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Abstract

We study combinatorial and probabilistic properties of cover-free codes and block designs
which are useful for their e0cient application as the 1rst stage of two-stage group testing pro-
cedures. Particular attention is paid to these procedures because of their importance in such
applications as monoclonal antibody generation and cDNA library screening.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the theory and design of e0cient combinatorial and probabilistic group
testing procedures for a population of size v. Each item in the population either is
active or is inactive. When a subset of such items is tested as a group, the test’s
outcome will be 1 if at least one of the items in the group is active and 0 otherwise.
Each such group test can be represented as a row in a v-column matrix, with a 1
in each column indexed by an item that is in the group and a 0 in the remaining
columns. Simultaneously conducting b such group tests constitutes a stage of testing
and is represented by a b× v matrix, A, with entries from {0; 1}. With a view toward
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strengthening the connection between group testing and error control codes, we de1ne
the syndrome of A to be the b-dimensional binary column vector Y that results from the
disjunctive multiplication of A and the unknown v-dimensional binary column vector
X whose ith component is 1 if item i is active and 0 if it is inactive. The problem is to
determine X from analysis of Y . Often, some components of X remain undetermined
(unresolved), in which case one or more subsequent stages of testing are needed. A
subsequent stage can be modeled by adjoining one or more rows to A and thereby
augmenting the syndrome.

When X has probability distribution P, we denote by E(A; P) the expected num-
ber of tests in a two-stage model that uses A for the 1rst stage and whose second
stage consists of simultaneous individual tests of each item not resolved by stage 1.
A sequence of A-matrices indexed by increasing v is called asymptotically good if
E(A; P)=v→ 0 as v→ ∞. We introduce a new parameter t+(A), the maximal number
t such that one can determine solely from the syndrome of A whether the number of
active items exceeds t or not. We prove that t+(A) equals the maximal t such that
the columns of A form a t-cover-free code. Then we exhibit sequences of 2-stage
tests based on t-cover-free codes that are asymptotically good for certain sequences of
probability measures governing X ∈{0; 1}v. Some of our results are: (i) there are no
asymptotically good matrices for the Bernoulli scheme with a constant p; 0¡p¡ 1,
a result also obtainable via information-theoretic reasoning, (ii) there exist asymptot-
ically good sequences based on cover-free codes for the Bernoulli p-scheme when
p = p(v) = o(1=

√
v ln v). (iii) The condition c¡ 1

4 is necessary and su0cient for the
Bernoulli p-scheme with p(v) = (c ln v)=

√
v to be among those situations in which

there are asymptotically good matrices that are (v; k; b; r)-designs.

2. Classi�cation of item states by a syndrome

We consider a set Nv comprised of v elements; henceforth, we refer to the elements
as items. Without loss of generality let Nv = {1; 2; : : : ; v}. For any subset X ⊆ Nv
we denote by X the indicator vector (x1; : : : ; xv)T, where xj = 1 if j∈X , and xj = 0
otherwise. We call the item j active if xj = 1 and inactive if xj = 0. To ascertain, or
reconstruct, an unknown X ⊆ Nv, we shall use a set A1; : : : ; Ab of non-empty subsets
of Nv which are called pools or group tests. Each pool Ai also can be described by a
binary vector Ai = (ai;1; : : : ; ai; v), where ai; j = 1 if j∈Ai, and ai; j = 0 if otherwise. We
denote by A the matrix (ai; j) of size b× v and assume it has no all-zeros rows. Given
X ⊆ Nv, we call pool Ai and the corresponding test negative and write yi =0 if Ai ∩X
is empty; if Ai is not negative, we call pool Ai and the corresponding test positive and
write yi = 1. The column vector Y = (y1; : : : ; yb)T will be referred to as a syndrome
by analogy with the theory of binary linear error-correcting codes. We denote by Y
the subset of Nb consisting of the numbers of the unit coordinates of Y. Since

yi = ai;1x1 ∨ · · · ∨ ai;vxv;
we may also write

Y = AX (1)
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with the understanding that disjunction is used in the matrix—vector product AX instead
of modulo two sum. Thus, if X = {j1; : : : ; jt}, then the syndrome Y = AX is the
componentwise disjunction of t columns Bjh = (a1; jh ; : : : ; ab; jh) of A; h = 1; : : : ; t. (We
shall denote by Bj the subset of Nb consisting of the coordinate positions of the unit
entries of the column Bj.)

