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Abstract

This paper is concerned with the distribution of a multivariate scale mixture vXtat&, ..., X ,)’
with X; =S;Z;,whereZ, ..., Zp arei.i.d. random variabless; > 0( =1, ..., p),and{Sy, ..., Sp}
is independent ofZ1, ..., Z,}. First we obtainL;-norm error bounds for an asymptotic expansion

of the density function oK in the multivariate case as well as in the univariate case. Then the results
are applied in obtaining error bounds for asymptotic expansions of the null distribution of Hotelling’s
generalizedToz-statistic. The special features of our results are that our error bounds are given in
explicit and computable forms. Further, their orders are the same as ones of the usual order estimates,
and hence the paper provides a new proof for validity of the asymptotic expansions.
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1. Introduction

A general multivariate scale mixture variate may be defined as

X=(X1,...,Xp) =SZ (1.1)
whereS s a positive definite random matrix, a&ds independent of = (Zy, ..., Z,)".
LetG;(i = 1,..., p) bethedistribution of;. In this paper we are concerned with a special

casesS = diag(S1, ..., S,) andZy, ..., Z, are independently and identically distributed,
that is

X;=87%, i=1....p, Zi,....Z,~iidG, (1.2)

whereG is the distribution function ofZ;. Here it is tacitly assumed that all the scale
factorsS; are close to 1 in some sense. Note tHatmay be a general random variable
with a smooth density function, though useful applications appear in two casesAylien
distributed as the standard normal distribution and a gamma distribution. Having in mind
statistical applications we consider a transformation f®t Y = /P, whered = +1

andp is a positive number. The transformation in cabg) is expressed as

Y, =S8 i=1..p (1.3)

In practical applications the positive constaris chosen a% or 1 according to thaZ is
distributed as the standard normal distribution or a gamma distribution. The cohatagt
be chosen so that the first few moment§?f1p, i =1,..., parecomputable or evaluated.

There is a considerable work on asymptotic expansions and their error bounds for the
distribution function ofX in the univariate casg = 1. For a summary, see, e.g., Hgl,
Fujikoshi and Shimizu [4], Fujikoshi [3], Shimizu and Fujikoshi [10], Ulyanov et al. [11].
For multivariate scale mixtures, some special cases have been studied. For the distribution
function, Fujikoshi and Shimizu [4] studied the c&Se-= sl ,. Fujikoshi and Shimizu [5]
treated the case—1,>0,G; = ¢, = landp = % where® is the distribution function
of N(0, 1). The latter case has been applied to the distribution of the MLE in a general
MANOVA model.

In this paper we considdri-norm error bounds for asymptotic expansions of the density
function of X. It may be noted that such results are useful for an asymptotic expansion for
P(X € A) and its error bound. Fujikoshi and Shimizu [5] and Shimizu [9] obtaibgedorm
error bound wherG; = @, = 1 andp = 1 We are interesting in the null distribution of
Hotelling’s generalized"oz—statistic defined by

¢ =ntrS,S; 2, (1.4)

where S, and S, are independently distributed as Wishart distributid¥is(q, | ,) and
W,(n,1,), respectively. We note (see, Section 4) t?iétcan be expressed ag = X1+
-+ X,=(1,...,DX, and

P(T¢<x) = P(X € Ay), (1.5)

whereA, = {(x1, ..., xp); x1+- - -+x, <x}. HereXis a multivariate scale mixture variate
asin(l.2)suchthaks, ..., Z, ~ x4 ands;t> ... > S, 1 > Oare the characteristic roots
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of W, wherenW ~ W, (n, | ,). We deriveL,-norm error bounds for asymptotic expansions

of the density function oK as in (L.2), especially in the case= —1 andZ; ~ ;{3. The

result is used to get an error bound for an asymptotic expansion of the distribuﬁgnlof
Section 2 we discuss the univariate cpse 1. The main results in the multivariate case are
given in Section 3. The proofs are given in Section 5. In Section 4 we give an error bound
for an asymptotic expansion of the distributiorﬂgaf. It may be noted that our error bounds

are given in explicit and computable forms. Further, their orders are the same as ones of the
usual order estimates, and hence by products, the paper provides a new proof for validity
of the asymptotic expansions.

