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Abstract

Thispaper is concernedwith thedistributionofamultivariatescalemixturevariateX=(X1, . . . , Xp)
′

withXi=SiZi , whereZ1, . . . , Zp arei.i.d. random variables,Si >0(i=1, . . . , p), and{S1, . . . , Sp}
is independent of{Z1, . . . , Zp}. First we obtainL1-norm error bounds for an asymptotic expansion
of the density function ofX in the multivariate case as well as in the univariate case. Then the results
are applied in obtaining error bounds for asymptotic expansions of the null distribution of Hotelling’s
generalizedT 2

0 -statistic. The special features of our results are that our error bounds are given in
explicit and computable forms. Further, their orders are the same as ones of the usual order estimates,
and hence the paper provides a new proof for validity of the asymptotic expansions.
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1. Introduction

A general multivariate scale mixture variate may be defined as

X = (X1, . . . , Xp)
′ = SZ, (1.1)

whereS is a positive definite random matrix, andS is independent ofZ = (Z1, . . . , Zp)
′.

LetGi(i = 1, . . . , p) be the distribution ofZi . In this paper we are concerned with a special
case:S = diag(S1, . . . , Sp) andZ1, . . . , Zp are independently and identically distributed,
that is

Xi = SiZi, i = 1, . . . , p, Z1, . . . , Zp ∼ i.i.d.G, (1.2)

whereG is the distribution function ofZ1. Here it is tacitly assumed that all the scale
factorsSi are close to 1 in some sense. Note thatZi may be a general random variable
with a smooth density function, though useful applications appear in two cases whenZ1 is
distributed as the standard normal distribution and a gamma distribution. Having in mind
statistical applications we consider a transformation fromS to Y = S�/�, where� = ±1
and� is a positive number. The transformation in case (1.2) is expressed as

Yi = S
�/�
i , i = 1, . . . , p. (1.3)

In practical applications the positive constant� is chosen as12 or 1 according to thatZ1 is
distributed as the standard normal distribution or a gamma distribution. The constant� may

be chosen so that the first few moments ofS
�/�
i , i = 1, . . . , p are computable or evaluated.

There is a considerable work on asymptotic expansions and their error bounds for the
distribution function ofX in the univariate casep = 1. For a summary, see, e.g., Hall[6],
Fujikoshi and Shimizu [4], Fujikoshi [3], Shimizu and Fujikoshi [10], Ulyanov et al. [11].
For multivariate scale mixtures, some special cases have been studied. For the distribution
function, Fujikoshi and Shimizu [4] studied the caseS = sIp. Fujikoshi and Shimizu [5]
treated the caseS− Ip�O,Gi = �, � = 1 and� = 1

2, where� is the distribution function
of N(0,1). The latter case has been applied to the distribution of the MLE in a general
MANOVA model.

In this paper we considerL1-norm error bounds for asymptotic expansions of the density
function ofX. It may be noted that such results are useful for an asymptotic expansion for
P(X ∈ A) and its error bound. Fujikoshi and Shimizu [5] and Shimizu [9] obtainedL1-norm
error bound whenGi = �, � = 1 and� = 1

2. We are interesting in the null distribution of
Hotelling’s generalizedT 2

0 -statistic defined by

T 2
0 = n tr ShS−1

e , (1.4)

whereSh and Se are independently distributed as Wishart distributionsWp(q, Ip) and
Wp(n, Ip), respectively. We note (see, Section 4) thatT 2

0 can be expressed asT 2
0 = X1 +

· · · + Xp = (1, . . . ,1)X, and

P(T 2
0 �x) = P(X ∈ Ax), (1.5)

whereAx = {(x1, . . . , xp); x1+· · ·+xp�x}. HereX is a multivariate scale mixture variate
as in (1.2) such thatZ1, . . . , Zp ∼ �2

q andS−1
1 > · · · > S−1

p > 0 are the characteristic roots
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ofW, wherenW ∼ Wp(n, Ip). We deriveL1-norm error bounds for asymptotic expansions
of the density function ofX as in (1.2), especially in the case� = −1 andZ1 ∼ �2

q . The
result is used to get an error bound for an asymptotic expansion of the distribution ofT 2

0 . In
Section 2 we discuss the univariate casep = 1. The main results in the multivariate case are
given in Section 3. The proofs are given in Section 5. In Section 4 we give an error bound
for an asymptotic expansion of the distribution ofT 2

0 . It may be noted that our error bounds
are given in explicit and computable forms. Further, their orders are the same as ones of the
usual order estimates, and hence by products, the paper provides a new proof for validity
of the asymptotic expansions.

