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Abstract

We consider a class of nonautonomous functional–differential equations in a Banach spa
unbounded nonlinear history-responsive operators, which have the local Lipshitz property.
tions for the boundedness of solutions, Lyapunov stability, absolute stability and input–outp
are established. Our approach is based on a combined usage of properties of sectorial oper
spectral properties of commuting operators.
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1. Introduction and notation

Stability and boundedness of solutions of parabolic and abstract functional–differ
equations were investigated by many specialists, cf. [1,3,5,6,8,9,12–17,23] and refe
therein. It is mostly assumed that the history-responsive operators are bounded. At th
time equations with unbounded history-responsive operators arise naturally, for ins
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from problems of heat conduction in materials with thermal memory or of viscoela
ity in materials with shape memory, cf. [19] and references therein. Equations with
unbounded history-responsive operators were studied in [2, Chapter 5.5], [10,18,21]
ever, to the best of our knowledge, the absolute stability and input–output one of a
differential equations with unbounded history-responsive operators were not inves
in the available literature, although these notions are very important in theory of sys
cf. [22].

In the present paper we consider a class of functional–differential equations in a B
space with nonlinear history-responsive operators, which have the local Lipshitz pro
Conditions for the boundedness of solutions, Lyapunov stability, absolute stabilit
input–output stability are established.

Our approach is based on a combined usage of properties of sectorial operato
spectral properties of commuting operators. A few words about the contents. The
consists of 12 sections. In Section 2 we prove the basic lemma of the paper—Lem
on solution estimates. In Sections 3 we establish an existence result for mild soluti
the considered equations. In Sections 4, 5 and 6 we specialize Lemma 2.1 in the
of equations with sectorial, selfadjoint and spectral operators, respectively. The Lya
stability, absolute stability and input–output one are investigated in Sections 7, 8 and
spectively. Sections 10, 11 and 12 deal with the applications of the main results to pa
differential–delay equations and integro-differential equations with delay.

Let X be a Banach space with a norm‖.‖X andY a Banach subspace with a norm‖.‖Y

continuously imbedded intoX. Put R+ = [0,∞) andRh = [−h,∞) for a finite h > 0.
As usual,C(J,X) is the space of continuousX-valued functions defined on a setJ and
equipped with the sup-norm

‖v‖C(J,X) = sup
t∈J

∥∥v(t)
∥∥

X

(
v ∈ C(J,X)

)
.

For a linear operatorA, D(A) is the domain,σ(A) is the spectrum,

β(A) := infReσ(A)

andλk(A) (k = 1,2, . . .) are the eigenvalues with their multiplicities.
Now letA(t) (t � 0) be a linear operator inX with a dense constant domain

D
(
A(t)

) ≡ DA ⊆ Y, t � 0.

The following equation is the main object of our investigation:

u̇(t) = A(t)u(t) + [Fu](t) (t > 0, u̇ = du/dt), (1.1)

whereF :C(Rh,Y ) → C(R+,X) is a causal nonlinearityin the sense that

[Fu1](t) = [Fu2](t) if u1(τ ) = u2(τ ) for all τ ∈ [−h, t] andu1, u2 ∈ C(Rh,Y ).

Take the initial condition

u(t) = φ(t) (−h � t � 0), (1.2)
whereφ ∈ C([−h,0], Y ) is a given continuous function.
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In the sequel it is assumed thatA(t) generates inY an evolution operatorU(t, s). This
means, that the Cauchy problem for the “shortened” equation

v̇ = A(t)v (t � 0)

is well posed inY [20]. That is, this equation has continuously differentiable solutions
values inDA, provided the initial vector is inDA. Besides,U(t, s) acts inY and defined
by the equalityU(t, s)v(s) = v(t) for any solutionv(t) of the “shortened” equation.

Definition 1.1. A functionu ∈ C([−h,T ], Y ) (0< T < ∞), satisfying the equation

u(t) = U(t,0)φ(0) +
t∫

0

U(t, s)[Fu](s) ds (0 < t < T ) (1.3)

and condition (1.2) will be called the mild solution of problem (1.1), (1.2) on(0, T ).

The existence of the mild solutions for all finitet > 0 is assumed. As it was mentioned
below we derive some simple conditions for the existence and uniqueness of th
solutions.

For a positive numberr � ∞, put

Ωr(J,Y ) = {
v ∈ C(J,Y ): ‖v‖C(J,Y ) � r

}
.

Assume thatF continuously mapsΩr(Rh,Y ) into C(R+,X) and there are nonnegativ
constantsq andl, such that∥∥(Fv)(t)

∥∥
X

� q sup
−h�s�t

∥∥v(s)
∥∥

Y
+ l

(
v ∈ Ωr(Rh,Y ), t � 0

)
. (1.4)

2. The basic lemma

Everywhere below, it is assumed that

MY := sup
t�0

∥∥U(t,0)
∥∥

Y
< ∞ and zY := sup

t�0

t∫
0

∥∥U(t, s)
∥∥

X→Y
ds < ∞.

