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Abstract

We consider a class of nonautonomous functional—differential equations in a Banach space with
unbounded nonlinear history-responsive operators, which have the local Lipshitz property. Condi-
tions for the boundedness of solutions, Lyapunov stability, absolute stability and input—output one
are established. Our approach is based on a combined usage of properties of sectorial operators and
spectral properties of commuting operators.
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1. Introduction and notation

Stability and boundedness of solutions of parabolic and abstract functional—differential
equations were investigated by many specialists, cf. [1,3,5,6,8,9,12-17,23] and references
therein. Itis mostly assumed that the history-responsive operators are bounded. At the same
time equations with unbounded history-responsive operators arise naturally, for instance,
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from problems of heat conduction in materials with thermal memory or of viscoelastic-
ity in materials with shape memory, cf. [19] and references therein. Equations with linear
unbounded history-responsive operators were studied in [2, Chapter 5.5], [10,18,21]. How-
ever, to the best of our knowledge, the absolute stability and input—output one of abstract
differential equations with unbounded history-responsive operators were not investigated
in the available literature, although these notions are very important in theory of systems,
cf. [22].

In the present paper we consider a class of functional—-differential equations in a Banach
space with nonlinear history-responsive operators, which have the local Lipshitz property.
Conditions for the boundedness of solutions, Lyapunov stability, absolute stability and
input—output stability are established.

Our approach is based on a combined usage of properties of sectorial operators and
spectral properties of commuting operators. A few words about the contents. The paper
consists of 12 sections. In Section 2 we prove the basic lemma of the paper—Lemma 2.1
on solution estimates. In Sections 3 we establish an existence result for mild solutions of
the considered equations. In Sections 4, 5 and 6 we specialize Lemma 2.1 in the cases
of equations with sectorial, selfadjoint and spectral operators, respectively. The Lyapunov
stability, absolute stability and input—output one are investigated in Sections 7, 8 and 9, re-
spectively. Sections 10, 11 and 12 deal with the applications of the main results to parabolic
differential-delay equations and integro-differential equations with delay.

Let X be a Banach space with a noiimi x andY a Banach subspace with a nofjnf|y
continuously imbedded int&. Put R, = [0, co) and R, = [—h, oo) for a finite 2 > 0.

As usual,C(J, X) is the space of continuous-valued functions defined on a sétand
equipped with the sup-norm

Ivllcw,x) = Sujd|v(t) Iy (vecCW.X)).
te

For a linear operatod, D(A) is the domaing (A) is the spectrum,
B(A) :=infRec (A)

andii(A) (k=1,2,...) are the eigenvalues with their multiplicities.
Now let A(z) (¢ > 0) be a linear operator iX with a dense constant domain

D(A(t))=DaCY, t>0.
The following equation is the main object of our investigation:

u()=A@)u()+[Ful) (>0, u=du/dt), (1.2)
whereF :C(Ry,Y) — C(R4, X) is a causal nonlinearityn the sense that

[Fuil@®) =[Fu2](t) if ur(z) =ux(r) forallt e[—h,t]anduy,ur e C(Ry,7Y).
Take the initial condition

ut)=¢() (-h<r<0), 1.2)

where¢ € C([—h, 0], Y) is a given continuous function.
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In the sequel it is assumed thatr) generates ir¥ an evolution operatot/ (z, s). This
means, that the Cauchy problem for the “shortened” equation

v=AMv =0

is well posed in¥ [20]. That s, this equation has continuously differentiable solutions with
values inDy4, provided the initial vector is iD 4. BesidesU (¢, s) acts inY and defined
by the equalityU (¢, s)v(s) = v(¢) for any solutiorw(z) of the “shortened” equation.

Definition 1.1. A functionu € C([—h,T],Y) (0 < T < o0), satisfying the equation

t
ut)=U(t,0¢(0) + / U(,s)[Ful(s)ds (O<t<T) (1.3)
0
and condition (1.2) will be called the mild solution of problem (1.1), (1.2J@r¥").