2. L1-norm error bound in the univariate case

The multivariate scale mixture variateX in (1.1) or (1.2) is written forp = 1 as

X = SZ, (2.1)

whereS is a positive random variable, andZ andS are independent. Letf andg be the
probability density functions ofX andZ, respectively. LetD = {x ∈ R : g(x) > 0}. We
assume that for a given positive integerk,
A1. g is k times continuously differentiable onD.
Consider the transformationY = S�/� as in (1.3). Then the conditional density ofX given
Y = y is h(x, y) = y−��g(xy−��), and hence we have

f (x) = E[Y−��g(xY−��)]. (2.2)

We consider an asymptotic expansion off (x) based on Taylor expansion of the conditional
density functionh(x, y) aroundy = 1. Related to the expansion, define a functionb�,j (x)

for j �1 and forx ∈ D, by formula

�j

�yj

{
y−��g(xy−��)

}
= y−j y−��b�,j (xy

−��)g(xy−��) (2.3)

andb�,j (x) = 0 for x /∈ D. We putb�,0(x) = 1 for j = 0. Equality (2.3) can be easily
checked by mathematical induction. Then we can write Taylor expansion forh(x, y) as
follows: for y > 0 andx ∈ R1,

g�,k(x, y) = g(x) +
k−1∑
j=1

1

j ! b�,j (x)g(x)(y − 1)j , (2.4)

whereg�,1(x, y) = g(x). This suggests an approximationg�,k(x) for f (x):

g�,k(x) = E[g�,k(x, Y )]

= g(x) +
k−1∑
j=1

1

j ! b�,j (x)g(x)E[(Y − 1)j ] (2.5)

under the assumption E[|Y − 1|k] < ∞.



4 Y. Fujikoshi et al. / Journal of Multivariate Analysis 96 (2005) 1–19

Our error bounds depend on

��,j = 1

j !
∥∥b�,j (x)g(x)

∥∥
1 , (j = 0,1, . . . , k) (2.6)

and more precisely they are expressed in terms of

��,k =


�1/k

�,k +

2 +

k−1∑
j=1

��,j




1/k



k

. (2.7)

Here for any integrable functionh(x) : Rp → R1, we define itsL1-norm by

‖h(x)‖1;p =
∫

Rp

|h(x)|dx

and in particular, we write‖ · ‖1 = ‖ · ‖1;1.

Lemma 2.1. For anyk�1 it holds that∥∥f (x) − g�,k(x)
∥∥

1 ���,kE
[
|Y − 1|k

]
. (2.8)

Proof. WeuseaTaylor formula (see,e.g.,[7, p. 257]) fora functionhwith k(�1)continuous
derivatives

h(y) = h(1) +
k−1∑
j=1

1

j ! h
(j)(1)(y − 1)j

+ (y − 1)k

(k − 1)! E
[
(1− �)k−1h(k)(1+ �(y − 1))

]
, (2.9)

where� is a random variable with uniform distribution(0,1). For anyy > 0 let

��,k(x, y) ≡ y−��g(xy−��) − g�,k(x, y). (2.10)

Using (2.3), (2.4) and (2.9) we can write also fork�1

��,k(x, y) = (y − 1)k

(k − 1)! E
[
(1− �)k−1 (1+ �(y − 1))−k−��

×b�,k

(
x(1+ �(y − 1))−��

)
g
(
x(1+ �(y − 1))−��

)]
. (2.11)

The idea of our proof is to use (2.10) or (2.11) depending on whethery is far from 1 or close
to it. Let

	 = (��,k/��,k)
1/k.