The setting of our reconstruction problem depends on whether X is chosen from the
set Q(v) of all 2v subsets of Nv or only from a certain subset Q ⊂ Q(v); examples
are the subset Q−

t (v) consisting of all subsets of Nv with t or fewer elements, and the
subset Q+

t (v) consisting of all subsets of Nv with t or more elements. For a matrix A
and a syndrome Y, denote by Q(A;Y) the (possibly empty) set of all X ⊆ Nv such
that (1) holds.

Given Q ⊆ Q(v), we say that the pools {Ai; i = 1; : : : ; b} solve the reconstruction
problem for the set Q, or equivalently that the corresponding matrix A solves it, if any
two distinct members of Q have diHerent syndromes. If a matrix A solves this problem
for the set Q−

t (v), then the set of its columns is called a disjunctive (v; b; t)-code. For
any matrix A (without zero columns) denote by t−(A) the maximum number t such
that A solves the reconstruction problem for Q−

t (v), or equivalently, knowledge of the
syndrome Y = AX (or the corresponding set Y ) allows us to ascertain the set X ⊆ Nv
if |X |6 t. Since syndromes are binary vectors, the number b of pools constituting a
solution of the problem for a set Q ⊆ Q(v) must satisfy the inequality

b¿ log2|Q|: (2)

This bound is attained when Q is the set Q(v) of all 2v subsets of Nv, since one can
test each of the Nv items individually, i.e., set A equal to the v-dimensional identity
matrix up to a permutation of rows. However, we shall see that this bound is not
good in general. In particular, we shall verify that the set Q+

v−1(v) of cardinality v+ 1
requires use of v pools whereas (2) gives only b¿ log2(v+ 1) in this case.

If the matrix A does not solve the problem for the set Q ⊆ Q(v), we can consider
it as the 1rst stage of an adaptive testing algorithm. An adaptive algorithm recursively
chooses a certain collection of new pools that depends on all previous pools and their
syndromes. The maximum over any X ∈Q of the number of choices of collections
of new pools needed to ensure correct reconstruction of X is called the number of
stages of the adaptive algorithm. In particular, an adaptive algorithm might use only
one additional test at each stage.

We now introduce another important characteristic of a matrix A (without zero
columns). Denote by t+(A) the maximum integer t such that for any Y,

Q(A;Y) ∩ Q−
t (v) = ∅ or Q(A;Y) ∩ Q+

t+1(v) = ∅ (3)

(here ∅ is the empty set). Such a number t+(A) exists, since Eq. (3) holds for t =
0. Moreover, it is clear that, for any A and Y, (3) holds for any t in the range
0¡t¡ t+(A) (otherwise, if X1 ∈Q(A;Y); |X1|6 t; X2 ∈Q(A;Y); t+16 |X2|6 t+(A),
and X ⊆ Qv is such that |X | = t+(A) + 1, X2 ⊂ X , then |X1 ∪ {X \ X2}|6 t+(A) and
X1∪{X \X2}∈Q(A; AX):) Thus, for any matrix A one can determine by a syndrome Y
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whether the number of active items of an unknown X is less than t+(A) + 1 or not.
Later, we shall give another interpretation of t+(A) and use it to help us design good A’s
for two-stage testing in certain scenarios. Two-stage algorithms are used in biological
applications such as monoclonal antibody generation and cDNA library screening [3,4].

Now we analyze the information which can be extracted from a matrix A of size
b× v and a column vector Y of length b about the above-de1ned set Q(A;Y) of those
X ⊆ Nv with syndrome Y. There is such a matrix A and syndrome Y after each stage
of an adaptive algorithm, including the 1rst stage. We call an item j∈Nv negative
if there exists a pool Ai for which j∈Ai and the corresponding test is negative, i.e.,
yi=0. We call an item j∈Nv positive if there exists a pool Ai for which j∈Ai, the set
Ai \ {j} either is empty or consists entirely of negative items, and the corresponding
test is positive, i.e., yi = 1. The remaining items will be referred to as unresolved.
From this de1nition it follows that any unresolved item j is such that either (i) j does
not belong to any of the pools Ai; i= 1; : : : ; b, or (ii) any Ai such that j∈Ai contains
at least one more item which is not negative. Denote the number of negative, positive
and unresolved items, respectively, by n(A;Y); p(A;Y), and u(A;Y) and note that

n(A;Y) + p(A;Y) + u(A;Y) = v: (4)

Example 1. In the following case:

x1 x2 x3 x4 x5 x6 Y

0 1 1 0 0 1 0
1 0 1 1 0 0 1
1 1 1 0 0 0 1

the second, third, and sixth items are negative, the 1rst one is positive, and the fourth
and 1fth items are unresolved.