2. Li-norm error bound in the univariate case
The multivariate scale mixture variaxein (1.1) or (1.2) is written fopp = 1 as
X=S5Z, (2.2)

whereSis a positive random variable, atland S are independent. Ldtandg be the
probability density functions ok andZz, respectively. LetD = {x € R : g(x) > 0}. We
assume that for a given positive inteder

Al. gisktimes continuously differentiable db.

Consider the transformatiaf = S%/# as in (L.3). Then the conditional density Xfgiven
Y =yish(x,y) = y %g(xy~°P), and hence we have

f(x) = E[Y %Pg(xy~")]. 2.2)

We consider an asymptotic expansionf@k) based on Taylor expansion of the conditional
density functiom (x, y) aroundy = 1. Related to the expansion, define a functign (x)
for j >1 and forx € D, by formula

J

0 S )
(:yj {yffsﬂg(xyfaﬂ)] — )’ﬂy*‘)pb(;,j(xy’(’p)g(xy’ap) (23)

andb; j(x) = 0 forx ¢ D.We putb;so(x) = 1 for j = 0. Equality @.3) can be easily
checked by mathematical induction. Then we can write Taylor expansioln(for) as
follows: for y > 0 andx € R,

k=1

1 .
k(X y) =g+ ) = 06,80~ 1/, (2.4)
=17

wheregs 1(x, y) = g(x). This suggests an approximatigg (x) for f(x):
8o,k (x) = Elgsr(x,Y)]

k—1
1 .
g+ 71 b0 Mg @ELY — 1] (2.5)
j=17

under the assumption ' — 1/F] < oo.
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Our error bounds depend on

1
&= ﬁ |s,j g |, (G=0,1,....k) (2.6)

and more precisely they are expressed in terms of
k
» 1 1/k
nsx =180 + |2+ &, : 2.7)
j=1
Here for any integrable functiol(x) : R? — R, we define itsL1-norm by
00y = [ Ihoolax
RP
and in particular, we writd} - |1 = || - [|1.1-
Lemma 2.1. For anyk > 1 it holds that
[ £6) = goatoly <ns E[1¥ = 21]. (2.8)

Proof. We use aTaylorformula (see, e[d.,p. 257]) for afunctiomwith k(> 1) continuous
derivatives

k=1
h(y) = h(D+) _hm(l)(y 1/
j= 1
LU= D e [(1 — kLR 4oy — 1))] (2.9)
(k — 1)! ’
wherert is a random variable with uniform distributi@f, 1). For anyy > 0 let
A5 (x,y) = y P g(xy™%) — g5 i(x. y). (2.10)
Using 2.3), (2.4) and (2.9) we can write also foe 1
_ - Dk k-1 —k—0p
A ) = G E[A- 0 At e - 1)

xbg 1 (x(l F(y— 1))*51’) g (x(l oy — 1))*5P)] . (211

The idea of our proofis to us@(10) or (2.11) depending on whethgs far from 1 or close
toit. Let

= /50"
Notethatp : 0 < @ < 1. If y : 0 < y < ¢, then it follows from 2.10) that

1—yk
| 45.60c, 0] < (”2551) 1= )k

= nsily — 1% (2.12)
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If y >, then for anyr € [0, 1] we have H t(y — 1) > ¢. Therefore it follows from2.11)
and Fubini theorem that

—1lk
[45.Ceo ), <x 2 — B paly — 11 (2.13)

Combining @.10), (2.12) and (2.13) we get (2.8)J
Remark 2.1. For a discussion of the selection of constansee, e.g[10].

It is well known (see, e.g., [8, Chapter 14]) thiat-norm error bound for differences
between two densities allows to find closeness of the corresponding distributions. More

generally the result may be stated as follows.

Lemma 2.2. LetQ;(A),i = 1, 2 be two set functions on the Boreffield inR? defined by

Q;(A) = /Aﬁ(x)dx, i=12
Suppose thaD1(R”) = Q2(RP?). Then
1Q1(A) — Q2(A)] < %/RP [/1(X) = f2(X)|dX
= 311/200 = L2l , - (2.14)
From Lemmas 2.1 and 2.2 we have the following theorem.
Theorem 2.1. Le X be a scale mixture of Z defined (21),andY = $%7, whered = 1

or —landp > 0. Suppose that the density function g/ZafsatisfiesAl and E(Y¥) < oo,
for a given integek (> 1). Then we have for any Borel sétc R?