Note that	 : 0 < 	 < 1. If y : 0 < y < 	, then it follows from (2.10) that

∥∥��,k(x, y)
∥∥

1 �


1+

k−1∑
j=0

��,j


 (1− y)k

(1− 	)k

= ��,k|y − 1|k. (2.12)
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If y�	, then for any� ∈ [0,1] we have 1+ �(y − 1)�	. Therefore it follows from (2.11)
and Fubini theorem that∥∥��,k(x, y)

∥∥
1 ���,k

|y − 1|k
	k

= ��,k|y − 1|k. (2.13)

Combining (2.10), (2.12) and (2.13) we get (2.8).�

Remark 2.1. For a discussion of the selection of constant	, see, e.g.,[10].

It is well known (see, e.g., [8, Chapter 14]) thatL1-norm error bound for differences
between two densities allows to find closeness of the corresponding distributions. More
generally the result may be stated as follows.

Lemma 2.2. LetQi (A), i = 1,2be two set functions on the Borel
-field inRp defined by

Qi (A) =
∫

A

fi(x) dx, i = 1,2.

Suppose thatQ1(Rp) = Q2(Rp). Then

|Q1(A) − Q2(A)| � 1
2

∫
Rp

|f1(x) − f2(x)|dx

= 1
2 ‖f1(x) − f2(x)‖1;p . (2.14)

From Lemmas 2.1 and 2.2 we have the following theorem.

Theorem 2.1. Le X be a scale mixture of Z defined by(2.1),andY = S�/�, where� = 1
or −1 and� > 0.Suppose that the density function g ofZ1 satisfiesA1 andE(Y k) < ∞,

for a given integerk(> 1). Then we have for any Borel setA ⊂ R1

|P(X ∈ A) −
∫

A

g�,k(x) dx|� 1
2 ��,kE[|Y − 1|k]. (2.15)

For a special case� = 1,� = 1
2, andZ ∼ N(0,1), we have (see, e.g.,[10])

�j

�yj

(
y

−1
2�(xy

−1
2 )

)∣∣∣∣∣
y=1

= 2−jH2j (x)�(x), (2.16)

where�(x) is the density function ofN(0,1), andHj(x) is Hermite polynomial defined
by

Hj(x) = (−1)j {�(x)}−1 dj

dxj
�(x).

This implies that

�j

�yj

(
y

−1
2�(xy

−1
2 )

)∣∣∣∣∣
y=1

= 2−j d2j

dx2j �(x). (2.17)
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Therefore our approximationg1,k(x) can be written in the form

g1,k(x) = E


�(x) +

k−1∑
j=1

1

2j j ! (Y1 − 1)j
d2j

dx2j �(x)




= �(x) +
k−1∑
j=1

1

2j j ! H2j (x)�(x)E[(Y1 − 1)j ].

3. L1-norm error bounds in the multivariate case

In this section we extend Theorem 2.1 to the multivariate scale mixture variateX as in
(1.2). For its purpose, we derive an asymptotic expansion of the density function ofX and its
L1-normerror bounds. Letfp(x)andgp(z)be the density functions ofX andZ, respectively.
Thengp(z) = g(z1) . . . g(zp), and the conditional density ofX givenYi = yi, i = 1, . . . , p
is given by

h(x, y) = y
−��
1 g(x1y

−��
1 ) . . . y

−��
p g(xpy

−��
p ), (3.1)

wherex = (x1, . . . , xp)
′ andy = (y1, . . . , yp)

′. We consider an approximation forh(x, y)

g�,k,p(x, y) = gp(x) +
k−1∑
j=1

1

j !
(
(y1 − 1)

�
�z1

+ · · · + (yp − 1)
�

�zp

)j

× z
−��
1 g(x1z

−��
1 ) . . . z

−��
p g(xpz

−��
p )

∣∣∣
z1=···=zp=1

= gp(x) +
k−1∑
j=1

∑
(j)

1

j1! . . . jp! b�,j1(x1) . . . b�,jp (xp)gp(x) (3.2)

