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Trevor Evans has shown in [I] that any 12 x 12 partial latin square can be 
embedded in a 2n x 2n latin square. Apart from its combinatorial interest, 
this result has general algebraic consequences (for example, that finitely 
presented loops and quasigroups are residually finite, hopfian, and have a 
solvable word problem [4, 141). We examine here the higher dimensional 
analogues of these results. 

Unfortunately, any attempt directly to transfer the construction of 
Evans to the case of latin cubes or hyper-cubes encounters a fundamental 
combinatorial obstacle: in essence, what one confronts is a special instance 
of the classic unsolved problem of finding a common transversal for three 
or more families of sets [6, 9, lo]. However, this combinatorial obstacle 
can be circumvented by the device of composing latin boxes of various 
dimensions, and we are able to prove that any finite partial latin cube 
(or hyper-cube) can be embedded in a finite latin cube (hyper-cube). The 
algebraic consequences for finitely presented n-quasigroups are the same 
as those already mentioned for loops and quasigroups. There remains the 
problem of obtaining a “minimal” embedding corresponding to the result 
in [l]. 

LATIN BOXES 

Let k be a positive integer, and let S, , S, ,..., Sk be finite sets. The 
mapping 
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will be called a k-dimensional latin box if the following condition holds: 

Whenever x0 = 4x1 , x2 ,..., xii) and x,,’ = a(~~‘, x2’ ,..., xk’), 
then any k of the equations 

x0 - x0’, x1 = x1’, x2 = +I, ,,. , xk = xk’ 

imply also the remaining equation. 

We shall refer to the above condition as the latin property. The maximum 
cardinality of the sets Si will be called the order of 01 (and in view of the 
latin property, this number will always be identical with the cardinality 
of the set So). The k-term sequence of integers (n, , n2 ,..., n,), where ni 
is the cardinality of Si , will be called the type of 01. Finally, in the special 
case that each of the sets Si is an initial segment of the positive integers, 
then the latin box (y. will be calledproper. Any latin box may be represented 
by an isotopically equivalent proper latin box. 

The usual latin configurations are particular cases of our k-dimensional 
latin box. For example, an r x s latin rectangle based on the symbols 
1, 2,..., n is a proper 2-dimensional latin box of order n and type (r, s); and 
in case r = s = n, the latin rectangle is called a latin square. A latin cube 
is a proper 3-dimensional latin box of order n and type (n, tr, n). Latin 
hyper-cubes of dimension k are defined similarly. Finally, by a partial 
k-dimensional latin box, we mean a function cu: P + So satisfying the latin 
property, whose domain P is some subset of the Cartesian product 
(IL a. 

In the sequel we shall employ certain known results concerning the 
extendibility of latin rectangles to latin squares. In fact, some of our 
theorems may be roughly viewed as higher dimensional analogues of these: 

(i) (M. Hall [S]) If CI is a Zatin rectangle of order n and type (n, r), 
then there exists a Iatin square 01* of order n which includes 01. 

(ii) (T. Evans [I]) If 01 is a latin rectangle of order n and type (r, s), 
then there exists a latin square CC* of order t which includes 01, 
for any t > 2n. 

For simplicity of exposition in presenting our analogues of these results 
and their application to the completion problem at hand, we shall follow 
the historical order in which the two-dimensional versions appeared 
[5, 8, I]. Thus we consider the last steps first. 

BASIC EMBEDDING RESULTS 

We now state and prove the two new results which yield our finite 
embedding theorem for partial latin cubes. 
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THEOREM 1. Let 01 be a 3-dimensional Iatin box of order n and type 
(n, n, r). Then (Y can be embedded in a Iatin cube of order n2. 

Proof. We may assume without loss of generality that 01 is a proper 
latin box. Then, for each element x in S, , let cyr be the latin rectangle of 
order n and type (n, r) which is obtained from 01 by putting 

o&(X’) x”) = a(x, x’, x”) 

for each x’ in S, and each x” in S, . By (i) each such function 01, can be 
completed to a latin square 01,* of order n. 