The existence of the mild solutions for all finite 0 is assumedAs it was mentioned,
below we derive some simple conditions for the existence and uniqueness of the mild
solutions.

For a positive number < oo, put

2. Y)={veCUY): vlcuy <r).

Assume thatF' continuously maps2, (R, Y) into C(R4, X) and there are nonnegative
constantg; and!/, such that

[(Fu)®)]y <q sup [v)|y+1 (veR(Ry.Y), 1 20). (1.4)
—h<s<t

2. Thebasiclemma

Everywhere below, it is assumed that
t
My :=sup|U(1,0)|, <oo and zy:= sup/ U@, 5)| 4 yds <oo.
t>0 >0 9

Put
co(@. ) =My |¢ )|, +zy(gllollcqnony) +1)-

Lemma 2.1. Let the conditiong1.4),

gzy <1 (2.1)
and

co(¢, ) <r(L—gqzy) (2.2)
hold. Then a mild solution of problem(1.1), (1.2)satisfies the inequality

Ju®]y < co¢, DL —gz)™t (> 0). (2.3)
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Proof. Thanks to (2.2), there is a positiie, such that|u(z)|ly < r for t < T. Hence,
inequality (1.4) implies

<s1<s

13
ol < Myl + [0l y (o sup_Jutsnl,+1)ds
0

<My |u@ ], +svp [ |09y ds(s sup utl], +1)
t>00

h<s1<1t

<My [u©], +2r (1 +q(ogggtHu<sﬂ v+ sup_lowll,))

<co@.D+2rq sUp Ju], ¢ <T).

<SSt

Consequently,

sup [u()|, <co(@.D) +zvq sup |u)]|y-

0<S‘\ \Y\

Hence, due to (2.1) and (2.2),

sup |lu(s)||, <cold.DA—zyg)t<r
0<s<T

So we can extend this inequality to ali 0. As claimed. O
Now let A(r) generate an evolution operatdrz, s) in X andS be a constant boundedly
invertible linear operator iX with a domainD(S) 2 D4 and commuting withA (¢):
A)Sv=SAMt)v (ve Dy, t>0).

On setD(S), let us introduce the graph norfw| s := ||Sv|x (v € D(S)) and denote the
obtained space b¥ 5. TakeY = X and assume that

||(Fv)(t)||X<q sup [Sv@)|ly +1 (ve R (Ry. Xs); t =0). (2.4)

\9\

Since
SUt, s)v=U(t,5)Sv (veD(S); t,5 >0),
in the considered cas&(r) generates an evolution operatorin and My = My, where

My :=sup|U(t,0)| . (2.5)
t>0

In addition, we havey = zg5, where
t

zs=sup | [SU. )| ds
>0
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providedzs and My are finite. Set
cs(¢. 1) = Mx | S¢ )|y +zs(qlISPllc—no.x) +1).
Now Lemma 2.1 yields
Corollary 2.2. Let a linear operatorS commute withA(¢) and D(S) D D4. Let the con-
ditions(2.4), gzs < 1and
cs(@, 1) <r(l—qzs)
hold. Then a mild solution of problem(1.1), (1.2)satisfies the inequality
[Su@)] <es@.DA—qzs)™t (t>0).

3. Existence and uniqueness of solutions

Theorem 3.1. Let the conditiong2.1), (2.2)
[(FO)(®)|, <I<o0 (3.1)

and

|(Fvo) (1) = (Fu) ()], <q  sup [vi(s) —va(s)]|,
—h<s<t

(t>0; vi,v2€ 2,(Ry. Y)) (3.2)
hold. Then problenl.1), (1.2)has a unique mild solution. Moreover, that solution satisfies
inequality(2.3).

Proof. We have

[Fo®]x < [FOO] +[(Fo - FOO] <1+q_ sup v,
—h<s<t

(veR:-(Rp,Y)).