It is clear that any negative item must be inactive and any positive item must be
active in any set X ∈Q(A;Y). Now we verify that unresolved items also justify their
name, because Q(A;Y) contains for each unresolved item, u, both a nonempty subset
in every member of which u appears and a nonempty subset in every member of which
u does not appear.

Lemma 1. For some A and Y such that Q(A;Y) �= ∅, let U be the set of unresolved
items, W be the set of positive items, and X0 = U ∪ W . Then Q(A;Y) contains X0

and, if U is not empty, Q(A;Y) also contains X0 \ {j} for each j∈U .

Proof. By the de1nitions above, all pools containing unresolved and/or positive items
must be positive and all other pools must be negative. This implies that AX0 = Y
and hence X0 ∈Q(A;Y). (In particular, if Y is the all zero syndrome, then Q(A;Y)
contains the empty set X0 which corresponds to the all zero X.) Moreover, all tests
do not change their values if we remove any single unresolved item from the set X0,
since a pool containing an unresolved item must contain at least one more nonnegative
item.
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Note that, if the unknown X is required to belong to a certain subset Q ⊂ Q(v); X0

might not belong to Q in which case we can use this circumstance to determine some
unresolved items. In particular, we do this later in the case Q = Q−

t (v).

Lemma 2. Let A′ be obtained from the matrix A by adjoining one test and Y′ be
obtained from the syndrome Y by adjoining one unit coordinate. If u(A;Y)¿ 1, then

u(A;Y) − 16 u(A′;Y′)6 u(A;Y)

with equality in the left-hand side if and only if the additional pool comprises exactly
one of the u(A;Y) unresolved items and a set (possibly empty) of negative items.

Proof. Since the additional test is positive, the number of negative items does not
change and positive items remain positive. An unresolved item becomes positive if
and only if the additional pool contains this item together with a subset of negative
items.

Note that the set X = Nv gives the all-ones syndrome for any A, since we assumed
that no pool is empty. Hence, negative items are absent if the syndrome is all ones.
Moreover, we can consider that the initial conditions before the 1rst test are that all
items are unresolved. The 1rst test can decrease the number of unresolved items by
one only if it is individual. This yields the following perhaps counter-intuitive result
about the set Q+

v−1(v) of cardinality v+ 1.

Corollary 1. There does not exist an adaptive testing algorithm which reconstructs
each X ∈Q+

v−1(v) based on v − 1 or fewer tests. Individual testing is the unique
algorithm which handles Q+

v−1(v) with v or fewer tests.

Thus, for any adaptive testing algorithm there exist subsets of Q(v) whose solution
requires at least v tests. However, these subsets are not “typical” in a probabilistic
sense, and many interesting subsets can be identi1ed on the basis of a much smaller
number of tests.

We now consider in more detail two-stage testing which in the 1rst stage applies a
matrix A of size b×v to an unknown X ∈Q(v) and in the second stage tests individually
each of the u(A; AX) unresolved items [4]. Note that if X =Nv and A does not contain
individual tests (i.e., rows with one unit), then u(A; AX) = v and all b tests of the 1rst
stage are ineHective because they do not decrease the number of unresolved items.
However, if a probability distribution P(X ) is given on X ∈Q(v), the average number
of tests, namely

E(A; P) = b+ ũ(A; P); (5)

where

ũ(A; P) =
∑

X∈Q(v)

u(A; AX)P(X );
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can be much smaller than v. This gives rise to the problem of 1nding a matrix A which
minimizes (5) for a given probability distribution P(X ) on the sets X ∈Q(v).

Consider a Bernoulli p-scheme in which each item is active with a probability
p; 0¡p¡ 1, and is inactive with the probability q= 1−p independent of others. In
general, we believe that p might be a nonincreasing function of v and write p=p(v),
e.g., p is a constant, or p=v−1=2, or p=v−1. For the Bernoulli p-scheme, P(X )=piqv−i

if |X | = i, and we use notations E(A; p) and ũ(A; p) for the corresponding values in
(5). For given functions p=p(v) and b=b(v), we call a sequence of matrices A=A(v)
of size b(v) × v asymptotically good if E(A; p)=v→ 0 as v→ ∞.