Now let /3 be any latin cube of order n, and let y be any latin square of 
order n. Let N = {I, 2 ,..., n} and define the 3-dimensional function 
A: N2 x N2 x N2 + N2 as follows: 

4(x, 3 VI), (x2 2 Y2>, (X8 > Y3N 

= 
1 
MY1 2 4% 3 x2 1 x3>), /XVI ,Y2 ,Yd), if x,<r 

(Y(Yl 2 G+@2 2 X3))? B(x1 9 Yz 9 Y3)h otherwise. 

To check that h is a latin box, we suppose that we have the equation 

X(x, 2 YA (x2 9 Y2>, (x2 9 Y3)) = U-Q', Yl'), (x2', Y2’), (x3’, Y3’N 

and, further, that we have at least two of the following three equations: 

(Xl 7 YJ = (Xl’? VI’>, (1) 

(x2 9 Y2) = (x2’, Y2’L (2) 

(x3 2 Y3) = (x3’, Y3’). (3) 

We then show that in fact all three of these equations must hold. There 
are three cases to consider and the verification is routine. 

Case 1. Equations (I) and (2) hold. Remembering the relation of the 
ol,*‘s to 01, we have by our initial hypothesis and the definition of h the 
equation 

Y(Y, 3 dl(X2 9 x3)) = AY,‘, d3x2’9 x3’)). 

By (1) we have y, = yI’, so by the latin property for y we get azI(x2 , x3) = 

% * ‘(X2’, x,‘). But (1) and (2) imply x1 = x1’ and x2 = x2’, so by the latin 
property for the map oC& = azIj , we get also xg = x3’. Now this shows 
we need consider only the two possibilities: either x, = x,’ < r or 
x3 = x2’ > r. Thus, by definition of h, we will have either ,& y1 , y, , y3) = 
P(Y~‘, y2’, ~~‘1 or P(xl, Y, , Y& = &G’, y2’, y3’). But since (1) and (2) 
imply the equalities x1 = x1’, y, = yl’, and y2 = y2’, we will get in either 
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case, by the latin property for & that the equality y3 = y3’ holds also. 
Finally, the two results xQ = x,’ and y, = y,’ combine to give Eq. (3). 

Case 2. Equations (2) and (3) hold. Since (3) implies xa = xQI, we 
need only consider the two possibilities: either x, = x3’ < r or 
xg = xg’ > Y. We examine these separately. If xa = x3’ < r holds, then 
our initial hypothesis and the definition of h give us the pair of equations: 

Y( Yl > dX1 ? x2 7 x3)) = Y( Yl’, 4x1’, x2’, x2’)), 

P(E’1 9 Y2 2 Y3) = B(Yl’> Y2’> Y3’). 

Since (2) and (3) imply y, = y,’ and y, = y3’, the latin property of /3 
implies y1 = y,’ also. But then the latin property of y implies that 
4x1 , x2 > x3) = @@I’, x2’, x,‘) holds. Since (2) and (3) also imply x2 = x2’ 
and x, = x,‘, the latin property of 01 then gives x1 = x1’. Finally, the two 
results x1 = x1’ and y1 = yr’ combine to give Eq. (1) in this case. On the 
other hand, if x3 = x3’ > r holds, then our initial hypothesis and the 
definition of h give us the pair of equations 

PCX, 7 Y2 3 Y3) = &l’, Y2’3 Y3’). 

Since (2) and (3) imply yz = y,’ and y, = I’~‘, the latin property of p 
implies also x1 = x,‘. Thus LX~~ = az1, , and since (2) and (3) imply 
x2 = x2’ and x, = x3’, we must have c$(x2 , x3) = oljE1(x2’, x,‘). But the 
latin property of y then gives y, = y,‘. Finally, the two results x1 = x1’ 
and y1 = yl’ combine to give Eq. (1) in this case, too. 