So condition (1.4) holds. Thanks to Lemma 2.1, inequality (2.3) is valid. For arbitrary
x,y € £2,(R4,Y), define the functions, x on R;, by

JO =50 =¢@) (—h<t<0) and ¥®)=x@). F@O)=y@) (=0).
In addition, define o2, (R4, Y) the mappingG by

(Gpx)(1) = (Fi)(1) (t>0).
Due to (3.2),

|1Gpx1(1) = [Gyy1®) ||y = | Ft. %) — F(t. 50| x < g sup ||x(s) — y(s) |-

<<t
Rewrite Eq. (1.3) under (1.2) as
u=®ou), (3.3)
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where® is defined onf2, (R4, Y) by

t
(@x)(1) =U(t,0¢(0) +/U(t,t1)[G¢x](t1) dry (x € 2:(Ry.Y)).
0
Due to (2.3), under (2.1), (2.2% maps$2, (R4, Y) into itself. Inequality (3.2) shows that

[(@x)(t) — (@y)®)|, <zrg sup |x(s) —y()],-
0<s <t

Now condition (2.2) and the contraction mapping theorem imply the required result.

4. Equationswith sectorial operators

Let Ag be a constant linear sectorial operatoXinand— Ag generate an asymptotically
stable (analytic) semigroug 49, cf. [11]. Let B(¢) (r > 0) be a variable linear operator
in spaceX with a constant domai g, generating inX an evolution operatotp (¢, s),
satisfying the inequality

|UB(1.9)]y <Crexpat—s)] (¢>s5=>0) (4.1)

with Cg = const> 0 anda = const. In additionD4 = Dg N D(Ap) is dense and3(t)
commutes withAg:

AoB(1)v=B(t)Agv (t 20, ve D(AoB(1)) = D(B(1)Ao)). (4.2)
Put

A(t) =—Ao+ B(?). (4.3)
As itis well known, cf. [11], for any € [0, 1) the powerA is defined. Introduce the space
Y = XV with the graph norm

ol := [ Agv]y  (ve D(Ag))-
Assume that

l(Fu)@®)|y <q hs<up< [v)],+1 (120 ve (R, X"). (4.4)
—h<s<t

Moreover, sincedg is sectorial, there are positive consta@ts C, andés < (Ag), such
that

Cve_‘”

tl/
providedg(Ap) > 0, cf. [11]. Due to (4.2) and (4.31(¢) generates an evolution operator
in X defined by

U(t,s) =e 20 Ugp(t,s).
Moreover,
AU, s)v=U(t,s)Agv (ve X”, t,5s > 0).

lle™"llx < Cse™® and [ Age™ |, <

(t=>0)
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So due to (4.1),
(U@, 9)| < CsCpe= G0

and withé > o we haveMy = CgCs, and
1 t
2y = sup/ |AU .9y ds < sup/ |Age™ | | Us(t, 5) | ds < zv,
t}OO 1200

where

[ e gy
7y :=C5Cp —

0
In addition,cy (¢, 1) = ¢, (¢, 1), where

cv(@.1) :=CsCr||pO) |, + 20 (ql1llcq—r01x7) +1).
Now Corollary 2.2 yields
Theorem 4.1. Let Ag be a linear sectorial operator iX and —Ag generate an asymptoti-
cally stable semigroup. Let the conditiof@s1)—(4.4)

qzy <1 (4.5)
and

cv(@. ) <r(1—qz)
hold. Then a mild solution of problem(1.1), (1.2)satisfies the inequality

Ju®], <cv(@.DA—gz)"t ¢ >0). (4.6)

5. Equationswith selfadjoint operators

In this sectionX is a Hilbert space With applications in mind, let us consider the
operatorA(r) defined by (4.3), wherd is a positive definite selfadjoint operator
Again B(t) is a linear operator generating an evolution operator in spade addition,
assume that the conditions (4.1)—(4.3) and