×(y1 − 1)j1 . . . (yp − 1)jp ,

which is an extension ofg�,k(x, y), where the sum
∑

(j) is taken over all non-negative
integers such thatj1 + · · · + jp = j . This suggests an approximation forfp(x)

g�,k,p(x) = gp(x) +
k−1∑
j=1

∑
(j)

1

j1! . . . jp! b�,j1(x1) . . . b�,jp (xp)gp(x)

×E
[
(Y1 − 1)j1 . . . (Yp − 1)jp

]
. (3.3)

Our error bound depends on the quantity��,k,p defined as follows. Let��,1,p = 2+v�,1,p
and fork�2

��,k,p =


v

1/k
�,k,p +


2 + p

k−1∑
j=1

v�,j,p




1/k



k

, (3.4)
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where

v�,j,p =
∑
[j ]

(p − 1)!
i1! . . . im! ��,j1 . . . ��,jp , (3.5)

where the summation[j ] is taken over all non-negative integers 0�j1� · · · �jp such that
j1 + · · · + jp = j , and the constantsm, i1, . . . , im are positive integers such that

0�j1 = · · · = ji1 < ji1+1 = · · · = ji1+i2

< · · · < ji1+···+im−1+1 = · · · = ji1+···+im(= jp)�j.

For the motivation behind (3.5), see Lemma 5.3 and Remark 5.2 in Section 5. In particular,
we have

v�,1,p = ��,1,

v�,2,p = ��,2 + 1
2(p − 1)�2

�,1,

v�,3,p = ��,3 + (p − 1)��,1��,2 + 1
6 (p − 1)(p − 2)�3

�,1, (3.6)

v�,4,p = ��,4 + 1
2 (p − 1)�2

�,2 + (p − 1)��,1��,3

+1
2 (p − 1)(p − 2)�2

�,1��,2 + 1
24 (p − 1)(p − 2)(p − 3)�4

�,1.

In the following Theorems 3.1 and 3.2 we give two main results whose proofs are given
in Section 5.

Theorem 3.1. Let X = diag(S1, . . . , Sp)Z be a multivariate scale mixture in(1.2),and

Yi = S
�/�
i , i = 1, . . . , p, where� = 1 or −1 and� > 0.Suppose that the density function

g ofZ1 satisfiesA1 andE(Y k
i ) < ∞, i = 1, . . . , p for a given integer k. Then we have for

any Borel setA ⊂ Rp

|P(X ∈ A) −
∫

A

g�,k,p(x)dx|� 1
2 ��,k,p

p∑
i=1

E[|Yi − 1|k]. (3.7)

For an actual use of (3.7) we will takek = 2 or 4. If k is even, then the moment in the
right-hand side can be expressed as

p∑
i=1

E[|Yi − 1|k] =
p∑

i=1

E[|Yi − 1|k] = E[tr(W − Ip)k]

which becomes more computable in applications, whereW = H diag(Y1, . . . , Yp)H′ and
H is any orthogonal matrix.

Theorem 3.2. Under the same condition as in Theorem3.1 we have for any Borel set
A ⊂ Rp

|P(X ∈ A) −
∫

A

g�,k,p(x) dx|� 1
2 ��,k,p

p∑
i=1

E[|Yi − 1|k], (3.8)
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where��,k,p are determined recursively by the relation

��,k,p = p−1


��,k + (p − 1)

k−1∑
q=0

��,k−q,p−1��,q


 , f or k�2, (3.9)

with ��,1,p = ��,1, ��,k,0 = 0 and��,k,1 = ��,k for all k�1.

Remark 3.1. In the case� = 1, � = 1
2 andZ1 ∼ N(0,1) a similar result as in Theorem

3.2 has been obtained in Theorem 2 in Shimizu[9] with the same recurrence relation as
(3.8) but with another initial value for��,k,1. Using (2.17) we can write the functiong1,k,p
as

g1,k,p(x) = E


�p(x) +

k−1∑
j=1

1

2j j !
(
�′

x(Y − Ip)�x

)j
�p(x)




= �p(x) +
k−1∑
j=1

∑
(j)

p∏
i=1

1

2ji ji ! H2ji (xi) · �p(x)E

[
p∑

i=1

|Yi − 1|k
]
,

where�p(x) = �(x1) . . .�(xp).