Case 3. Equations (I) and (3) hold. Here the argument that (2) must 
hold also is similar to Case 1 above. 

Having verified that A is a 3-dimensional latin box of order n2 and type 
(n2, n2, n2), we next observe that for any fixed choice of yl, y2, y3, the 
correspondence 

4x1 2 x2 > 4) - WI 1 YA (x2 3 vz), (x3 > Y3)) 

will describe an isomorphic embedding of the original latin box 01 in the 
latin box A. Thus if A* is any proper latin box isomorphic to A, then we 
readily obtain the desired embedding of OL in a latin cube of order n2. This 
completes the proof of Theorem 1. 

THEOREM 2. Let 01 be a 3-dimensional latin box of order n and type 
(r, r, r). Then cy. can be embedded in a latin cube of order t4, for any t >, 2n. 
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Proof. Let t be a fixed positive integer satisfying t > 2n. We show 01 
can be embedded in a 3-dimensional latin box of order t2 and type (t2, t2, r), 
then apply Theorem 1. As before, we may assume at the outset, without 
loss of generality, that the given latin box 01 is proper. Then, for each 
element x in S, , we let 01, be the latin rectangle of order II and type (r, r) 
which is obtained from LY by putting 

aJx’, x”) = a(x), XII, x) 

for each x’ in S, and each x” in S, . By (ii) each such function as can be 
completed to a latin square OI,* of order t. 

Now let /3 be any latin cube of order t, and let y be any latin square of 
order t. Let T = { 1, 2 ,..., t}, let R = (1, 2 ,..., r}, and define the 
3-dimensional function ~1 T2 x T2 x R --f Tz as follows: 

The verification that this function p is a latin box of order t2 and type 
(t2, t2, r) is straightforward (and quite similar to the proof for Theorem 1). 
It remains to observe that for any fixed choice of y1 , y2 , the corre- 
spondence 

will provide an isomorphic embedding of the given latin box OL in the latin 
box y. Applying Theorem 1 to p then completes the proof of Theorem 2. 

HIGHER DIMENSIONS 

By using essentially the same techniques as in the two preceeding proofs, 
we obtain k-dimensional analogues of Theorems 1 and 2, for each integer 
k > 3. 

THEOREM 3. Let 01 be a k-dimensional latin box of order n and type 
(4 n,..., n, r). Then oc can be embedded in a k-dimensional latin hyper-cube 
of order n2. 

Proof. Although the notation becomes cumbersome with the increase 
in dimension, the idea of the argument here is the same as for Theorem 1, 
but with a few rather obvious modifications in detail. For example, when 
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k = 4, the role of the 0~~‘s in Theorem 1 would here be played by functions 
~r,~,,~ defined by OI~,,~,(X~, x4) = “(x1 , x2, x3, x4). Accordingly, the 
k-dimensional function X would then be defined as: 

= ((rth , Yp , a$ , x2 , x3 , x4)), Ku1 , y2 , y3 , YA if -y3 , x4 d r, 
‘(Y(Y1 2 Yz 3 %,,&3 2 x4)), /%x1 3 x2 2 1’3 , YJ), otherwise, 

where /3 is a 4-dimensional latin hyper-cube, y is a latin cube, and c&~, is 
the completion of OILY,%, ~ to a latin square obtained via (i). We omit further 
details. 

THEOREM 4. There exists a positive integer p such that, if iy. is any 
k-dimensional latin box of order n and type (r, r,..., r, r), then 01 can be 
embedded in a k-dimensional latin hyper-cube of order p. 