Put

c0(φ, l) := MY

∥∥φ(0)
∥∥

Y
+ zY

(
q‖φ‖C([−h,0],Y ) + l

)
.

Lemma 2.1. Let the conditions(1.4),

qzY < 1 (2.1)

and

c0(φ, l) < r(1− qzY ) (2.2)

hold. Then a mild solutionu of problem(1.1), (1.2)satisfies the inequality∥∥ ∥∥ −1
u(t)
Y

� c0(φ, l)(1− qzY ) (t > 0). (2.3)
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Proof. Thanks to (2.2), there is a positiveT , such that‖u(t)‖Y < r for t � T . Hence,
inequality (1.4) implies

∥∥u(t)
∥∥

Y
� MY

∥∥u(0)
∥∥

Y
+

t∫
0

∥∥U(t, s)
∥∥

X→Y

(
q sup

−h�s1�s

∥∥u(s1)
∥∥

Y
+ l

)
ds

� MY

∥∥u(0)
∥∥

Y
+ sup

t�0

t∫
0

∥∥U(t, s)
∥∥

X→Y
ds

(
q sup

−h�s1�t

∥∥u(s1)
∥∥

Y
+ l

)

� MY

∥∥u(0)
∥∥

Y
+ zY

(
l + q

(
sup

0�s�t

∥∥u(s1)
∥∥

Y
+ sup

−h�s�0

∥∥φ(s)
∥∥

Y

))

� c0(φ, l) + zY q sup
0�s�t

∥∥u(s)
∥∥

Y
(t � T ).

Consequently,

sup
0�s�T

∥∥u(s)
∥∥

Y
� c0(φ, l) + zY q sup

0�s�T

∥∥u(s)
∥∥

Y
.

Hence, due to (2.1) and (2.2),

sup
0�s�T

∥∥u(s)
∥∥

Y
� c0(φ, l)(1− zY q)−1 < r.

So we can extend this inequality to allt � 0. As claimed. �
Now letA(t) generate an evolution operatorU(t, s) in X andS be a constant bounded

invertible linear operator inX with a domainD(S) ⊇ DA and commuting withA(t):

A(t)Sv = SA(t)v (v ∈ DA, t � 0).

On setD(S), let us introduce the graph norm‖v‖S := ‖Sv‖X (v ∈ D(S)) and denote the
obtained space byXS . TakeY = XS and assume that∥∥(Fv)(t)

∥∥
X

� q sup
−h�s�t

∥∥Sv(s)
∥∥

X
+ l

(
v ∈ Ωr(Rh,XS); t � 0

)
. (2.4)

Since

SU(t, s)v = U(t, s)Sv
(
v ∈ D(S); t, s � 0

)
,

in the considered caseA(t) generates an evolution operator inXS andMY = MX , where

MX := sup
t�0

∥∥U(t,0)
∥∥

X
. (2.5)

In addition, we havezY = zS , where

zS := sup

t∫ ∥∥SU(t, s)
∥∥

X
ds
t�0
0



144 M.I. Gil’ / J. Math. Anal. Appl. 308 (2005) 140–158

fies

trary
providedzS andMX are finite. Set

cS(φ, l) := MX

∥∥Sφ(0)
∥∥

X
+ zS

(
q‖Sφ‖C([−h,0],X) + l

)
.

Now Lemma 2.1 yields

Corollary 2.2. Let a linear operatorS commute withA(t) andD(S) ⊇ DA. Let the con-
ditions(2.4), qzS < 1 and

cS(φ, l) < r(1− qzS)

hold. Then a mild solutionu of problem(1.1), (1.2)satisfies the inequality∥∥Su(t)
∥∥

X
� cS(φ, l)(1− qzS)−1 (t � 0).

3. Existence and uniqueness of solutions

Theorem 3.1. Let the conditions(2.1), (2.2),∥∥(F0)(t)
∥∥

X
� l < ∞ (3.1)

and ∥∥(Fv1)(t) − (Fv2)(t)
∥∥

X
� q sup

−h�s�t

∥∥v1(s) − v2(s)
∥∥

Y(
t � 0; v1, v2 ∈ Ωr(Rh,Y )

)
(3.2)

hold. Then problem(1.1), (1.2)has a unique mild solution. Moreover, that solution satis
inequality(2.3).

Proof. We have∥∥(Fv)(t)
∥∥

X
�

∥∥(F0)(t)
∥∥

X
+ ∥∥(Fv)(t) − (F0)(t)

∥∥
X

� l + q sup
−h�s�t

∥∥v(s)
∥∥

Y(
v ∈ Ωr(Rh,Y )

)
.