B(Ap) >0 and —B(Ag)+a <0 (5.1)
hold. Clearly,
| Aje||, < sup {s"e™": s > B(A0)} = ¥ (Ao, 1) (1>0),
seo(A)
where
Ve if t < 2,
YA )=1" ptho) (5.2)

— A H
B(Ag)’e PO if 1 > Zhs.
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SinceAg and B(r) commute, we havé/ (¢, s) = e 40— Up (1, 5),

[U@ 0] < Cpe™ PO~ < Cp (5.3)
and
[Agu . 9)llx < [Age™ [ [UB 9] < Cpe™ ™y (Aot =)
(t>=s52>0).
Hence,
t
14l ds <za0.8) >0
0
where
o0
z(Ao, B) :=Cp / e~y (t, Ag) dt. (5.4)
0

Clearly, this integral is simple calculated. As above, take the sgéaeith the graph norm
lvllv == Agvllx (v e D(Ap)). Under (4.4) put

c(Ao, B, ¢, 1) :=Cg | Agp(O) |y + (A0, B)(q] A58 | e _n.onx) T1)-
Now Corollary 2.2 implies

Theorem 5.1. Let X be a Hilbert space andig a selfadjoint operator inX. In addition,
under conditiong4.1)—(4.4)and (5.1), let

qz(Ap, B) <1 (5.5)
and

c(Ao, B, #,1) <r(1—qz(Ao, B)).

Then a mild solutiom of problem(1.1), (1.2)satisfies the inequality

|ASu®)| < c(Ao, B, ¢, (L qz(Ao, B) " (1 =0).

In particular, letL2(w) be a separable Hilbert space of functions defined on a bounded
closed seto C R" with the scalar product

(f.8)= f fx)g(x)dx.

Then the spac€ (w) of continuous functions with the sup-norj| ¢ () is continuously
imbedded inL?(w). Assume now that operater(r) in X = L2(w) has the form (4.3) and
with m1, m» € [0, 1),

[ Fvll 2@ < ‘11HA'(7)11UHC(Q)) (”Agzl”HC(w) ST, VE D(A’(’)”)) (5.6)
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and

Wlcw < a2 Ag%v] 12, (v € D(Ag?)). (5.7)
Then withv =m1 + m> < 1, we have

| Ag* U”cm) ‘12||A02A811U”L2(w) ‘12||A0U||L2(w) (5.8)
Now (5.6) implies condition (4.5) with = r1g2 andg = g1¢2. Thus, we can apply Theo-
rem 5.1. For instance, letg be a positive definite selfadjoint operatorid(w) with the
discrete spectrum:

oo
Ao=Y P,
k=1

where 0< A1 < A2 < - -- are the eigenvalues dfy with their multiplicities, P = (., ex)ey,
andey are the eigenvectors witey || 12, = 1. Let

o0
Z A;2m2 <00
k=1

and

ce :=supllerllcw) < oo.
k

Then

[o/0]
Ivllcw =sup YA "2 (Ag?v, ex)er ()| < ce
X

Z)L_mz 02, ex)|-
k=1

Hence, by the Schwarz inequality and Parseval equallty, we have
2

o0
112 @) =Sup > A "2 (AG2v. ex)ex (x)
*olk=1

<CZZA 2’"22| (Ag?v, ex) | =5 ZA 2mZ”A v||L2(w). (5.9)

Consequently, cond|t|on (5.7) holds with

. 1/2
=c6[2,\;2’"2} . (5.10)
k=1

6. Equationswith spectral operators

Let Ag be a spectral operator of the scalar type with a positive spectrum in a Banach
spaceX, cf. [4]. That is, there exists a spectral measkyesuch that

o]

