI

)μi+1 −→ 0 (10.8.1)

where I = Homk(E, k) and μi = rankk ExtiR(k,R). These numbers are given by:

μi =
⎧⎨⎩

0 for i ≤ −1;
e for i = 0;
ei−1(e2 − 1) for i ≥ 1.

(10.8.2)

Indeed, the hypothesis m2 = 0 yields an exact sequence of R-modules

0 −→ ke −→ R −→ k −→ 0.

It induces an exact sequence of homomorphisms of k-vector spaces

0 −→ HomR(k,R) −→ R −→ HomR

(
ke,R

)−→ Ext1R(k,R) −→ 0

giving the values of μi in (10.8.2) for i ≤ 1. The same sequence yields isomorphisms

Exti−1
R

(
ke,R

)∼= ExtiR(k,R) for all i ≥ 2,

which imply μi = eμi−1 for all i ≥ 2; the last equality in (10.8.2) follows.
(3) The k-algebra E is free by Lemma 10.8(2), so the resolution of k displayed in 10.2 gives

ExtnE (k,S) = 0 for all n �= 0,1.
Next we prove HomE (k,S) = 0. By A.5, this is equivalent to the following assertion: If

� ∈ HomR(F,F )h is such that �̂ ∈ ĤomR(F,F )h is a cycle and cl(�̂) ∈ Êxt −h
R (k, k) satisfies

Ext�s
R (k, k) · cl(�̂) = 0 for some s ≥ 0, then cl(�̂) = 0.
Set m = max{0,−h}. As �̂ is a cycle, for some integer i with i ≥ m one has

∂h+i+j �i+j = (−1)h�i+j−1∂i+j for all j ≥ 0.

After increasing i or s (if necessary) we may assume s = i + h ≥ 0.
Let ξ ∈ HomR(F,F )s be a chain map. As cl(ξ) · cl(�̂) = 0, Lemma 10.6(1) yields

(ξ�)i+j (Fi+j ) ⊆ mFj for all j � 0.
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On the other hand, one has ∂j ◦ (ξ�)i+j = (−1)h+s(ξ�)i+j−1 ◦ ∂i+j for all j ≥ 0, so
Lemma 10.5(3) implies that these inclusions hold, in fact, for all j ≥ 0.

Recall that Xi denotes the standard basis of Fi = U⊗i . For each u ∈ Xi one has �i(u) =∑
v∈Xi+h

auvv with uniquely defined auv ∈ R. On the other hand, for each v ∈ Xh+i the R-linear
map Fh+i → F0 = R sending v to 1 and every v′ ∈ Xh+i \ {v} to 0 extends to a chain map
ξv :F → F of degree −h − i. We get

auv = (ξv)h+i

( ∑
v∈Xh+i

auvv

)
= (ξv)h+i

(
�i(u)

)= (ξv�)i(u) ∈ m

hence �i(Fi) ⊆ mFh+i holds. Lemma 10.5(3) now yields �i(Fi) ⊆ mFh+i for all i ≥ 0, from
where we conclude cl(�̂) = 0, see Lemma 10.6(1).

Finally, we prove Ext1E (k,S) = 0. As HomE (k,S) = 0, the exact sequence (10.8.1) of graded
left E-modules induces an exact sequence of graded vector spaces

0 −→ HomE

(
k,

∞∐
i=−1

(
Σ−iI

)μi+1

)
−→ Ext1E (k,E)

ι∗−→ Ext1E (k,S)

ð∗−→ Ext1E

(
k,

∞∐
i=−1

(
Σ−iI

)μi+1

)
. (10.8.3)

Since k has a resolution by free E-modules of finite rank, see 10.2, the functors ExtnE (k,−)

commute with direct sums. The graded left E-module I = Homk(E, k) satisfies HomE (k,I) ∼= k

and is injective, so we obtain

HomE

(
k,

∞∐
i=−1

(
Σ−iI

)μi+1

)
∼=

∞∐
i=−1

Σ−ikμi+1; (10.8.4)

Ext1E

(
k,

∞∐
i=−1

(
Σ−iI

)μi+1

)
= 0. (10.8.5)

Comparing (10.8.4), (10.8.2), and Lemma 10.8(3) we see that in (10.8.3) the map ι∗ is bijective.
In view of (10.8.5) this implies Ext1E (k,S) = 0.