IP(X € A) - f ) 864 () dx| <305 ElY — 1], (2.15)
For a special casé= 1, p = % andZ ~ N(0, 1), we have (see, e.d10])
o (1. 1
—— (y 2¢p(xy 2))
oyJ

where¢(x) is the density function o (0, 1), and H; (x) is Hermite polynomial defined
by

=27 Hy; (x)p(x), (2.16)
y=1

_ ' Lyl
H;(x) = (=D’ {¢p(x)} o7 d(x).

This implies that

o1 1
<y 2¢(xy 2))

oy/

2j

_ i P(x). (2.17)

dx?J
y=1
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Therefore our approximatiogy x(x) can be written in the form

2j

d
gLk(x) = E (x>+2 F(Yl— Y ——; ()

k=1

1 .
d(x) + Zl o Ha; (x)p(x)E[(Y1 — 1)7].
p

3. Li-norm error bounds in the multivariate case

In this section we extend Theorem 2.1 to the multivariate scale mixture vatiasein
(1.2). For its purpose, we derive an asymptotic expansion of the density funcicamafits
Li-normerror bounds. Lef, (X) andg, (2) be the density functions &fandZ, respectively.
Theng,(2) = g(z1) . .. g(zp), and the conditional density ofgivenY; = y;,i =1,..., p
is given by

) ey ), (3.1)

wherex = (x1, ..., x,) andy = (y1, ..., y,)". We consider an approximation fatx, y)

= _
h(x,y) = y; " g(x1y;

P

1 0 o\’
gé,k,p(x Y) gp(x) + j§:1 i (()’l ) 021 + + (yp ) 7z )

—op —dp —dp —
Xzq gx1zq V). zp gxpzp .
Zl:~-~:zp:

gp(0) + Z Z s 1 (¥1) - bs j, (rp)gp (0 (3.2)
=1 O et

x(y1— D (v — D,

which is an extension ofs ; (x, y), where the sunE(J.) is taken over all non-negative

integers suchthapy + - -+ j, = j. This suggests an approximation ffy(x)

25.4,p ) —gp<x>+ZZ g Do b, ()R (9

J=1 ()
E [(Yl N 1)1‘1»] . (3.3)

Our error bound depends on the quantify, , defined as follows. Lefs 1 , = 2+vs 1,
and fork >2

k
1 1/k

1/k
Ns.k,p = Ué’/k’p +12+ P Z Us,j.p ) (34)
Jj=1
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where

(-1,
Vs,j.p = Z i Cojp - fa,(,'p, (3.5

~ iq!. ..
Ul 1 m

where the summatiofy] is taken over all non-negative integers G, < - - - < j, such that

ji+---+ jp, = j,and the constanis, iy, ..., i, are positive integers such that
O0Sji="=ju <Ju+1 =" = Jutir
<< ji1+"'+im_1+1 == ji1+"'+i/11 (= JP) g-]

For the motivation behind3(5), see Lemma 5.3 and Remark 5.2 in Section 5. In particular,
we have

V51p = $6.1,
Vs2.p = Cs2+ %(p - 1)531,
53y = Es3t (P — D182+ 5 (0 —D(p — 28 4, (3.6)

Voap, = Coat3(p— 1)5?2 +(p—DE&s51é5.3
+3(p—D(p— D& &5+ 2% (p—D(p—2(p — & 4.

In the following Theorems 3.1 and 3.2 we give two main results whose proofs are given
in Section 5.

Theorem 3.1. Let X = diag(S1, ..., Sp)Z be a multivariate scale mixture ifl.2), and
Y; = Sl.‘s/p,i =1,..., p,whered = 1or —1andp > 0. Suppose that the density function
g of Z; satisfiesAl and E(Yi") <o0,i =1,..., pforagiven integer k. Then we have for

any Borel setA ¢ R?
p
POce A~ [ gsnp00x< sy, Y- ENY - 141 @3.7)
A i=1

For an actual use oB(7) we will takek = 2 or 4. Ifk is even, then the moment in the
right-hand side can be expressed as

14 p
DO ENY -1 =) ElYi — 11 = Eltr(W —1,)*]
i=1 i=1
which becomes more computable in applications, whére H diag(Y1, ..., Y,)H’ and

H is any orthogonal matrix.