Ag= / sdE; (B(Ag) > 0). (6.1)
B(Ao)
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For instance, lete;} be a Schauder basis in a Hilbert space with a scalar prgdugtand
{d;} a basis biorthogonal te;}. PutQ = (., dx)ex and consider the operator

o
Ao=) MOk (4 >0).
k=1
Then Ag can be written as (6.1). Furthermore, let conditions (4.1)—(4.3) hold. Take into

account that
o0

Aae_Aotz / sV exg—ts]dE;
B(Ao)
and

sup s”exp—ts] < ¥ (Ao, 1),
s€a(Ag)

whereyr is defined by (5.2). Due to formula (i) from [4, p. 2189],
e |lx <Oge PP and |Age ||, <Op¥ (Ao, 1),
where

O :=4 sup E($).
seX(Aog)

Here X (Ap) is the sigma-algebra of the Borel subset$@to). SinceAq and B(r) com-
mute, according to (4.1),

U@ 0] <lle™ " |x |Up(t.5)| , <OpCpe” PAID < opCp (+>0)
and

| AU, )| < [ Age |, |UB(.9)| ; < O£Cre* ™Dy (Ao, t — ).

x|
Hence,

t
f |AQU (2. 5)||ds < 0pz(Ao. B) (1 =0),
0

wherez(Ao, B) is defined by (5.4). Define the spaké as in the previous section. Put

cg(¢. 1) = Cpbe[[| Age (0) ”X +2(Ao, B)(q] Ags ”C([—h,O],X) +1)].
Now Corollary 2.2 implies

Theorem 6.1. Let Ag be a spectral operator of the scalar type. In addition, under condi-
tions(4.1)—(4.4)and(5.1), let g0rzg (Ao, B) <1 and

ce(@,]) <r(1—qbpz(Ao, B)).

Then a mild solutiom of problem(1.1), (1.2)satisfies the inequality

|Asu@)] < ce@.D(L—qbpz(A0, BY) ™ (¢ > 0).
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Remark 6.2. If X is a Hilbert space, then there is a selfadjoint invertible operator, such
thatQ, = TE,;T 1 is an orthogonal spectral measure, cf. [4, Lemma XV.6.1, p. 1945]. In
this case one can take

0 = ITIxIIT  x.

7. Lyapunov stability

Definition 7.1. The zero solution to Eq. (1.1) is said to be stable in spacethe Lyapunov
sense, if for any > 0, there is & > 0, such that the inequality

I¢llc—n01y) <6
implies [lullc(r,,y) < € for any mild solutior of problem (1.1), (1.2).

Theorem 7.2. Let conditions(1.4) and (2.1) hold with/ = 0. Then the zero solution to
Eq.(1.1)is stable inY in the Lyapunov sense.

Indeed, this result immediately follows from Lemma 2.1 wihenO.

Now let Ag be a constant linear sectorial operatoXinAgain take spac& = X" with
norm|vl, = [|[Agvllx (v € D(Ap)) and letB(¢) be a linear operator iX with a constant
domainDg, generating inX an evolution operata/z (¢, s). Theorem 4.1 yields

Corollary 7.3. Let Ag be a linear sectorial operator it and — Ag generate an asymptot-
ically stable semigroup. Let conditior($.1)—(4.5)hold with! = 0. Then the zero solution
to Eq.(1.1)is stable inX"” in the Lyapunov sense.

In addition, Theorem 5.1 implies

Corollary 7.4. Let X be a Hilbert space and a positive definite selfadjoint operator. In
addition, let conditiong4.1)—(4.4)with / = 0O, (5.1) and (5.5) hold. Then the zero solution
to Eq.(1.1)is stable inX" in the Lyapunov sense.

Note that Theorems 4.1 and 5.1 give us a possibility to estimate the domain of attraction
of the zero solution.
To consider the stability of equations with spectral operators one can apply Theorem 6.1.