Together with ũ(A; p) consider also the following mean values:

ñ(A; p) =
v∑
i=0

∑
X∈Q(v); |X |=i

n(A; AX)piqv−i

and

p̃(A; p) =
v∑
i=0

∑
X∈Q(v); |X |=i

p(A; AX)piqv−i :

Lemma 3. For any b× v matrix A,

ñ(A; p)6
b
ep
; p̃(A; p)6

b
eq
; (6)

ũ(A; p)¿ v− b
epq

: (7)

Proof. Denote by ki the number of ones in the row Ai of the matrix A. For any
item j∈Nv, its probability of being negative (positive) does not exceed

∑
i∈Bj q

ki

(respectively, p
∑

i∈Bj q
ki−1). Therefore,

ñ(A; p)6
v∑
j=1

∑
i∈Bj

qki =
b∑
i=1

kiqki ;

p̃(A; p)6
p
q

b∑
i=1

kiqki

and hence by (4)

ũ(A; p)¿ v− 1
q

b∑
i=1

kiqki : (8)

This completes the proof, since the function xqx has maximum at x=−1=(ln q) where
it equals 1=(−e ln q) and does not exceed 1=(ep).



T. Berger, V.I. Levenshtein /Discrete Applied Mathematics 128 (2003) 11–26 17

Corollary 2. There does not exist an asymptotically good sequence of matrices A=
A(v) if p= p(v) is a constant (0¡p¡ 1).

Proof. The corollary follows from (5) and (7); note in this regard from (5) that b=v
must vanish as v→ ∞ in order for asymptotic goodness to prevail.

Corollary 2 is not surprising to information theorists. They know that the entropy
H (X ) of the unknown v-dimensional binary random vector X equals vh(p) bits for the
Bernoulli p-scheme, where h(p) is Shannon’s entropy function, h(x)=−x log2 x− (1−
x)log2(1 − x). Since each test has a binary outcome, learning the result of a test can
reduce the uncertainty by at most one bit. It follows that any testing procedure, even one
not limited to two stages of testing, must conduct at least vh(p) tests in order to fully
resolve X . Since h(p)¿ 0 for 0¡p¡ 1, no asymptotically good testing procedures
exists for any constant p∈ (0; 1), not even if the number of stages is allowed to tend
to in1nity as v→ ∞.

Corollary 3. If A=A(v) is an asymptotically good sequence of matrices, then k(A)=
max16i6b ki → ∞ as v→ ∞.

Proof. Since xqx increases with x if x¡ 1=(−e ln q) using (8) we have

ũ(A; p)¿ v− bk(A)qk(A)−1 if k(A)6− 1
ln(1 − p)

:

This completes the proof because p→ 0 by Corollary 2.

Note that Corollary 3 prevents one from using “low-density” matrices A to construct
an e0cient two-stage testing procedure for large v and small p(v).

Two pools are referred to as noncomparable if neither of them is a subset of the
other.

Lemma 4. Among matrices A which minimize (5), there exists a matrix for which
all pools are pairwise noncomparable and contain at least two items if this minimum
is less than v.

Proof. We can assume that A does not contain identical or zero rows, since, otherwise,
one can remove a row without changing the number of unresolved items. Suppose Ai ⊂
Ak in violation of noncomparability. Note that |Ak |¿ 2 because Ai is not empty. Let
j∈Ai be such that ai; j = ak;j = 1. Consider the matrix A′ obtained from A by setting
ak;j = 0 and leaving all other entries unchanged. We will show that for any X,

u(A′; A′X)6 u(A; AX); (9)

which in view of (5) implies that E(A′; p)6E(A; p). Indeed, any pool A′h; h=1; : : : ; b,
of the matrix A′ will be negative for the syndrome Y′ = A′X if Ah is negative for
Y = AX. It follows that any item l∈Nv \ {j} will be negative for Y′ = A′X if it is
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negative for Y = AX. This is also true for the item j, because if j is negative for
Y = AX, then it belongs to at least one negative pool diHerent from Ak (here we use
Ai ⊂ Ak; ai; j = ak;j = 1, and hence Ai is negative pool if Ak is so). Since all negative
items for Y=AX remain negative for Y′ =A′X, all positive items remain positive with
the possible exception of j when the pool Ak is positive and all its items, diHerent from
j, are negative. However, Ai ⊂ Ak implies that in this case the pool A′i will be positive
and all its items diHerent from j (if they exist) will be negative. Therefore, the positive
item j remains positive as well. Thus, no item’s status as negative or positive can
change if one switches from A to A′ and the number of unresolved items can be only
decreased; this proves (9). Finally, if |Ai| = 1; ai; j = 1 and all pools are pairwise
noncomparable, then al; j = 0 for all l �= i. Therefore, if we remove ith row of A,
then the number of unresolved items increases by 1 and the sum (5) is not changed.
However, all b rows cannot have this property because in this case A has v − b zero
columns and hence E(A; p) = v.

The following example shows that removing from one of a pair of noncomparable
pools an item that is common to both these pools can increase the number of unresolved
items for a certain X ; this does not contradict Lemma 4.

Example 2.