So condition (1.4) holds. Thanks to Lemma 2.1, inequality (2.3) is valid. For arbi
x, y ∈ Ωr(R+, Y ), define the functions̃y, x̃ onRh by

ỹ(t) = x̃(t) = φ(t) (−h � t < 0) and x̃(t) = x(t), ỹ(t) = y(t) (t � 0).

In addition, define onΩr(R+, Y ) the mappingGφ by

(Gφx)(t) = (F x̃t )(t) (t � 0).

Due to (3.2),∥∥[Gφx](t) − [Gφy](t)∥∥
X

= ∥∥F(t, x̃t ) − F(t, ỹt )
∥∥

X
� q sup

0�s�t

∥∥x(s) − y(s)
∥∥

Y
.

Rewrite Eq. (1.3) under (1.2) as
u = Φ(u), (3.3)
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whereΦ is defined onΩr(R+, Y ) by

(Φx)(t) = U(t,0)φ(0) +
t∫

0

U(t, t1)[Gφx](t1) dt1
(
x ∈ Ωr(R+, Y )

)
.

Due to (2.3), under (2.1), (2.2),Φ mapsΩr(R+, Y ) into itself. Inequality (3.2) shows tha∥∥(Φx)(t) − (Φy)(t)
∥∥

Y
� zY q sup

0�s�t

∥∥x(s) − y(s)
∥∥

Y
.

Now condition (2.2) and the contraction mapping theorem imply the required result.�

4. Equations with sectorial operators

Let A0 be a constant linear sectorial operator inX, and−A0 generate an asymptotical
stable (analytic) semigroupe−tA0, cf. [11]. Let B(t) (t � 0) be a variable linear operato
in spaceX with a constant domainDB , generating inX an evolution operatorUB(t, s),
satisfying the inequality∥∥UB(t, s)

∥∥
X

� CB exp
[
α(t − s)

]
(t � s � 0) (4.1)

with CB ≡ const> 0 andα ≡ const. In addition,DA ≡ DB ∩ D(A0) is dense andB(t)

commutes withA0:

A0B(t)v = B(t)A0v
(
t � 0, v ∈ D

(
A0B(t)

) = D
(
B(t)A0

))
. (4.2)

Put

A(t) = −A0 + B(t). (4.3)

As it is well known, cf. [11], for anyν ∈ [0,1) the powerAν
0 is defined. Introduce the spa

Y = Xν with the graph norm

‖v‖ν := ∥∥Aν
0v

∥∥
X

(
v ∈ D

(
Aν

0

))
.

Assume that∥∥(Fv)(t)
∥∥

X
� q sup

−h�s�t

∥∥v(s)
∥∥

ν
+ l

(
t � 0; v ∈ Ωr(Rh,X

ν)
)
. (4.4)

Moreover, sinceA0 is sectorial, there are positive constantsCδ,Cν andδ � β(A0), such
that

‖e−A0t‖X � Cδe
−δt and

∥∥Aν
0e

−A0t
∥∥

X
� Cνe

−δt

tν
(t � 0)

providedβ(A0) > 0, cf. [11]. Due to (4.2) and (4.3),A(t) generates an evolution operat
in X defined by

U(t, s) = e−A0(t−s)UB(t, s).

Moreover,
Aν
0U(t, s)v = U(t, s)Aν

0v (v ∈ Xν, t, s � 0).
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So due to (4.1),∥∥U(t, s)
∥∥

X
� CδCBe−(δ−α)(t−s)

and withδ > α we haveMX = CBCδ , and

zY = sup
t�0

t∫
0

∥∥Aν
0U(t, s)

∥∥
X

ds � sup
t�0

t∫
0

∥∥Aν
0e

−A0(t−s)
∥∥

X

∥∥UB(t, s)
∥∥

X
ds � zν,

where

zν := CδCB

∞∫
0

e−(δ−α)t dt

tν
.

In addition,cY (φ, l) = cν(φ, l), where

cν(φ, l) := CδCB

∥∥φ(0)
∥∥

ν
+ zν

(
q‖φ‖C([−h,0],Xν) + l

)
.