Theorem 3.2. Under the same condition as in Theor&m we have for any Borel set
ACR?

P
P(X € A) — / 8ok p X0 dXI<F vy I EllY = 1, (3.8)
i=1
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wherev;s ;. , are determined recursively by the relation

k-1

Vokp =P ANkt P =D Vouogp1isg (. fork=2, (3.9)
q=0

With vs 1, =151, Vsk,0 = 0andvs 1 = 5, forall k> 1.

Remark 3.1. Inthe cased = 1,p = % andZ; ~ N(0, 1) a similar result as in Theorem
3.2 has been obtained in Theorem 2 in Shinf@uwith the same recurrence relation as
(3.8) but with another initial value for; ; 1. Using (2.17) we can write the functiqn . ,

as

k-1 .
1
1000 = E| 0,00+ 1 271 (X0 = 192x) 6,00
j=

k-1 P 14
$,00+> Y T1 2%, Haj; (x;) - ,(0E [Z |¥; — 1|"] :

j=1 (j) i=1 i=1

Whereqﬁp(x) = P(x1) ... P(xp).

From relation (3.9) the constants, , for k = 1,..., 4 are determined recursively as
follows.
Vs,1,p = Ns.15
Vs2.p = Ns2t+ % (p —D¢&s5115.1,
Vo3 = N3+ 3 (P — D{EsaMs2 + M5.2M5.1) (3.10)

+5(p—D(p— & M51,

Voup = Nsa+3(p—DIEsansa+ CsoMsz+ Eoalsa)
+g(p—D(p— 2){531'15,2 +285.185.215.1}
+25 (P —D(p—2(p —3E 151

Combining Theorems 3.1 and 3.2 we have

P
IPX € A) — fA 86.6,p () dX| <3 MiNs k. Vo k) Y ELNY: — 1. (3.11)
i=1
Note that
Ns,1,p =Vo1p: MNs2p2Vs2.p- (3.12)

Now in special cases we show how to simplify the approximation

k=1

Psx.p(A) = f | Sok 9 dx = Yo Py, (3.13)
j=0
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Wherengi{),p(A) = [, gp(¥)dx = I5(A) and forj >1

. 1
P&(,jk),p(A) = Z T i / b jy(x1) - .. bévjp (xXp)gp(X) dX
) Jii. .. ][,. A

xE[(Yl (v, — 1)f'p] . (3.14)

Note that in applications to the distribution ﬁg the setA is invariant, that isA stays
the same for any permutation of coordinates. . ., x,,. In the following, assume thatis
invariant and let

I5.(A) = / B (0,
Is5;i(A) = /A bs,i(x1)bs, j(x2)gp(X)dX, (3.15)

L5k (A) = /A bs,i(x1)bs j(x2)bs, j(x3)gp(X)dX, SO 0N
Then we have
P (A) = I51(A)My,),
P (A) =3 15 2(A) M2, + § 15.12(A)Maz. (3.16)
P (A) = § 15 5(MMzp + 5 15 20(A M1z + § 15 111(AM11 1.,
where

p
Myp =ELY (Y — 1),

i=1
P

Mg, =ELY (¥, — D*(¥; — D], (3.17)
i#]

p
Mgy =EL > (Y, = D*¥; — Dy, - 171, ete
i) 7k

4. Hotelling's generalized72-statistic

In this section we consider error bounds for asymptotic expansion of the null distribution
of Hotelling’s generalized“oz-statistic defined byl(5). The statistic is used as one of the
test statistics in multivariate linear model. The Iimitingfﬁ is a chi-square distribution
¥2 with r = pq degrees of freedom. Further, it is known (see, e.g., [1]) ﬂazahas an
asymptotic expansion

P(TE<x) = Gr(x) + ﬁ {(g—p—1G,(x)

—2¢Gr12(x) + (g + p + DGrra(x)} + O™ ?),
whereG, is the distribution function okf variate.
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Lemma 4.1. We can writero2 interms of amultivariate scale mixtwe= (X1, ..., X,)" =
diag(S1, ..., S,)Z as

Te=X14-+ X, (4.1)
whereZ = (Z1,...,Z,), Z1, ..., Z, arei.i.d. random variablesZ; ~ ij, S, = Yi_l(i =
1....,p)andYy > --- > Y, > 0 are the characteristic roots iV such thatnW ~
Wy, I,).