X 1 0 0 1 0 Y
1 1 1 0 0 1
1 1 0 1 0 1
0 1 0 0 1 0
0 0 1 0 1 0
p n n u n

X 1 0 0 1 0 Y
0 1 1 0 0 0
1 1 0 1 0 1
0 1 0 0 1 0
0 0 1 0 1 0
u n n u n

3. Using cover-free codes in two-stage testing

For a matrix A of size b× v with subsets Bj ⊆ Nb; j = 1; : : : ; v, of the numbers of
the unit coordinates of its columns and a set X ∈Q(v), we de1ne the closure PX of X
as follows:

PX = {j∈Nv :Bj ⊆ Y} where Y = AX: (10)

From this de1nition it follows that PX consists of all unresolved and positive items and
does not contain negative items for the syndrome Y. If X = {j1; : : : ; jt}; t¿ 1, and
j∈ PX \ X , then j is an unresolved item and

Bj ⊆
t⋃

h=1

Bjh ;

i.e., Bj is covered by
⋃t
h=1 Bjh . Herewith an item j∈X is unresolved or positive

depending on whether X \ {j} = X or not. If PX = X for any X ∈Q−
t (v), then the set

of columns of A is called a cover-free (v; b; t)-code (or t-cover-free code). For any A
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denote by t(A) the maximum number t such that X = X for any X ⊆ Nv if |X |6 t.
Disjunctive and cover-free (v; b; t)-codes were introduced in [12]. In [12] it was also
shown that

t(A)6 t−(A)6 t(A) + 1: (11)

This follows from the facts that if AX1=AX2 where X1 �= X2, then X1 �= X1 or X2 �= X2,
and if j∈X \ X , then AX = AX1 where X1 = X ∪ {j}.

In this section we use the fact that cover-free codes have an important property which
is useful for their application as the 1rst stage of two-stage testing (this property was
also considered in [2] in a more general content). t-cover-free codes not only allow us
to recover the unknown vector from its syndrome if the number of its active items does
not exceed t, but also allow us to determine from this syndrome whether the number of
active items exceeds t or not. This makes it possible to construct an e0cient two-stage
test for a given probability distribution P the 1rst stage of which is a t-cover-free code
with t slightly larger than the expected number of active items.

Lemma 5. For any b× v matrix A

t+(A) = t(A); (12)

and for any probability distribution P on Q(v),

E(A; P)6 b+
∑

X∈Q(v);|X |¿t(A)

u(A; AX)P(X )

6 b+ v
∑

X∈Q(v);|X |¿t(A)

P(X ):

Proof. If there exist X1 ∈Q−
t (v) and X2 ∈Q+

t+1(v) such that AX1 = AX2, then X1 = X2

and X2 contains at least one element which does not belong to X1 and hence X1 �= X1.
This implies t+(A)¿ t(A). On the other hand, let j∈ PX \ X for some X ∈Q−

t (v) and
let X1 be a set of size t such that X ⊂ X1 and j �∈ X1. Then for X1 ∈Q−

t (v) and
X2 = X1 ∪ {j}∈Q+

t+1(v), we have AX1 = AX2, which shows that t(A)¿ t+(A), so
property (12) is established. When using a two-stage testing algorithm, this property
of the matrix A allows us to determine from a syndrome of an unknown X whether
|X |6 t(A) or not. In the 1rst case we use the fact that t−(A)¿ t(A) (or a cover-free
(v; b; t)-code is a disjunctive (v; b; t)-code) to reconstruct this X . In the second case we
apply individual tests to all unresolved items of X . This completes the proof.

Denote by b(v; t) the minimum number of rows in a binary matrix A with v columns
which form a t-cover-free code. Upper bounds on b(v; t) have been obtained using both
random test selection and known error-correcting codes (see [8,10–12]). We use below
the best known asymptotic upper bound obtained in [9] (see also [14]):

b(v; t) . (t log2 e)
2 ln v as v→ ∞; t → ∞: (13)
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Using Lemma 5 for a Bernoulli p-scheme we estimate E(A; p) for a t-cover-free
code A with t = t(A) = vp0 where p0¿p. Let

f(x) = x ln
x
e

+ 1:

For any y; 0¡y¡∞, the equation f(x) = y has a unique solution $ = $(y)¿ 1.
Note that

$(y) ∼ 1 if y → 0 (14)

and

$(y) ∼ y
ln y

if y → ∞: (15)

Theorem 1. There exist t-cover-free matrices A= A(v) of size b(v) × v with

t =
⌊
vp$

(
ln v
vp

)⌋
(16)

such that ũ(A; p)6 1 and

b(v) .
(
vp(log2 e)$

(
ln v
vp

))2

ln v as v→ ∞: (17)