8. Absolute stability

Assume thatF" continuously mapsC(Ry,, Y) into C(R4, X) and there is a constant
g > 0, such that

|(Fo)®) |y <q sup [v@s)|, (veCRyY), t=0). (8.1)
—h<s<t
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Definition 8.1. The zero solution of Eqg. (1.1) is said to be absolutely stablg in the

class of nonlinearities (8.1), if under (8.1), there exists a positive congfamtlependent

of the specific form of functior# (but dependent og), such that the inequality
lullcr, vy < coll@llcq—n.ony)

holds for any mild solutiom of problem (1.1), (1.2).

Theorem 8.2. Let condition(2.1) hold. Then the zero solution to E¢.1) is absolutely
stable inY in the class of nonlinearitie€.1).

Indeed, this result follows from Lemma 2.1 whea 0.

Now let Ag be a constant linear sectorial operatoXirand B(¢) be a linear operator in
X with a constant domaif g, generating inX an evolution operatai/s (¢, s). Again take
spaceY = XV and assume that

|(F@®)|y <q sup [v)|, (veCRy X"), t20). (8.2)
—h<s<t
Theorem 4.1 yields

Corollary 8.3. Let Ag be a linear sectorial operator irX and —Ag generate an asymp-
totically stable semigroup. In addition, let conditiof#1)—(4.3)and (4.5) hold. Then the
zero solution to Eq(1.1)is absolutely stable iX" in the class of nonlinearitie8.2).

Recall thatys (Ao, t) andz(Ao, B) are defined by (5.2) and (5.4), respectively. Theo-
rem 5.1 implies

Corollary 8.4. Let X be a Hilbert space and a positive definite selfadjoint operator. In
addition, let conditiong4.1)—(4.3), (5.1and(5.5)hold. Then the zero solution to Ed..1)
is absolutely stable itX" in the class of nonlinearitieg8.2).

Note that Theorem 6.1 allows us to consider the absolute stability of equations with
spectral operators.

9. Input—output stability

Let us consider the equation
w(t) = A@Mu(t) + [Ful(t) + ¥ (1) (t>0), (9.1
wherey € C(R., Y) is a given function (input).
Definition 9.1. We will say that Eq. (9.1) is input—output stable in sp#cé for any e > 0,
there is & > 0, such that the inequality

Illcwr,,r <8

implies|lullc(r.,y) < € for any solutioru of (9.1) under the zero initial conditian() = 0
(r<0).
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Theorem 9.2. Let conditiong2.1)and(8.1) hold. Then Eq(9.1)is input—output stable in
spacey .

This result is due to Lemma 2.1.

Again letAg be a constant linear sectorial operatoXirand B(¢) a linear operator itk
with a constant domai® g, generating inX an evolution operator. Theorem 4.1 yields
Corollary 9.3. Let Ag be a linear sectorial operator itX and — Ao generate an asymptot-
ically stable semigroup. Let conditior(é.1)—(4.3), (4.5and (8.2) hold. Then Eq(9.1)is
input—output stable in spacg”.

Moreover, Theorem 5.1 implies
Corollary 9.4. Let X be a Hilbert space andig a a selfadjoint operator. In addition, let
conditions(4.1)—(4.3), (5.1)(5.5)and (8.2) hold. Then Eq(9.1) is input—output stable in
spacex”.

Note that Theorem 6.1 allows us to consider the input—output stability of equations with
spectral operators.

10. Absolute stability of parabolic equationswith delay

Consider the problem

a”;’t’ o _ a(r)% — c(u(t) + Fi(ux(t —h, )
(—m<x<m, t>0) (10.1)

with the periodic boundary conditions

u(t,—m)=u(t,mw), uy(t,—m)=u,(t,7) (>0). (10.2)
Here F1 continuously mapR into itself with the property

|FL)| <q1lyl (v €R), (10.3)
anda(t), c(t) are positive scalar functions. Assume that

tigl;a(t) =1 (10.4)

In addition, let
tlgfoc(t) >1/2. (10.5)