Now Corollary 2.2 yields

Theorem 4.1. LetA0 be a linear sectorial operator inX and−A0 generate an asymptot
cally stable semigroup. Let the conditions(4.1)–(4.4),

qzν < 1 (4.5)

and

cν(φ, l) < r(1− qzν)

hold. Then a mild solutionu of problem(1.1), (1.2)satisfies the inequality∥∥u(t)
∥∥

ν
� cν(φ, l)(1− qzν)

−1 (t � 0). (4.6)

5. Equations with selfadjoint operators

In this sectionX is a Hilbert space. With applications in mind, let us consider th
operatorA(t) defined by (4.3), whereA0 is a positive definite selfadjoint operator inX.
Again B(t) is a linear operator generating an evolution operator in spaceX. In addition,
assume that the conditions (4.1)–(4.3) and

β(A0) > 0 and − β(A0) + α < 0 (5.1)

hold. Clearly,∥∥Aν
0e

−A0t
∥∥

X
� sup

s∈σ(A)

{
sνe−st : s � β(A0)

} = ψ(A0, t) (t � 0),

where

ψ(A0, t) :=
 νν

tν
e−ν if t � ν

β(A0)
,

(5.2)
β(A0)
νe−β(A0)t if t > ν

β(A0)
.
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SinceA0 andB(t) commute, we haveU(t, s) = e−A0(t−s)UB(t, s),∥∥U(t,0)
∥∥

X
� CBe−(β(A0)−α)t � CB (5.3)

and ∥∥Aν
0U(t, s)

∥∥
X

�
∥∥Aν

0e
−A0(t−s)

∥∥
X

∥∥UB(t, s)
∥∥

X
� CBeα(t−s)ψ(A0, t − s)

(t � s � 0).

Hence,

t∫
0

∥∥Aν
0U(t, s)

∥∥
X

ds � z(A0,B) (t � 0),

where

z(A0,B) := CB

∞∫
0

e−αtψ(t,A0) dt. (5.4)

Clearly, this integral is simple calculated. As above, take the spaceXν with the graph norm
‖v‖ν := ‖Aν

0v‖X (v ∈ D(Aν
0)). Under (4.4) put

c(A0,B,φ, l) := CB

∥∥Aν
0φ(0)

∥∥
X

+ z(A0,B)
(
q
∥∥Aν

0φ
∥∥

C([−h,0],X)
+ l

)
.

Now Corollary 2.2 implies

Theorem 5.1. Let X be a Hilbert space andA0 a selfadjoint operator inX. In addition,
under conditions(4.1)–(4.4)and(5.1), let

qz(A0,B) < 1 (5.5)

and

c(A0,B,φ, l) < r
(
1− qz(A0,B)

)
.

Then a mild solutionu of problem(1.1), (1.2)satisfies the inequality∥∥Aν
0u(t)

∥∥
X

� c(A0,B,φ, l)
(
1− qz(A0,B)

)−1
(t � 0).

In particular, letL2(ω) be a separable Hilbert space of functions defined on a bou
closed setω ⊆ Rn with the scalar product

(f, g) =
∫
ω

f (x)g(x) dx.

Then the spaceC(ω) of continuous functions with the sup-norm‖.‖C(ω) is continuously
imbedded inL2(ω). Assume now that operatorA(t) in X = L2(ω) has the form (4.3) an
with m1,m2 ∈ [0,1), ∥ ∥ (∥ ∥ ( ))
‖Fv‖L2(ω) � q1∥A

m1
0 v∥

C(ω)
∥A

m1
0 v∥

C(ω)
� r1, v ∈ D A

m1
0 (5.6)
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nach
and

‖v‖C(ω) � q2
∥∥A

m2
0 v

∥∥
L2(ω)

(
v ∈ D

(
A

m2
0

))
. (5.7)

Then withν = m1 + m2 < 1, we have∥∥A
m1
0 v

∥∥
C(ω)

� q2
∥∥A

m2
0 A

m1
0 v

∥∥
L2(ω)

= q2
∥∥Aν

0v
∥∥

L2(ω)
. (5.8)

Now (5.6) implies condition (4.5) withr = r1q2 andq = q1q2. Thus, we can apply Theo
rem 5.1. For instance, letA0 be a positive definite selfadjoint operator inL2(ω) with the
discrete spectrum:

A0 =
∞∑

k=1

λkPk,

where 0< λ1 � λ2 � · · · are the eigenvalues ofA0 with their multiplicities,P = (. , ek)ek ,
andek are the eigenvectors with‖ek‖L2(ω) = 1. Let

∞∑
k=1

λ
−2m2
k < ∞

and

ce := sup
k

‖ek‖C(ω) < ∞.