Proof. By Lemma 5 and (13), it is su0cient to show that the integer t de1ned by
(16) tends to ∞ as v→ ∞ and

v
∑
i¿t+1

(
v

i

)
pi(1 − p)v−i6 1: (18)

Put z=p$((ln v)=(vp)) and note that z¿p and t+ 1¿vz. Using the ChernoH bound
and a standard inequality we get

v
∑
i¿t+1

(
n

i

)
pi(1 − p)v−i

6 v exp
{
v
(
−z ln z

p
+ (1 − z) ln

(
1 +

z − p
1 − z

))}

6 v exp
{
v
(
−z ln z

ep
− p

)}
= exp

{
ln v− vpf

(
z
p

)}
= 1:

Since $(y)¿ 1, we have t → ∞ if vp→ ∞. If vp is restricted and hence (ln v)=(vp) →
∞ as v→ ∞, then t ∼ (ln v)=(ln ln v), by (15).
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We give the following special cases of (17) which follow from (14) and (15):

b(v) . (vp log2 e)
2 ln v if

ln v
vp

→ 0; (19)

b(v) . (log2 e)
2 (ln v)3

(ln ((ln v)=vp))2 if
ln v
vp

→ ∞:

In the case p= (ln v)=v we have $((ln v)=(vp)) = $(1) = e and (17) gives

m(v) . (e log2 e)
2(ln v)3:

In particular, from (19) it follows that there exist asymptotically good sequences based
on cover-free codes when p= p(v) = o(1=

√
v ln v).

4. Combinatorial designs as the �rst stage of testing

In combinatorial theory, k-subsets of the set Nv={1; 2; : : : ; v} are commonly referred
to as blocks. A set S of blocks is called a 2−(v; k; 1) design, or Steiner 2-design, if any
two diHerent elements of Nv belong to one and only one block. From this de1nition it
follows that if b is the number of blocks in the Steiner 2-design, then

bk(k − 1) = v(v− 1) (20)

and each element of Nv belongs to the same number

r =
v− 1
k − 1

(21)

of blocks. These equalities give some necessary arithmetic conditions for existence
of 2 − (v; k; 1) designs, which are su0cient for 1xed k and su0ciently large v by
the Wilson theorem (see, for example, [7]). The best-known in1nite family of Steiner
2-designs consists of 2 − (v; 3; 1) designs (the Steiner triples) which exist if and only
if v has the form 6l + 1 or 6l + 3; l = 1; 2; : : : : The Fisher inequality b¿ v holds
for Steiner 2-designs, and this fact disables using their blocks as pools for testing. In
this connection we weaken the conditions imposed on Steiner 2-designs so that the
opposite inequality b6 v may hold.

Consider a matrix A=(ai;j) of size b× v with entries 0 and 1. As before we denote
by Ai the ith row of A and by Ai the pool which is the subset of Nv consisting of the
coordinate positions of the nonzero entries of Ai. Analogously, we denote by Bj the
jth column of A and by Bj the subset of Nb which consists of the coordinate positions
of the nonzero entries of Bj and is called a block. (We shall use below blocks of
Steiner 2-designs as blocks of matrices A.) Such a matrix A will be referred to as a
(v; k; b; r)-design, if each pool is a k-set, each block is an r-set, and any two diHerent
items of Nv belong to at most one pool. In particular, the Steiner 2 − (v; k; 1) designs
form a subclass of (v; k; b; r)-designs.

Another possible interpretation of a (v; k; b; r)-design A is based on a bipartite graph
whose parts consist of b and v vertices such that a vertex i of the 1rst part is adjacent
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to a vertex j of the second part if and only if ai; j = 1. The conditions in the de1nition
of a (v; k; b; r)-design mean that the degree of any vertex of the 1rst part equals k, the
degree of any vertex of the second part equals r, and the bipartite graph does not have
any cycles of length 4 or less.

From the de1nition of a (v; k; b; r)-design it follows that

vr = bk (22)

and that the transpose AT of A forms a (b; r; v; k)-design. For any a (v; k; b; r)-design
A, we have the two inequalities

bk(k − 1)6 v(v− 1) (23)

and

r(k − 1)6 v− 1: (24)