From relation (3.9) the constants��,k,p for k = 1, . . . ,4 are determined recursively as
follows.

��,1,p = ��,1,

��,2,p = ��,2 + 1
2 (p − 1)��,1��,1,

��,3,p = ��,3 + 1
2 (p − 1){��,1��,2 + ��,2��,1} (3.10)

+1
6 (p − 1)(p − 2)��,1��,1,

��,4,p = ��,4 + 1
2 (p − 1){��,1��,3 + ��,2��,2 + ��,3��,1}

+1
6 (p − 1)(p − 2){�2

�,1��,2 + 2��,1��,2��,1}
+ 1

24 (p − 1)(p − 2)(p − 3)�3
�,1��,1.

Combining Theorems 3.1 and 3.2 we have

|P(X ∈ A) −
∫

A

g�,k,p(x) dx|� 1
2 min(��,k,p, ��,k,p)

p∑
i=1

E[|Yi − 1|k]. (3.11)

Note that

��,1,p = ��,1,p, ��,2,p���,2,p. (3.12)

Now in special cases we show how to simplify the approximation

P�,k,p(A) =
∫

A

g�,k,p(x) dx =
k−1∑
j=0

P
(j)

�,k,p(A), (3.13)
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whereP (0)
�,k,p(A) = ∫

A
gp(x) dx = I�(A) and forj �1

P
(j)

�,k,p(A) =
∑
(j)

1

j1! . . . jp!
∫

A

b�,j1(x1) . . . b�,jp (xp)gp(x) dx

×E
[
(Y1 − 1)j1 . . . (Yp − 1)jp

]
. (3.14)

Note that in applications to the distribution ofT 2
0 the setA is invariant, that is,A stays

the same for any permutation of coordinatesx1, . . . , xp. In the following, assume thatA is
invariant and let

I�,i (A) =
∫

A

b�,i (x1)gp(x)dx,

I�,ij (A) =
∫

A

b�,i (x1)b�,j (x2)gp(x)dx, (3.15)

I�,ijk(A) =
∫

A

b�,i (x1)b�,j (x2)b�,j (x3)gp(x)dx, so on.

Then we have

P
(1)
�,k,p(A) = I�,1(A)M1;p,

P
(2)
�,k,p(A) = 1

2 I�,2(A)M2;p + 1
2 I�,11(A)M11;p, (3.16)

P
(3)
�,k,p(A) = 1

6 I�,3(A)M3;p + 1
2 I�,21(A)M12;p + 1

6 I�,111(A)M11,1;p,

where

M
;p = E[
p∑

i=1

(Yi − 1)
],

M
�;p = E[
p∑

i �=j

(Yi − 1)
(Yj − 1)�], (3.17)

M
��;p = E[
p∑

i �=j �=k

(Yi − 1)
(Yj − 1)�(Yj − 1)�], etc.

4. Hotelling’s generalizedT 2
0 -statistic

In this section we consider error bounds for asymptotic expansion of the null distribution
of Hotelling’s generalizedT 2

0 -statistic defined by (1.5). The statistic is used as one of the
test statistics in multivariate linear model. The limiting ofT 2

0 is a chi-square distribution
�2
r with r = pq degrees of freedom. Further, it is known (see, e.g., [1]) thatT 2

0 has an
asymptotic expansion

P(T 2
0 �x) = Gr(x) + r

4n
{(q − p − 1)Gr(x)

−2qGr+2(x) + (q + p + 1)Gr+4(x)} + O(n−2),

whereGr is the distribution function of�2
r variate.
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Lemma 4.1.WecanwriteT 2
0 in termsofamultivariatescalemixtureX = (X1, . . . , Xp)

′ =
diag(S1, . . . , Sp)Z as

T 2
0 = X1 + · · · + Xp, (4.1)

whereZ = (Z1, . . . , Zp)
′, Z1, . . . , Zp are i.i.d. randomvariables,Z1 ∼ �2

q ,Si = Y−1
i (i =

1, . . . , p), and Y1 > · · · > Yp > 0 are the characteristic roots ofW such thatnW ∼
Wp(n, Ip).