Then

‖v‖C(ω) = sup
x

∣∣∣∣∣
∞∑

k=1

λ
−m2
k

(
A

m2
0 v, ek

)
ek(x)

∣∣∣∣∣ � ce

∣∣∣∣∣
∞∑

k=1

λ
−m2
k

(
A

m2
0 v, ek

)∣∣∣∣∣.
Hence, by the Schwarz inequality and Parseval equality, we have

‖v‖2
C(ω) = sup

x

∣∣∣∣∣
∞∑

k=1

λ
−m2
k

(
A

m2
0 v, ek

)
ek(x)

∣∣∣∣∣
2

� c2
e

∞∑
k=1

λ
−2m2
k

∞∑
k=1

∣∣(Am2
0 v, ek

)∣∣2 = c2
e

∞∑
k=1

λ
−2m2
k

∥∥A
m2
0 v

∥∥2
L2(ω)

. (5.9)

Consequently, condition (5.7) holds with

q2 = ce

[ ∞∑
k=1

λ
−2m2
k

]1/2

. (5.10)

6. Equations with spectral operators

Let A0 be a spectral operator of the scalar type with a positive spectrum in a Ba
spaceX, cf. [4]. That is, there exists a spectral measureEs , such that

A0 =
∞∫

s dEs

(
β(A0) > 0

)
. (6.1)
β(A0)
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into

di-
For instance, let{ek} be a Schauder basis in a Hilbert space with a scalar product(. , .) and
{dk} a basis biorthogonal to{ek}. PutQ = (. , dk)ek and consider the operator

A0 =
∞∑

k=1

λkQk (λk > 0).

ThenA0 can be written as (6.1). Furthermore, let conditions (4.1)–(4.3) hold. Take
account that

Aν
0e

−A0t =
∞∫

β(A0)

sν exp[−ts]dEs

and

sup
s∈σ(A0)

sν exp[−ts] � ψ(A0, t),

whereψ is defined by (5.2). Due to formula (ii) from [4, p. 2189],

‖e−A0t‖X � θEe−β(A)t and
∥∥Aν

0e
−A0t

∥∥
X

� θEψ(A0, t),

where

θE := 4 sup
δ∈Σ(A0)

E(δ).

HereΣ(A0) is the sigma-algebra of the Borel subsets of[0,∞). SinceA0 andB(t) com-
mute, according to (4.1),∥∥U(t,0)

∥∥
X

� ‖e−A0(t−s)‖X

∥∥UB(t, s)
∥∥

X
� θECBe−(β(A0)−α)t � θECB (t � 0)

and ∥∥Aν
0U(t, s)

∥∥
X

�
∥∥Aν

0e
−A0(t−s)

∥∥
X

∥∥UB(t, s)
∥∥

X
� θECBeα(t−s)ψ(A0, t − s).

Hence,
t∫

0

∥∥Aν
0U(t, s)

∥∥ds � θEz(A0,B) (t � 0),

wherez(A0,B) is defined by (5.4). Define the spaceXν as in the previous section. Put

cE(φ, l) := CBθE

[∥∥Aν
0φ(0)

∥∥
X

+ z(A0,B)
(
q
∥∥Aν

0φ
∥∥

C([−h,0],X)
+ l

)]
.

Now Corollary 2.2 implies

Theorem 6.1. Let A0 be a spectral operator of the scalar type. In addition, under con
tions(4.1)–(4.4)and(5.1), let qθEzE(A0,B) < 1 and

cE(φ, l) < r
(
1− qθEz(A0,B)

)
.

Then a mild solutionu of problem(1.1), (1.2)satisfies the inequality∥∥ ν
∥∥ ( )−1
A0u(t)
X

� cE(φ, l) 1− qθEz(A0,B) (t � 0).
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Remark 6.2. If X is a Hilbert space, then there is a selfadjoint invertible operator,
thatQs = T EsT

−1 is an orthogonal spectral measure, cf. [4, Lemma XV.6.1, p. 1945
this case one can take

θE := ‖T ‖X‖T −1‖X.

7. Lyapunov stability

Definition 7.1. The zero solution to Eq. (1.1) is said to be stable in spaceY in the Lyapunov
sense, if for anyε > 0, there is aδ > 0, such that the inequality

‖φ‖C([−h,0],Y ) � δ

implies‖u‖C(R+,Y ) � ε for any mild solutionu of problem (1.1), (1.2).

Theorem 7.2. Let conditions(1.4) and (2.1) hold with l = 0. Then the zero solution t
Eq. (1.1) is stable inY in the Lyapunov sense.

Indeed, this result immediately follows from Lemma 2.1 whenl = 0.
Now let A0 be a constant linear sectorial operator inX. Again take spaceY = Xν with

norm‖v‖ν = ‖Aν
0v‖X (v ∈ D(Aν

0)) and letB(t) be a linear operator inX with a constant
domainDB , generating inX an evolution operatorUB(t, s). Theorem 4.1 yields

Corollary 7.3. LetA0 be a linear sectorial operator inX and−A0 generate an asympto
ically stable semigroup. Let conditions(4.1)–(4.5)hold with l = 0. Then the zero solutio
to Eq.(1.1) is stable inXν in the Lyapunov sense.