Proof. Itis well known that the distribution oi‘“o2 can be expressed as

1¢ = ntr(U'U)S;t
ntr(H'U'UH)(H'S,H) ™,

whereU is ag x p random matrix whose elements are independent identically distributed
asN(0, 1), andH is an orthogonal matrix. Note that the distributiondu#fi andH’S,H

are the same ad andS,, respectively. The result is obtained by chooskhguch that
H'S,H =diag(Y1,...,Y,). O

Note that from Lemma 4.1

P(TE<x) =P(X € A,) ~ f 86k, p(X)dX

X

asin (1.5). Now we use Theorems 3.1 and 3.2 wits: —1,p = 1,71 ~ ng andk = 2 or
4. Letg, (x) be a density function of?, i.e.

gq(x) = x?2 Lexp(—x/2).

1
24/2I'(q/2)
Then the functions_; ;(x) defined by 2.3) are given by

bo11(x) = =3 (x —q),
bo12(x) = 3 {x? = 2gx +q(q — 2)}, 4.2)
bo13(x) = —5 {x® = 39x% + 3q(g — 2)x —q(q — (g — 4)}.
It is easy to see that
bo11(0)gg(x) = 54 {84(x) — g2}
bo12(x)gg(x) = 3¢ {(qg —285(x) — 2984+2(x) + (¢ + 2gg+a(x)},  (4.3)
b_13(x)84(x) = 39 {(qg —2)(q — B gq(x) —3q(q — 2)gg+2(x)
+3q(q + 2gg+4(x) — (g + 2)(q + Dgg+6(x)} .
Using expression4(.3) we have
I11(A) = 39[Gr(x) — Grya()],
I12(A) = 391(q —2G,(x) = 29Gry2(x) + (g + 2G1a(x)}
I111(A) = §4%{Gr(x) = 2Gr12(x) + Grya(0)}

= Bl NI
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I-13(Ay) = §q{(qg — 2(q — HGr(x) — 3g(q — 2Gry2(x) (4.4)
+3(q + 2Gria(x) — (¢ + 2)(q + HGrys(x)},
1-121(Ay) = §4¢°%{(qg — 2G,(x) — (3¢ — 2)G42(x)
+(3g +2Gr44(x) — (q + 2Grip(x)},
I-1111(Ay) = §¢%{G,(x) — 3G,42(x) + 3G,14(x) — G,16(x)} .

LetV =W —|,. Then itis easily seen that
p . .
Mip=Y (Yi-Di =tV j=12..,

i=1

P
Miz, =Y (Y = D(Y; = 1) = (trV)? —trV?, (4.5)
i#]
P
Ma1., = Z (Y; = D2(Y; — 1) =trVirV2 —trv3,
i#]
P
M1, = Z Y =D - DY —1) = @rV)3 - 3uVerv2+2trve
i#j#k
These imply the following expressions:
P5,l,p(Ax) = I@,l(Ax)a
P52 ,(Ax) = P51 ,(Ax) + 15 1(Ax)E[trV],
Ps 3 ,(Ax) = Psa ,(Ax) + 3 152 (A)Eltr V2]
+3 I 11(ADEL{(trV)? — trv2)], (4.6)
Ps 4 p(Ay) = P53 ,(Ax) + § 15 3(A0E[tr VO]
+3 I5 21(ADE[{trVirV2 — trVv3)]
+2 I5112(ADEH{(trV)® — 3trVirv2 + 2trVv3)).

Further, from moment formulas (see, e[g]) on Whishart matrix we have the following
results:

E[trV] =0, E[trV?] = 1 p(p+1),
n
1 1
EL(trV)?) = ~2p,  EltrVe] = — p(p® +3p +4),
E[trVtrV?] = iz p(p+1), E[trv)’] = % P, 4.7)
n n

1
E[trV4] = — p(2p®+5p +5).
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Theorem 4.1. Let TO2 be the generalized Hotelling statistic defined (fy5). Under the
assumptiom > p, it holds that

. 1
(i) IP(T¢ < x) = Gr@I< o p(p+DV-12,(@),
(i) P(TE < x) — G (x) — 4r—n (@ —p—DGr(x)

—2qG12(x) + (@ + p + 1D Gria(x)}]
-
< 4T:nz(|h|+2461|P—61-i-:|-|‘|'246](P"i‘61‘f‘5|-)