Proojl Here we argue by induction on k, where k > 4, but otherwise 
the proof is the same as for Theorem 2. From the given k-dimensional 
function u: (which we may assume is proper), we form truncated functions 
ax, for each x < r, defined by cx,(xI , xp ,..., xk-J = a(xI , xQ ,..., xkPl , x). 
By the inductive hypothesis (or by Theorem 2 in the initial case when 
k = 4), there exists a positive integer q such that each of the functions am 
can be completed to a proper (k - 1)-dimensional latin box of order q 
and type (4, q,..., q). Letting Q = { 1, 2 ,..., 4) and R = { 1, 2 ,..., r}, we then 
define the k-dimensional function CL: Qz x Q” x ... x Q” x R --) Q2 as 
follows: 

((4x1 2 x 2 ?...3 -Yk-1 > _ 

= 1 <a,*,<x, ) x, )..., 
u) ( k 9 Y  Yl 2 Y2 Y’.‘, Yk-1 I>, if x1, x2 ,..., xkml -< r, 

xk-,), PCvl . 14 ,..., .vk-1 , xkh d-m-wise, 

where /3 and y are latin hyper-cubes of dimensions k and k - 1, 
respectively. The verification that this p satisfies the latin property is again 
straightforward, and for any fixed choice of the elements y1 , y, ,..., yk-r , 
the correspondence 

a(x1 ) x, )...) xk:) - tL((xl 9 h)> (x2 * Y2)>-, (xk-1 , yk-11, xk) 

provides an embedding of the original latin box 01 in the latin box I”. 
Finally, applying Theorem 3 to p, we obtain an embedding of 01 in a 
k-dimensional latin hyper-cube of order p = q4, which completes the 
inductive step in the proof. 
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EMBEDDING PARTIAL LATIN CUBES 

Let cx be an arbitrary partial latin cube of order r. We wish to show that 01 
can be finitely completed. To accomplish this, we first construct a 
3-dimensional latin box CY* of order 2r and type (r, r, r) which includes 01, 
and then we apply Theorem 2. In this manner we obtain 

THEOREM 5. Anyjinite partial latin cube can beJinitely completed. 

Proof. The required function 01* is readily obtained by selecting an 
arbitrary latin cube /3 of order r and defining 01* so that a*(~, x’, x”) = 
ol(x, x’, x”) if 01 assigns a value to the cell (x, x’, x”); otherwise, put 
a*(~, x’, x”) = r + ,6(x, x’, x”). Because the ranges of the functions 01 
and /3 contain only the numbers 1, 2,..., r by hypothesis, the device of 
adding r to the values of p serves to insure that the latin property for CX* is 
not violated. Therefore, we are provided by Theorem 2 with a latin cube 
of order (2r)4 which includes 01* and hence also 01. 

In the same fashion, as a corollary to Theorem 4, we also obtain the 
corresponding result for higher dimensions: 

THEOREM 6. Any jnite partial k-dimensional Iatin hyper-cube can be 
f;niteIy completed. 

The proof is a direct extension of the preceeding argument and is omitted. 

ALGEBRAIC CONSEQUENCES 

An n-ary algebra (A, R) with the property that, in the equation 
4x1 , x2 ,..-, x,) = x0 , any n elements uniquely determine the (n + I)st, 
is called an n-quasigroup (also called a n-skein by Evans in [2]). Such 
algebras have been studied by Rad6 and Hosszu [ 1 I], Sandik [12], 
Belousov [13], and others. Note that if an n-quasigroup (A, V) has finite 
order, then its operation rr is an n-dimensional latin box. 

As a consequence of the procedure for solving the word problem for 
finitely presented n-quasigroups (analogous to the algorithm for loops 
described in [3]), T. Evans has shown that any finite partial n-quasigroup 
can be embedded in a complete n-quasigroup, though the completion 
obtained by this procedure will be of infinite order. Our results 
(Theorems 5 and 6) provide a finite completion for any finite partial 
n-quasigroup. Thus, besides giving an alternative solution to the word 
problem, our results imply that finitely presented n-quasigroups are both 
residually finite and hopfian (see [4, 141 for details). 
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