In addition, Theorem 5.1 implies

Corollary 7.4. LetX be a Hilbert space andA0 a positive definite selfadjoint operator.
addition, let conditions(4.1)–(4.4)with l = 0, (5.1)and(5.5)hold. Then the zero solutio
to Eq.(1.1) is stable inXν in the Lyapunov sense.

Note that Theorems 4.1 and 5.1 give us a possibility to estimate the domain of attr
of the zero solution.

To consider the stability of equations with spectral operators one can apply Theore

8. Absolute stability

Assume thatF continuously mapsC(Rh,Y ) into C(R+,X) and there is a constan
q > 0, such that∥∥(Fv)(t)

∥∥
X

� q sup
∥∥v(s)

∥∥
Y

(
v ∈ C(Rh,Y ), t � 0

)
. (8.1)
−h�s�t
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Definition 8.1. The zero solution of Eq. (1.1) is said to be absolutely stable inY in the
class of nonlinearities (8.1), if under (8.1), there exists a positive constantc0 independen
of the specific form of functionF (but dependent onq), such that the inequality

‖u‖C(R+,Y ) � c0‖φ‖C([−h,0],Y )

holds for any mild solutionu of problem (1.1), (1.2).

Theorem 8.2. Let condition(2.1) hold. Then the zero solution to Eq.(1.1) is absolutely
stable inY in the class of nonlinearities(8.1).

Indeed, this result follows from Lemma 2.1 whenl = 0.
Now letA0 be a constant linear sectorial operator inX andB(t) be a linear operator in

X with a constant domainDB , generating inX an evolution operatorUB(t, s). Again take
spaceY = Xν and assume that∥∥(Fv)(t)

∥∥
X

� q sup
−h�s�t

∥∥v(s)
∥∥

ν

(
v ∈ C(Rh,X

ν), t � 0
)
. (8.2)

Theorem 4.1 yields

Corollary 8.3. Let A0 be a linear sectorial operator inX and−A0 generate an asymp
totically stable semigroup. In addition, let conditions(4.1)–(4.3)and (4.5)hold. Then the
zero solution to Eq.(1.1) is absolutely stable inXν in the class of nonlinearities(8.2).

Recall thatψ(A0, t) andz(A0,B) are defined by (5.2) and (5.4), respectively. Th
rem 5.1 implies

Corollary 8.4. LetX be a Hilbert space andA0 a positive definite selfadjoint operator.
addition, let conditions(4.1)–(4.3), (5.1)and(5.5)hold. Then the zero solution to Eq.(1.1)
is absolutely stable inXν in the class of nonlinearities(8.2).

Note that Theorem 6.1 allows us to consider the absolute stability of equations
spectral operators.

9. Input–output stability

Let us consider the equation

u̇(t) = A(t)u(t) + [Fu](t) + ψ(t) (t > 0), (9.1)

whereψ ∈ C(R+, Y ) is a given function (input).

Definition 9.1. We will say that Eq. (9.1) is input–output stable in spaceY , if for any ε > 0,
there is aδ > 0, such that the inequality

‖ψ‖C(R+,Y ) � δ

implies‖u‖C(R+,Y ) � ε for any solutionu of (9.1) under the zero initial conditionu(t) = 0

(t � 0).
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Theorem 9.2. Let conditions(2.1)and(8.1)hold. Then Eq.(9.1) is input–output stable in
spaceY .

This result is due to Lemma 2.1.
Again letA0 be a constant linear sectorial operator inX andB(t) a linear operator inX

with a constant domainDB , generating inX an evolution operator. Theorem 4.1 yields

Corollary 9.3. LetA0 be a linear sectorial operator inX and−A0 generate an asympto
ically stable semigroup. Let conditions(4.1)–(4.3), (4.5)and (8.2) hold. Then Eq.(9.1) is
input–output stable in spaceXν .

Moreover, Theorem 5.1 implies

Corollary 9.4. Let X be a Hilbert space andA0 a a selfadjoint operator. In addition, le
conditions(4.1)–(4.3), (5.1), (5.5)and(8.2)hold. Then Eq.(9.1) is input–output stable in
spaceXν .

Note that Theorem 6.1 allows us to consider the input–output stability of equation
spectral operators.

10. Absolute stability of parabolic equations with delay

Consider the problem

∂u(t, x)

∂t
= a(t)

∂2u(t, x)

∂x2
− c(t)u(t) + F1

(
ux(t − h,x)

)
(−π < x < π, t > 0) (10.1)

with the periodic boundary conditions

u(t,−π) = u(t,π), ux(t,−π) = ux(t,π) (t > 0). (10.2)

HereF1 continuously mapsR into itself with the property∣∣F1(y)
∣∣ � q1|y| (y ∈ R), (10.3)

anda(t), c(t) are positive scalar functions. Assume that

inf
t�0

a(t) = 1. (10.4)

In addition, let

inf
t�0

c(t) > 1/2. (10.5)

TakeX = L2[−π,π] andω = [−π,π] . Problem (10.1), (10.2) can be written as (1.1) w

d2v

A(t)v ≡ a(t)

dx2
− c(t)v(t), v ∈ DA,
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where

DA =
{
v ∈ L2 = L2[−π,π]: d2v

dx2
∈ L2; v(−π) = v(π), v′(−π) = v′(π)

}
.