1 ,
5.3 P2p*+5p + By min(n_1 (@), v-14p@)},

wherer = pg andh = 8{p2 -3qg—-LHp+ q2 —3q +4}. Heren,l‘k’p(q) andv_y . ,(q)
are thers ;. , in (3.4)andv; ., in (3.9),respectivelyfor the caseZ; ~ ;(3.
Proof. Substituting (4.4) and (4.7) into (4.6) we have

P_11,p(A) = PZ € Ay) =P(2<x) = G, (x),
P_12p(Ax) = G, (x),
P1ap(40) = G () + 2-{(g = p = DG, () (4.8)
—29Gri2(x) + (g + p+ DGrialx)}
+4§W {h(Gr(x) = Gry6(x) — 24 (p — g + D(Gry2(x) — Grya(x))
+24(p +q + Dq(G,14(x) — Gri6(x))}.
Therefore, it follows from 3.11) that

IP(TE <x) — P_12,p(A0)| < % P(p+Dv_12,(@), (4.9)
sincen_, 5 ,(q) 2v-12,(q) (see 8.12)), and
IP(TE<x) — P14 p(Ay)|
< 512 p(2p?+5p +5)min{y_1 4 ,(q). v-1.4.,(q)}. (4.10)

These imply the theorem.[]

The quantities ofy_q ; ,(¢) andv_1x, ,(q) are numerically obtained. Fér= 2,4, q =
1-5 andp = 1-4, see Tables and 2.

FromTables 1 and 2 it seems that the boung; ,(g) is betterthanthe bounﬂ,l’k,p(q),
at least, for some region gfandp.

5. Proofs of Theorems 3.1 and 3.2

Lemma 5.1. For a positive integer,jlet

O<ii< o< - <jp
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Table 1
Values ofyy_1 5 ,(q) andn_y 4 ,(q)

q n-12p@) N-1,4p(@)

p p

1 2 3 4 1 2 3 4
1.0 4.57 5.67 6.76 7.85 15.68 25.43 39.21 57.77
2.0 571 7.64 9.56 11.47 22.58 44.24 78.44 128.19
3.0 6.69 9.34 11.97 14.59 30.36 66.82 127.69 219.52
4.0 7.61 10.91 14.19 17.46 38.88 93.15 186.92 331.36
5.0 8.45 12.37 16.26 20.15 47.97 122.61 254.72 461.11
Table 2

Values ofv_j 2 ,(¢) andv_j 4 ,(q)

q v_12p(q) v_14,p(q)

p p

1 2 3 4 1 2 3 4
1.0 4,57 5.18 5.78 6.38 15.68 18.74 22.41 26.76
2.0 5.71 6.72 7.72 8.73 22.58 28.93 37.04 47.18
3.0 6.69 8.04 9.40 10.75 30.36 40.61 54.16 71.59
4.0 7.61 9.28 10.95 12.62 38.88 53.69 73.72 99.93
5.0 8.45 10.43 12.40 14.36 47.97 67.91 95.31 131.65
be integers suchthgt +- - -+ j, = j anday, ..., a, be non-negative real numbers. Then

' P . ‘
Zall-nappg(p—l)!(ai+~-~+a{,), (5.1)

where summation on the left-hand side is taken ovephpermutations(¢y, ..., £,) of
(Jla LR} Jp)

Proof. We prove b.1) by mathematical induction gm If p = 1, then (5.1) is obvious. We
assume that (5.1) is valid for — 1 (>1). We write the left-hand side of (5.1) in the form

Z7 j A]
>oart-af =al'Pijy(az.....ap) + - +ay" Pjj,(az. ... ap).
whereP;_j,(az, ...,a,) = Y a2 .. .af)” and the summation here is taken over(all—
1)! permutations{z, ..., £p) of (j2, ..., j,). PolynomialsP;_;,, ..., P;—;, are defined
similarly. The hypothesis of the induction asserts that fokaH 1, 2, ..., p we have

Pi_j(az,...,ap) <(p—2Way "+ +a} ).
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Therefore we get
Zafl .. .af;” < (p—2)! [a{l (aé_jl 44 a[/;_h) 4.
—i—ai” (aéij" 4+ 4 alﬂ ]")] . (5.2)