TakeX = L?[—x, n] andw = [, 7] . Problem (10.1), (10.2) can be written as (1.1) with

d%v
A()v Ea(t)ﬁ —c()v(t), veE Dy,
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where
{ 2 2 . dzv 2 / / }
Dy=3vel“=L[—m, ] - eL v(—m)=v(m), v(—m)=v(7)¢.
dx
Putb(t) =a(t) — 1,

2
Aov(x) = — ddv(x)

2 +v(x)/2 (ve Dy)

and

d2
B(t)v(x) = b(t)% - (c(t) — l/2)v(x) (ve Dp)

with Dg = D4. Then the eigenvalues and normed eigenfunctionsocdre

ikx
A (Ag) = k2 + % and e (x) = 35 (k=0,41,42,..),
respectively. S@(Ap) = 1/2. Moreover, for any
o0
v= Z crex € Dy,
k=—o00

wherec;, are the Fourier coefficients of we can write out

o0
Agv = Z (k? + 1/2)cyex.

k=—00

Define Ay by

Apv= > (K®*+1/2"ctex  (ve D(AY))
k=—00

with

D(AY) := iv e L[—m, 7] Z K> +1/2)% |k |? < oo}.

k=—o00

But for anyv € Dy,

(vx, Ux) = —(Vxx, V) = ((Ao — 1/2)v, v) = (Aov, v) — 1/2(v, v)

<) A5%0 13 200 (10.6)
Here(., .) is the scalar product. So due to (10.3) we have
[Faoet =1 0) | 2y < allost =) 2,y S @A 0 =00 2,
(ve D(A?)). (10.7)

In addition, sinceb(t) > 0, ¢(¢) > 1/2, andB(z) is selfadjoint, by virtue of simple calcu-
lations we get

(B(t)v, v) <0 (weDy, t=0)
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and therefore
||UB(I’S)||L2(LU)<1 (Z>S>0)

Thus, conditions (4.1) hold wit'y = 1 anda = 0. According to (5.2), we can write out

1 if 1 <1,
¥ (Ao, 1) = Y12(t) == { Vate (10.8)
1/2e71/2 if > 1.

Thus
[o,0]
2(Ag, B) =z12 = / Y1/2(t) dt.
0

Due to Corollary 8.4problem(10.1), (10.2)is absolutely stable ik/2 in the class of
nonlinearities(10.3),providedgzy/> < 1.

11. Lyapunov stability of parabolic equationswith delay

Again consider problem (10.1), (10.2) assuming now that instead of (10.3), the condi-
tion
|[Fi)| < qulyl (yeR: Iyl <r) (11.2)
holds with a finiter; > 0. Again takeX = L2[—x, 7] andw = [—x, 7]. Define A¢ and
B(t) as in the previous section. Put

Ivllcw = sup [vx)|.

— <X

According to (5.9),

1/3 12
Iollcw < g2 Ag 0] 72 (11.2)
with
_ 1/2
1 =, 1) 2/3
2= —— K24 = ,
! 2n |:k;oo( 2

sincellex |l cw) = 1/+/2r. Then (10.6) implies

é/sAé/zu [ L2(w) — 92 I Ag/ﬁu I L2(w)

luxllcw < a2] Ag e 2, < 92 A
(ueD(A")).
Thus (11.1) yields

| Fa(ua e =0 0) | 12 < @ra2ll AQ e =1, ) 2.
provided

”A(5)/6u(t —h,.) H L2(w) STr=qor. (11.3)
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According to (5.2),

5/0%° ,-5/6  if ;<
Y (Ao, 1) = Pse(1) = { 56 € if  <5/3,
(1/2)5%/6e=1/2 if 1 > 5/3,

sinceB(Ag) = 1/2. Thus,
z(Ao, B) = z5/6 !=/1/15/6(l)dt~
0

Due to Corollary 7.4, problem (10.1), (10.2), under (11.1) is stable in the Lyapunov sense
in spacex /8, provided
q19225/6 < 1.