Putb(t) = a(t) − 1,

A0v(x) = −d2v(x)

dx2
+ v(x)/2 (v ∈ DA)

and

B(t)v(x) = b(t)
d2v(x)

dx2
− (

c(t) − 1/2
)
v(x) (v ∈ DB)

with DB = DA. Then the eigenvalues and normed eigenfunctions ofA0 are

λk(A0) = k2 + 1

2
and ek(x) = eikx

√
2π

(k = 0,±1,±2, . . .),

respectively. Soβ(A0) = 1/2. Moreover, for any

v =
∞∑

k=−∞
ckek ∈ DA,

whereck are the Fourier coefficients ofv, we can write out

A0v =
∞∑

k=−∞
(k2 + 1/2)ckek.

DefineAν
0 by

Aν
0v =

∞∑
k=−∞

(k2 + 1/2)νckek

(
v ∈ D(Aν)

)
with

D(Aν) :=
{

v ∈ L2[−π,π]:
∞∑

k=−∞
(k2 + 1/2)2ν |ck|2 < ∞

}
.

But for anyv ∈ DA,

(vx, vx) = −(vxx, v) = (
(A0 − 1/2)v, v

) = (A0v, v) − 1/2(v, v)

�
∥∥A

1/2
0 v

∥∥2
L2(ω)

. (10.6)

Here(. , .) is the scalar product. So due to (10.3) we have∥∥F1
(
vx(t − h, .)

)∥∥
L2(ω)

� q
∥∥vx(t − h, .)

∥∥
L2(ω)

� q
∥∥A

1/2
0 v(t − h, .)

∥∥
L2(ω)(

v ∈ D
(
A

1/2
0

))
. (10.7)

In addition, sinceb(t) � 0, c(t) � 1/2, andB(t) is selfadjoint, by virtue of simple calcu
lations we get( )
B(t)v, v � 0 (v ∈ DA, t � 0)
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ondi-
and therefore∥∥UB(t, s)
∥∥

L2(ω)
� 1 (t � s � 0).

Thus, conditions (4.1) hold withCB = 1 andα = 0. According to (5.2), we can write out

ψ(A0, t) ≡ ψ1/2(t) :=
{ 1√

2te
if t � 1,

√
1/2e−t/2 if t > 1.

(10.8)

Thus

z(A0,B) = z1/2 =
∞∫

0

ψ1/2(t) dt.

Due to Corollary 8.4,problem(10.1), (10.2)is absolutely stable inX1/2 in the class of
nonlinearities(10.3),providedqz1/2 < 1.

11. Lyapunov stability of parabolic equations with delay

Again consider problem (10.1), (10.2) assuming now that instead of (10.3), the c
tion ∣∣F1(y)

∣∣ � q1|y| (
y ∈ R: |y| � r1

)
(11.1)

holds with a finiter1 > 0. Again takeX = L2[−π,π] andω = [−π,π]. DefineA0 and
B(t) as in the previous section. Put

‖v‖C(ω) = sup
−π�x�π

∣∣v(x)
∣∣.

According to (5.9),

‖v‖C(ω) � q2
∥∥A

1/3
0 v

∥∥2
L2(ω)

(11.2)

with

q2 = 1√
2π

[ ∞∑
k=−∞

(
k2 + 1

2

)−2/3
]1/2

,

since‖ek‖C(ω) = 1/
√

2π . Then (10.6) implies

‖ux‖C(ω) � q2
∥∥A

1/3
0 ux

∥∥
L2(ω)

� q2
∥∥A

1/3
0 A

1/2
0 u

∥∥
L2(ω)

= q2
∥∥A

5/6
0 u

∥∥
L2(ω)(

u ∈ D
(
A

5/6
0

))
.

Thus (11.1) yields∥∥F1
(
ux(t − h, .)

)∥∥
L2(ω)

� q1q2
∥∥A

5/6
0 u(t − h, .)

∥∥
L2(ω)

,

provided∥ ∥
∥A
5/6
0 u(t − h, .)∥

L2(ω)
� r ≡ q2r1. (11.3)
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According to (5.2),

ψ(A0, t) = ψ5/6(t) :=
{

(5/6)5/6

t5/6 e−5/6 if t � 5/3,

(1/2)−5/6e−t/2 if t > 5/3,

sinceβ(A0) = 1/2. Thus,

z(A0,B) = z5/6 :=
∞∫

0

ψ5/6(t) dt.