Proof. It is well known that the distribution ofT 2
0 can be expressed as

T 2
0 = n tr(U′U)S−1

e

= n tr(H′U′UH)(H′SeH)−1,

whereU is aq × p random matrix whose elements are independent identically distributed
asN(0,1), andH is an orthogonal matrix. Note that the distributions ofUH andH′SeH
are the same asU andSe, respectively. The result is obtained by choosingH such that
H′SeH = diag(Y1, . . . , Yp). �

Note that from Lemma 4.1

P(T 2
0 �x) = P(X ∈ Ax) �

∫
Ax

g�,k,p(x)dx

as in (1.5). Now we use Theorems 3.1 and 3.2 with� = −1,� = 1,Z1 ∼ �2
q , andk = 2 or

4. Letgq(x) be a density function of�2
q , i.e.

gq(x) = 1

2q/2�(q/2)
xq/2−1 exp(−x/2).

Then the functionsb−1,j (x) defined by (2.3) are given by

b−1,1(x) = −1
2 (x − q),

b−1,2(x) = 1
4 {x2 − 2qx + q(q − 2)}, (4.2)

b−1,3(x) = −1
8 {x3 − 3qx2 + 3q(q − 2)x − q(q − 2)(q − 4)}.

It is easy to see that

b−1,1(x)gq(x) = 1
2 q

{
gq(x) − gq+2(x)

}
,

b−1,2(x)gq(x) = 1
4 q

{
(q − 2)gq(x) − 2qgq+2(x) + (q + 2)gq+4(x)

}
, (4.3)

b−1,3(x)gq(x) = 1
8 q

{
(q − 2)(q − 4)gq(x) − 3q(q − 2)gq+2(x)

+ 3q(q + 2)gq+4(x) − (q + 2)(q + 4)gq+6(x)
}
.

Using expression (4.3) we have

I−1,1(Ax) = 1
2 q

[
Gr(x) − Gr+2(x)

]
,

I−1,2(Ax) = 1
4 q {(q − 2)Gr(x) − 2qGr+2(x) + (q + 2)Gr+4(x)} ,

I−1,11(Ax) = 1
4 q2 {Gr(x) − 2Gr+2(x) + Gr+4(x)} ,
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I−1,3(Ax) = 1
8 q {(q − 2)(q − 4)Gr(x) − 3q(q − 2)Gr+2(x) (4.4)

+3q(q + 2)Gr+4(x) − (q + 2)(q + 4)Gr+6(x)} ,
I−1,21(Ax) = 1

8 q2 {(q − 2)Gr(x) − (3q − 2)Gr+2(x)

+(3q + 2)Gr+4(x) − (q + 2)Gr+6(x)} ,
I−1,111(Ax) = 1

8 q3 {Gr(x) − 3Gr+2(x) + 3Gr+4(x) − Gr+6(x)} .

LetV = W − Ip. Then it is easily seen that

Mj ;p =
p∑

i=1

(Yi − 1)j = trVj , j = 1,2, . . . ,

M11;p =
p∑

i �=j

(Yi − 1)(Yj − 1) = (trV)2 − trV2, (4.5)

M21;p =
p∑

i �=j

(Yi − 1)2(Yj − 1) = trV trV2 − trV3,

M111;p =
p∑

i �=j �=k

(Yi − 1)(Yj − 1)(Yk − 1) = (trV)3 − 3 trV trV2 + 2 trV3.

These imply the following expressions:

P�,1,p(Ax) = I�,1(Ax),

P�,2,p(Ax) = P�,1,p(Ax) + I�,1(Ax)E[trV],
P�,3,p(Ax) = P�,2,p(Ax) + 1

2 I�,2,p(Ax)E[trV2]
+1

2 I�,11(Ax)E[{(trV)2 − trV2}], (4.6)

P�,4,p(Ax) = P�,3,p(Ax) + 1
6 I�,3(Ax)E[trV3]

+1
2 I�,21(Ax)E[{trV trV2 − trV3}]

+1
6 I�,111(Ax)E[{(trV)3 − 3 trV trV2 + 2 trV3}].