Note that Theorem 5.1 gives us a possibility to estimate the region of attraction of a sta-
tionary solution.

12. Integro-differential equationswith delay

In this section we take» = [, 7] x [0, 1] and space&X = L%(w). Consider the equa-
tion

du(t,x,y)

y
8[ =Mxx(t7xv )’) _M(tvx?y)+/ Q(yv )’1)M(f7x,yl)dyl
0

+Fl(ux(t_h»xsy))+'ﬁ(t’xa)’)
(—7‘[ <x<m ye[0,1], t > O) (12.1)

with a given scalar functiogy (., ., .) defined onR; x [—x, 7] x [0, 1], and the boundary
conditions

u(t,—m,y)=u(t,m,y), uy(t,—m,y)=uy(t,m,y) (y e[0,1], t > O). (12.2)

Here Q is a scalar Hilbert—Schmidt kernel defined ok @1 <y <landF;:R— Risa
continuous function, satisfying condition (10.3).

Equations of the type (12.1) arise in various applications, cf. [15]. Problem (12.1), (12.2)
can be written as (9.1) with

y
A(r)v(x,y>vax<x,y>—v(x,y)+/Q(y,mv(x,yl)dyl (e Dy),
0

where

2

2, . 9%v o
Dy={vel%w): o2 € L9(w); v(=m,y)=v(m,y),

v (=7, y) = (. y); y €[0, 1]}-
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In addition,[Fv](#) = F1(v(t — h, ., .)). Put

82v(x, y)

9x2 +v(x,y)/2 (veDy)

AOU(X, )’) = -
and
B(t)v(-x’ y) =BOU(X»Y) - 'U(.X', y)/za

whereBy is defined by

(Bov)(x, y) 1=/ Q(y, yDv(x,ydy1 (ve Dp=L*w)).

Then the eigenvalues dfy (with infinite dimensional subspaces) are
M(Ag) =k2+1/2 (k=0,+1,42,...).
So0B(Apg) = 1/2. Again put
ikx
er(x)=
k(%) N

Any functione, (x) f (y) with f € L2[0, 1] is an eigenfunction fodo. Letd; (j =1,2,...)
be a normal orthogonal basis Irf[0, 1]. Then for any

0o 00
UZZ Z cikdjex € Dy,

j=lk=—o00
wherecj; are the Fourier coefficients of we can write out

(k=0,41,+2,..).

o o
A=Y > (K*+1/2)cjidjer.

j=lk=—o00
So we can defind as

o0 (o)
Ajv = Z Z (k?+1/2)"cjrdjer  (ve D(AY))
Jj=lk=—00
with
o o
D(A") = vel?(): Y Y (k+1/2%|cil* <oof.
j=lk=—o00
Furthermore, let., .) be the scalar product ih?([—, 7] x [0, 1]). Then (10.6) holds. So
due to (10.3) we have inequality (10.7). Simple calculations show that
|05, )] 2 <™ 21502,

Moreover, Bg is a quasinilpotent Hilbert—-Schmidt operator. So due to Theorem 6.9.1
from [7]

N¥(Bo)t*
lle °||Lz(w)\2 e 20
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where

N(Bp) := [TraceBoBg‘]l/ 2

is the Hilbert—Schmidt norm. The asterisk means the adjointness. Hence, far @ny
(0, 1/2), we can easily calculate the constafit, such that

[UB(1.9) 12y < Mee Y20 (1252 0).

Furthermore, according to (5.2);,(Ao, 1) = ¥1/2(1), wherey1/2(¢) is defined by (10.8).
Thus

o
z(Ao, B) <2172, := Me / e“‘l/zﬁm/z(t) dt.
0

Due to Corollary 9.4roblem(12.1), (12.2)s input—output stablen X /2, provided

qz12,e <1 forsomee € (0,1/2).
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