(23) is proved, similarly to (20), using a count of the total number of pools containing
all pairs of elements, and (24) follows from (23) and (22). Equality prevails in each of
these inequalities if and only if A is a 2−(v; k; 1) design. Since for any (v; k; b; r)-design
A the matrix AT forms a (b; r; v; k)-design, we also have two other inequalities,

vr(r − 1)6 b(b− 1) (25)

and

k(r − 1)6 b− 1 (26)

in which equality holds if and only if AT is a 2 − (b; r; 1) design.
Any (v; k; b; r)-design A can be considered as a constant-weight code of size b in

the Johnson space J kv , which consists of binary vectors of Hamming weight k and
length v; the preferred measure of distance in J kv , called the Johnson distance, equals
half the Hamming distance between vectors. Since this code has the same number r
of ones in any column, it is a 1-design in the Johnson space (in the terminology of
Delsarte [6]). Moreover, from the de1nition of a (v; k; b; r)-design A it follows that at
most two diHerent Johnson distances between diHerent rows of A are possible, namely
k − 1 and k. By Delsarte’s theorem [6] for association schemes, since this code is a
1-design with at most two distances, it must be distance-invariant. That is, there exist
two numbers bk−1 and bk such that for any row Ai of A, i = 1; : : : ; b, the number of
rows at distance k−1 and k are equal to bk−1 and bk , respectively. Each column has r
ones and hence the total sum of the Johnson distances between ordered pairs of rows
equals vr(b− r) = bk(b− r). Since this sum is also equal to b((k − 1)bk−1 + kbk), and
bk−1 + bk = b− 1, we have

bk−1 = k(r − 1) and bk = b− 1 − k(r − 1): (27)

A similar statement is true for the code formed by v columns of the matrix A which
have r ones and b− r zeros.

There are 1ve known in1nite families of 2 − (b; r; 1) designs (see [7]). We list the
parameters of the corresponding families of (v; k; b; r)-designs which are obtained by
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transposition of these Steiner systems(
b(b− 1)

6
;
b− 1

2
; b; 3

)
; (28)

where b= 6l+ 1 or b= 6l+ 3; l= 1; 2; : : :;(
m2m

3 + 1
m+ 1

; m2; m3 + 1; m+ 1
)
; (29)

(
mn−1 m

n − 1
m− 1

;
mn − 1
m− 1

; mn; m
)
; (30)

(
(mn − 1)(mn+1 − 1)
(m− 1)(m2 − 1)

;
mn − 1
m− 1

;
mn+1 − 1
m− 1

; m+ 1
)
; (31)

((2s + 1)(2s − 2s−l + 1); 2s + 1; 2s+l − 2s + 2l; 2l); (32)

in (29)–(31) m is a prime power and n= 2; 3; : : : (n-dimensional a0ne and projective
geometries over GF(m) are used in these constructions), in (32) s and l are any integers
such that s¿ l¿ 2 (Denniston designs).

Now we investigate the property of (v; k; b; r)-designs A (k¿ 2; r¿ 2) for the 1rst
stage of testing. Note that (25) shows that the number b of tests cannot be too small,
and this estimate is attained for all designs (28)–(31). As was already remarked in
[12], t(A) = r− 1. This is true, since for k¿ 2 each block Bj is covered by the union
of some r blocks Bj(h); h = 1; : : : ; r, where j; j(1); : : : ; j(r) all are diHerent, and this
number r cannot be decreased because any two diHerent blocks have at most one
common element. By (12) we have

t+(A) = t(A) = r − 1: (33)

Thus, by using a (v; k; b; r)-design A at the 1rst stage, one can determine from a
syndrome of an unknown X ∈Q(v) whether the number of its active items exceeds
r − 1 or not and reconstruct X ∈Q(v) in the 1rst case without additional individual
tests.

Lemma 6. For any (v; k; b; r)-design A such that b¡v,

r − 16 t−(A)6 r6
√
b: (34)

Proof. Since t(A) = r − 1, the inequalities r − 16 t−(A)6 r follow from (11). The
Johnson distance between diHerent columns of A is not less than r − 1. This implies
the inequality r6

√
b because, by a recent result [1], the size of a code consisting of

vectors with r ones and b− r zeros and having the minimal Johnson distance d does
not exceed b if d¿r(b− r)=b.
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The following statement re1nes (11) and (34) in a special case.

Lemma 7. If a (v; k; b; r)-design A is such that AT forms a 2 − (b; r; 1) design, then

t−(A) = t(A) = t+(A) = r − 1:

Proof. If AT is a 2 − (b; r; 1) design, then for any two elements of Nb there exists
one (and only one) block containing these elements. We shall use this property to 1nd
r + 1 diHerent blocks Bj; Bj′ ; Bj(1); : : : ; Bj(r−1) such that

Bj ∪ ∪r−1
h=1 Bj(h) = Bj′ ∪ ∪r−1

h=1 Bj(h): (35)

To do this, take as Bj and Bj′ any two diHerent blocks having a common element, and
partition their remaining elements into r − 1 pairs so that any pair does not belong to
one of these blocks. As Bj(1); : : : ; Bj(r−1) we choose blocks containing these r−1 pairs.
These blocks must diHer from Bj and Bj′ and be distinct for, if they were to coincide,
their common value would be a block that has two elements in common with Bj and
Bj′ . Since (35) shows that the sets {j; j(1); : : : ; j(r − 1)} and {j′; j(1); : : : ; j(r − 1)}
give the same syndrome, the proof is complete.