Due to Corollary 7.4, problem (10.1), (10.2), under (11.1) is stable in the Lyapunov
in spaceX5/6, provided

q1q2z5/6 < 1.

Note that Theorem 5.1 gives us a possibility to estimate the region of attraction of
tionary solution.

12. Integro-differential equations with delay

In this section we takeω = [−π,π] × [0,1] and spaceX = L2(ω). Consider the equa
tion

∂u(t, x, y)

∂t
= uxx(t, x, y) − u(t, x, y) +

y∫
0

Q(y,y1)u(t, x, y1) dy1

+ F1
(
ux(t − h,x, y)

) + ψ(t, x, y)(−π < x < π, y ∈ [0,1], t > 0
)

(12.1)

with a given scalar functionψ(. , . , .) defined onR+ × [−π,π] × [0,1], and the boundar
conditions

u(t,−π,y) = u(t,π, y), ux(t,−π,y) = ux(t,π, y)
(
y ∈ [0,1], t > 0

)
. (12.2)

HereQ is a scalar Hilbert–Schmidt kernel defined on 0� y1 � y � 1 andF1 : R → R is a
continuous function, satisfying condition (10.3).

Equations of the type (12.1) arise in various applications, cf. [15]. Problem (12.1), (
can be written as (9.1) with

A(t)v(x, y) ≡ vxx(x, y) − v(x, y) +
y∫

0

Q(y,y1)v(x, y1) dy1 (v ∈ DA),

where

DA =
{
v ∈ L2(ω) :

∂2v

∂x2
∈ L2(ω); v(−π,y) = v(π, y),}
vx(−π,y) = vx(π, y); y ∈ [0,1] .
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In addition,[Fv](t) = F1(vx(t − h, . , .)). Put

A0v(x, y) = −∂2v(x, y)

∂x2
+ v(x, y)/2 (v ∈ DA)

and

B(t)v(x, y) = B0v(x, y) − v(x, y)/2,

whereB0 is defined by

(B0v)(x, y) :=
y∫

0

Q(y,y1)v(x, y1) dy1
(
v ∈ DB ≡ L2(ω)

)
.

Then the eigenvalues ofA0 (with infinite dimensional subspaces) are

λk(A0) = k2 + 1/2 (k = 0,±1,±2, . . .).

Soβ(A0) = 1/2. Again put

ek(x) = eikx

√
2π

(k = 0,±1,±2, . . .).

Any functionek(x)f (y) with f ∈ L2[0,1] is an eigenfunction forA0. Letdj (j = 1,2, . . .)

be a normal orthogonal basis inL2[0,1]. Then for any

v =
∞∑

j=1

∞∑
k=−∞

cjkdj ek ∈ DA,

wherecjk are the Fourier coefficients ofv, we can write out

A0v =
∞∑

j=1

∞∑
k=−∞

(k2 + 1/2)cjkdj ek.

So we can defineAν
0 as

Aν
0v =

∞∑
j=1

∞∑
k=−∞

(k2 + 1/2)νcjkdj ek

(
v ∈ D(Aν)

)
with

D(Aν) :=
{

v ∈ L2(ω):
∞∑

j=1

∞∑
k=−∞

(k2 + 1/2)2ν |cjk|2 < ∞
}

.

Furthermore, let(. , .) be the scalar product inL2([−π,π] × [0,1]). Then (10.6) holds. S
due to (10.3) we have inequality (10.7). Simple calculations show that∥∥UB(t, s)

∥∥
L2(ω)

� e−(t−s)/2‖eB0(t−s)‖L2(ω).

Moreover,B0 is a quasinilpotent Hilbert–Schmidt operator. So due to Theorem
from [7]

‖eB0t‖ 2 �
∞∑ Nk(B0)t

k

(t � 0),
L (ω)

k=0
(k!)3/2
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where

N(B0) := [
TraceB0B

∗
0

]1/2

is the Hilbert–Schmidt norm. The asterisk means the adjointness. Hence, for anε ∈
(0,1/2), we can easily calculate the constantMε , such that∥∥UB(t, s)

∥∥
L2(ω)

� Mεe
(ε−1/2)(t−s) (t � s � 0).

Furthermore, according to (5.2),ψ(A0, t) = ψ1/2(t), whereψ1/2(t) is defined by (10.8)
Thus

z(A0,B) � z1/2,ε := Mε

∞∫
0

e(ε−1/2)tψ1/2(t) dt.

Due to Corollary 9.4problem(12.1), (12.2)is input–output stablein X1/2, provided

qz1/2,ε < 1 for someε ∈ (0,1/2).
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