It is clear that on the right-hand side &.2) we can replace; by any othew;, that is, for
i=12 ..., pwehave

p .
Zagl...af;pg(p_z)z al* Z al "t a{P Y a . (53
k=1,k#i k=1,k+#i

Note that for any positivé; andb, a functionb{_xbg + b’l‘bé_x of x is convex on0, j]

and is equal t(b{ +b£ forx = 0 andx = j (cf. Lemma 2 in9]). Therefore for all integers
i=0,1,...,jwehave

b] ™ b+ biby T <b] + b, (5.4)
Thus summing up inequalities.@3) fori = 1,2, ..., p we get from (5.4) that
pYaft-a) <(p—2Up —Dpla] +---+a)).
Hence we obtainy.1). O

Remark 5.1. Note wheruy = - -- = a, = 1inequality 6.1) is written in the fornp! < p!.
Therefore, (5.1) is sharp.

Lemma 5.2. In Lemmabs.1we assume

o<ji=---= jil < ji1+l == ji1+i2
<ot < Jigdetipoa4l = 00 = Jigtetin (5 Jp) S
Then
¢ e, (=0
Z all.. Pp<ll!—'(a + +Clp) (55)
im!

1

where summation on the left-hand side is taken over all different permutétigns ., £,,)
of (j1, ey Jp)-

Proof. The result follows from
. ? 14
Za . ap =iq!-- zm!Zczll---ap”
1

and by applying Lemma 5.1 to the left-hand side of the above equalify.
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Lemma 5.3. Assume thap(x) satisfiesAl in Section2. Let j (0 < j <k) be a positive
integer and

i s -5
I1(X) = Z 1_[ a; 'j[f/ bs.j; (xiyl'ji p)g(x,'yij[_ "),
() i=1

whereay, ..., a, are positive numbers. Ifaff;;, >¢ > 0,i =1,2, ..., p, then

M) <905 5 p(a] + -+ +ap), (5.6)
wherevs ; , is given by(3.5).

Proof. Since ally;;, > ¢ and for any permutation afj, ..., j,) a products ;, ... &j(;’jp
does not change, we get

—7 o« e}
OO, <@~ > <§,~1...g,~p Y agt.. a,,'>, (5.7)
1

[J]

wherezm denotes summation over all non-negative integetsif< - - - < j, such that
Jji+---+Jjp = j,andy_,; means summation over all different permutatiphs £», . . ., £}
of a fixed se{{j1, jo, ..., jp}. We get 6.6) from (5.7) and Lemma 5.2.0

Remark 5.2. Let (X, y) be the conditional density function defined ByX). Assume that
g(x) satisfies Al. Then for any positiva, ..., a, and a positive integej : 0 < j <k we
have

< g +--- 4+ g )jh(X y)
_ an— ;
16)’1 payp

yi=yi0,i=12,..p |1,
<o v pla] + - +a), (5.8)

providedy,o>¢ > 0,i = 1,2,..., p, wherev; ; , is defined by 8.5). The result follows
immediately from Lemma 5.3 and the fact that the left-hand side equals

—0 -0 —0
> ]_[ al' = y,o P (xivig g (xivig )
@) i=1

Proof of Theorem 3.1. Note that

frX) =E[r(X,Y)],

whereY = (¥1,...,Y,) and a functionh is defined in 8.1). We construct an
expansion for using (2.9) sequentially. Namely, at first we apply (2.9[{38g(x1y;5p).
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We get

hix,y) = {g<x1>+z bs,;(xDg (D1 — I + Ry o1y — DF }

xha(X,Y), (5.9

where

1 0 ‘ )
Rsj1= ———E| (1= T— (y Pglx1y™" ’
3K1= T [( 7) a9k (Y g(x1y )) LD

p . .
hax.y) =[] 7 sy ).
i=2

Now we apply 2.9) for a functionyz_a”g(xzyz_ép) so that for a summand

1 .
I bs j(x1)g(x1)(y1 — D ha(X. y),

we apply @.9) withk replaced by — j. At last we obtain the following expansion:

h(x,y) = g(Xl) g(xp)

+Z > H ba 5 GNgG (1 — DY + 454 ,(6y),  (5.10)

=1 Gy =1/
whereR; ;. , is a sum of terms each of which can be written in the form
1= D"y = D Iy (1) -+ I, () (5.11)

with k; >0fori =1,2,..., pandky + - -- + k, = k. Each factod; in (5.11) has one of
the following form:

1 & s -0
= g [La- ot o (17 sr™)

1

dr, (5.12)
yi=1+1(y—1)

Io(y) = g(x) or Ip(y) = y~%Pg(xy~°") and whenyj : 1< j <k — 1, we have fot; (y) one
of the two representations:

1
—bs,j(x)glx) or
j!