(2) If S = ι(E) ⊕ T ′ for some left graded E-submodule T ′ of S , then Theorem 7.2(2) yields
T ′ = Γ S , hence Γ S i = S i for i < 0. One has S i �= 0, see Theorem 6.5, so A.2 and A.5 imply
depthE S = depthE Γ S = 0. This contradict (3). �

We finish by applying lemmas used in the proof of Theorem 10.4 to show that the action
of absolute cohomology on bounded cohomology from the right may be far from nilpotent—in
contrast to the action from the left, cf. Lemma 1.3.2.

Example 10.9. If m2 = 0 and edimR = e ≥ 2, then for every n < 0 there exists βn ∈ Ext n
R(k, k),

such that {ε ∈ Ext (k, k) | βn · ε = 0} is equal to 0.
R
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By Theorem 7.2(1) and Lemma 10.8(1), it suffices to show that each matrix

Cn = (C(n)
)
∞ ∈ Cn, where n < 0 and C(n) =

⎡⎢⎢⎣
1
0
...

0

⎤⎥⎥⎦ ∈ Me−n×1(k),

satisfies (CnA) ∩ A = 0. Indeed, for each A ∈ M∞(k) the matrix CnA is obtained by inserting
(e−n −1) rows of zeroes between every pair of adjacent rows of A. On the other hand, the k-basis
of A described in 10.7 shows that each non-zero matrix in A has a non-zero entry in every row.
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Appendix A. Depth over graded algebras

In this appendix k is a field, A is a graded k-algebra with A0 = k and Ai = 0 for all i < 0.
Throughout, M denotes a graded left A-module. By a customary abuse of notation, we let k

denote also the graded A-module A/A�1.

A.1. The depth of M over A is the number

depthAM = inf
{
n ∈ N

∣∣ ExtnA(k,M) �= 0
}
,

see [16]. Clearly, one has 0 ≤ depthAM ≤ ∞, and depthAM = ∞ holds if and only if
ExtA(k,M) = 0. We systematically write depthAA in place of depthA.

Here we collect general facts about depth, for use in the body of the paper.
The long exact sequence of functors ExtnA(k,−) yields a familiar formula:

A.2. The depths of the graded left A-modules appearing in an exact sequence 0 → L → M →
N → 0 are linked by an inequality

depthAM ≥ inf{depthAL,depthAN }.

Equality holds when the sequence splits, or when depthAL �= depthAN + 1.
For finite modules over finitely generated commutative algebras depth measures lengths of

regular sequences. In general, only a weaker statement holds.

A.3. Assume A = A′/(ϑ ′) and M = M′/ϑ ′M′ for some graded k-algebra A′, a central element
ϑ ′ ∈A′�1, and a graded left A′-module M′.

When ϑ ′ is a non-zero-divisor on M′ the following hold.

(1) depthA′ M′ = depthA′ M+ 1.
(2) If ϑ ′ is a non-zero-divisor on A′, then depthAM = depthA′ M′ − 1.
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Indeed, for each n ≥ 0 there are isomorphisms of graded k-vector spaces

Extn−1
A′ (k,M) ∼= Extn−1

A′ (k,M′) ⊕ ExtnA′(k,M′),

Extn−1
A (k,M) ∼= ExtnA′(k,M′)

obtained by transcribing Rees’ classical argument for commutative algebras.
Pursuing the analogy with commutative algebra, we define (left) section functors.

A.4. For each i ≥ 0 the graded subspace A�i of A is a two-sided ideal, so the following sub-
spaces of M are graded left A-submodules:

Γ iM = {μ ∈M
∣∣A�i · μ = 0

}
and ΓM =

∞⋃
i=0

Γ iM.

Section functors carry information on the vanishing of depth.