Note that the inequality r6
√
b is also attained for (v; k; b; r)-designs (30) when

n= 2.

Theorem 2. Given a (v; k; b; r)-design A and a Bernoulli model with the parameter p,

v(1 − qk−1)r6 ũ(A; p)6 v(p+ q(1 − qk−1)r): (36)

Proof. Consider an arbitrary item j∈Nv. There are r pools containing j. Each of them
has size k, and item j is the only point of intersection of any pair of them. Therefore,
the probability of the event that each of these r pools contains at least one active item
among its k − 1 remaining elements equals (1 − qk−1)r . Regardless of whether item j
is active or inactive, it will be unresolved because all these pools are positive in this
case. This gives the lower bound in (36). To prove the upper bound we use the fact
that

ũ(A; p)6
∑
j∈Nv

∑
Bj⊆AX

P(X ): (37)

Considering two cases when j is active j is inactive but all pools Ai such that ai; j = 1
are positive, we 1nd that the right-hand side of (37) equals p+ q(1 − qk−1)r .

Example 3. Consider a (v; k; b; r)-design A given by (28), for instance, the (100; 12;
25; 3)-design A obtained from the Steiner triple 2-(25; 3; 1). Let Y = AX. We have
|Y |6 6 if |X |6 2 and |Y |¿ 7 if |X |¿ 4. In the case |Y |=6 we have two possibilities,
|X | = 2 or |X | = 3. However, since t+(A) = 2 we can distinguish these two cases and
also 1nd X if |X |= 2. For the (100; 12; 25; 3)-design A and p= 0:01, the upper bound
in (36) shows that ũ(A; p)¡ 1:1135.
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Theorem 2 and Corollary 2 imply the following.

Corollary 4. A sequence of (v; k; b; r)-designs A is asymptotically good if and only if
p= p(v) → 0; b=v→ 0, and

(1 − (1 − p)k−1)r → 0 as v→ ∞: (38)

In general, we cannot state that ũ(A; p) grows with p for any matrix A. However,
(1−(1−p)k−1)r is an increasing function of p; hence, a sequence of (v; k; b; r)-designs
that is asymptotically good for p=p(v) → 0 also is asymptotically good for any smaller
p= p(v).

Theorem 3. Sequence (28) of (v; k; b; 3)-designs A is asymptotically good if and only
if p= p(v) = o(v−1=2). Moreover,

E(A; p) ∼
√

6v if p= p(v) = o(v−2=3): (39)

Proof. For the sequence (28) we have r = 3 and k ∼ √
3v=2; b ∼ √

6v as v → ∞.
From (38) it follows that this sequence is asymptotically good if and only if qk−1 →
1, which is equivalent to the condition pk → 0. This proves the 1rst part of the
statement. The second part is a consequence of (5), (36), and the fact that if pk → 0,
then (1 − qk−1)r ∼ (pk)3.

Theorem 4. If p=p(v)6 c(ln v)=
√
v where c¡ 1

4 , then the sequence (29) of (v; k; b; r)-
designs A (and sequence (30) or (31) with n= 3) is asymptotically good and

E(A; p) ∼ v3=4 as v→ ∞: (40)

If p=p(v)¿ c (ln v)=
√
v where c¿ 1

4 , then none of these sequences is asymptotically
good.

Proof. Note that for each sequence we have k ∼ v1=2; b ∼ v3=4, and r ∼ v1=4 as
v→ ∞. Therefore, if p= p(v) = c(ln v)=

√
v, c¿ 0, then

(1 − p)k−1 = v−c(1+o(1))

and

(1 − (1 − p)k−1)r ∼ exp{−v1=4−c+o(1)}:
It follows that we have (38) and (40) if c¡ 1

4 , whereas we have (1 − qk−1)r → 1 if
c¿ 1

4 , which completes the proof.

In [5] the authors recently found the order of magnitude of

E(v; p) = min E(A; p)

where the minimum is taken over all matrices A with v columns as v→ ∞ and p→ 0.
This result uses lower and upper bounds on ũ(A; p) obtained via random selection and
the linear programming approach suggested by Knill in [13].
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