1 1 aj —dp —dp
G- /( —-/” o (yl 80y ))

1

dr.
y1=1l+t(y-1)

Let

1/k
0 = (o p/Monp) " (5.13)
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At first we consider the case whenOmin(yy, ..., y,) <¢@. Assume thap is such that
0 < y1< . We have for anyj : 1< j <k,

oyl — vy |/ - — ik
L=l =l < s (1L
L= 1L = yall o4 1= L - 1)
p
< u_—w(|1—yl|k+"'+|1—yp|k)- (5.14)

Therefore, using Lemma 5.3%.(0) and (5.13) we get

k-1
IRssply < 243 (=21 441y — 1) vy,
j=1
1 k-1
< o (L-wlf 1=y ) (240 v
1-9) a
< Nskp (|y1—1|k+..._|_ 1y _1|k), (5.15)

If min(y1,...,yp) > ¢ then using Lemma 5.35(12) and representations for summands
contained ink; ;. , we get

IRsiplnp < @ vssp (Iva = U+ +1yp — 1)

= No.k.p (|Y1 — 1k 4.+ lyp — 1Ik) . (5.16)

According to Remark 5.2 and combining.15) and (5.16) we finish the proof of
Theorem 3.1. [J

Proof of Theorem 3.2. Leth(x,y) =[]/, yfépg(xiyfép), and

A5k, p X Y) = h (X, Y) — &5k, p (X, ¥)s (5.17)

wheregs ., (X, y) is defined by 8.3). In order to prove (3.8) it is enough as usual to show
that

P
1454, p % W1p <Vosp 1y =11, (5.18)
i=1

wherey;,i =1, ..., p, are considered as positive real numbers. In the following we show
that the result can be proved by using arguments similar to the proof of LemmpR in
We prove (5.18) by mathematical induction with respegt.téor p = 1,vs x 1 = 154, and
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hence inequalityq.18) was proved in Lemma 2.1 or Theorem 2.1. F&r2 we use

k—1
h(%,y) = §8(xp) + Y 0w - D bs, ;(xp)g(xp) + A5 4,1(xp, ¥p)
=17
L 5
< [T v gty ™). (5.19)
i=1

. 1 -5 =5
wherel| 45 1 1(rp. ¥p)llL <75 x|y — 11F. We apply equality§.17) to[ T/} g (xiy; ")
with p replaced byp — 1 andk replaced by — j when]‘[{’:_l1 ylfépg(xiylfé”) is a factor
by (yp, — 1)/ in (5.19). Thus we get

A5k pXY) = 8(xp) A5k, p—1X(=p)s Yi—p))
k-1

1 .
+ 3 F00 =D ba 5080 sy pa O Vi)
j:
p—1 s i
- -
+ 45451000, yp) [ ] 30 "2y, (5.20)

i=1

wherex_p) = (x1,...,xp-1) andy(,p) = (y1,..., yp—1)'. Assume that§.18) holds for
p — 1. Then from (5.20) we get

1454 , X Wl1p < Nsilyp — L

k—1 p—1
+D 0 Eoglyp = Uvspegpo1 Y lvi =149 (5.21)

Itis clear we could use the same arguments to the fungffn, ,  ; ¥ % g (xiy; ) with

anyj =1,2,..., p. Then we could get5.21) with|y, — 1| replaced byly; — 1]. Since

in all these inequalities the left-hand sides will coincide, summing up the inequalities for
j=1,2,..., pandusing

14 14
D=1y —1<(p =1 Y i — 1, (5.22)
i#] i=1
we obtain
k—1 P
PlAs ey X WIp < 55+ (P =D D Vouogp1&sg g D i — 1. (5.23)
q=0 i=1

Note that 6.22) follows from (5.4). Therefore, we come to (5.18) and recurrence formula
for vsx,, stated in Theorem 3.2.01
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