A.5. depthAM = 0 if and only if Γ 1M �= 0, if and only if ΓM �= 0.
Indeed, the equivalence of the first two conditions comes from the isomorphism

HomA(k,M) ∼= {μ ∈ M
∣∣A�1 · μ = 0

}= Γ 1M.

It is clear that the second condition implies the third one. Conversely, if ΓM �= 0, then
A�i ·μ = 0 for some μ ∈M\{0} and some integer i ≥ 1. Choosing i minimal with this property,
for N = A�i−1 · μ we get 0 �= N ⊆ Γ 1M �= 0.

Several applications of depth in the body of the paper hinge on the next result.

Proposition A.6. If a graded left A-module K satisfies K = ΓK, then

depthAM ≤ inf
{
n ∈ N

∣∣ ExtnA(K,M) �= 0
}
.

Equality holds if K = Γ iK �= 0 for some integer i ≥ 1.

Proof. Set m = depthAM. We prove the last assertion by induction on i. If i = 1, then K is a
direct sum of shifts of copies of k, so ExtnA(K,M) is a direct product of shifts of ExtnA(k,M),
and the assertion is clear. When i > 1 the exact sequence

0 −→ Γ i−1K −→ Γ iK −→ L−→ 0

of graded left A-modules, where L = Γ iK/Γ i−1K, induces an exact sequence

Extn−1
A
(
Γ i−1K,M

)−→ ExtnA(L,M) −→ ExtnA
(
Γ iK,M

)−→ ExtnA
(
Γ i−1K,M

)
for each n. By the base of the induction, ExtnA(L,M) vanishes for n < m and does not for n = m.
For n < m the first and last terms vanish by the induction assumption. Thus, ExtnA(Γ iK,M)

vanishes for n < m and does not for n = m.
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In general, each Γ iK is a graded left submodule of K, so there are exact sequences

0 −→ lim←−
i

1 Extn−1
A
(
Γ iK,M

)−→ ExtnA(K,M) −→ lim←−
i

ExtnA
(
Γ iK,M

)−→ 0

for all n ≥ 0, where lim←−
1 is the first right derived functor of lim←−, see [34, (3.5.10)]. In view of the

finite case, these sequences yield ExtnA(K,M) = 0 for n < m. �
Corollary A.7. If B is a graded k-subalgebra of A, such that A is free as a graded right B-
module and one has A�i ⊆ A ·B�1 for some i � 1, then

depthBM= depthAM.

Proof. For A = A/(A · B�1) standard arguments yield ExtnA(A,M) ∼= ExtnB(k,M) for each
n ∈ Z. Since A = Γ iA, the proposition yields the desired equality. �

A graded k-subalgebra B of A is said to be normal if B�1 ·A = A ·B�1.

Corollary A.8. Assume rankk Ai is finite for each i and B is a normal subalgebra of A. A finite
subset E ⊆ A is a basis of A as a graded right B-module if and only if it is a basis of A as a
graded left B-module. When such a set E exists, one has

depthB = depthA.

Proof. By symmetry, to prove the first assertion it suffices to show that if E is a basis of A as a
graded right B-module, then it is one as a left B-module. The image E of E in A = A/A · B�1

is a k-basis of A. The map

γ :A⊗k B −→A given by γ

(∑
e∈E

aeē ⊗ δe

)
=
∑
e∈E

(−1)|e||δe|aeδee

is a morphism of graded left B-modules. Since B is normal in A one has

k ⊗B A ∼= A/
(
B�1 ·A)= A/

(
A ·B�1)= A,

so k ⊗B γ is bijective. By (a graded version of) Nakayama’s Lemma the map γ is then surjective.
Comparison of k-ranks shows that it is bijective. Thus, E is a basis of A as left B-module.
When a basis E as above exists one has rankk A < ∞, whence the first isomorphism below; the
isomorphism γ induces the second one:

A⊗k ExtnB(k,B) ∼= ExtnB(k,A⊗k B) ∼= ExtnB(k,A).

They yield depth B = depthBA, and Corollary A.7 gives depthBA = depth A. �
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