Further, from moment formulas (see, e.g.,[2]) on Whishart matrix we have the following
results:

E[trV] = 0, E[trV2] = 1

n
p(p + 1),

E[(trV)2] = 1

n
2p, E[trV3] = 1

n2 p(p2 + 3p + 4),

E[trV trV2] = 4

n2 p(p + 1), E[(trV)3] = 8

n2 p, (4.7)

E[trV4] = 1

n2 p(2p2 + 5p + 5).
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Theorem 4.1. Let T 2
0 be the generalized Hotelling statistic defined by(1.5).Under the

assumptionn�p, it holds that

(i) |P(T 2
0 � x) − Gr(x)|� 1

2n
p(p + 1)�−1,2,p(q),

(ii ) |P(T 2
0 � x) − Gr(x) − r

4n
{(q − p − 1)Gr(x)

−2qGr+2(x) + (q + p + 1)Gr+4(x)}|
� r

48n2 (|h| + 24q|p − q + 1| + 24q(p + q + 1)

+ 1

2n2 p(2p2 + 5p + 5)min{�−1,4,p(q), �−1,4,p(q)},
wherer = pq andh = 8{p2 − 3(q − 1)p + q2 − 3q + 4}.Here�−1,k,p(q) and�−1,k,p(q)

are the��,k,p in (3.4)and��,k,p in (3.9),respectively, for the caseZ1 ∼ �2
q .

Proof. Substituting (4.4) and (4.7) into (4.6) we have

P−1,1,p(Ax) = P(Z ∈ Ax) = P(�2
r �x) = Gr(x),

P−1,2,p(Ax) = Gr(x),

P−1,4,p(Ax) = Gr(x) + r

4n
{(q − p − 1)Gr(x) (4.8)

−2qGr+2(x) + (q + p + 1)Gr+4(x)}
+ r

48n2 {h(Gr(x) − Gr+6(x)) − 24q(p − q + 1)(Gr+2(x) − Gr+4(x))

+24(p + q + 1)q(Gr+4(x) − Gr+6(x))}.
Therefore, it follows from (3.11) that

|P(T 2
0 �x) − P−1,2,p(Ax)|� 1

2n
p(p + 1)�−1,2,p(q), (4.9)

since�−1,2,p(q)��−1,2,p(q) (see (3.12)), and

|P(T 2
0 �x) − P−1,4,p(Ax)|

� 1

2n2 p(2p2 + 5p + 5)min{�−1,4,p(q), �−1,4,p(q)}. (4.10)

These imply the theorem.�

The quantities of�−1,k,p(q) and�−1,k,p(q) are numerically obtained. Fork = 2,4, q =
1–5 andp = 1–4, see Tables1 and 2.

FromTables 1and2 it seems that the bound�−1,k,p(q) is better than thebound�−1,k,p(q),
at least, for some region ofq andp.

5. Proofs of Theorems 3.1 and 3.2

Lemma 5.1. For a positive integer j, let

0�j1�j2� · · · �jp
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Table 1
Values of�−1,2,p(q) and�−1,4,p(q)

q �−1,2,p(q) �−1,4,p(q)

p p

1 2 3 4 1 2 3 4

1.0 4.57 5.67 6.76 7.85 15.68 25.43 39.21 57.77
2.0 5.71 7.64 9.56 11.47 22.58 44.24 78.44 128.19
3.0 6.69 9.34 11.97 14.59 30.36 66.82 127.69 219.52
4.0 7.61 10.91 14.19 17.46 38.88 93.15 186.92 331.36
5.0 8.45 12.37 16.26 20.15 47.97 122.61 254.72 461.11

Table 2
Values of�−1,2,p(q) and�−1,4,p(q)

q �−1,2,p(q) �−1,4,p(q)

p p

1 2 3 4 1 2 3 4

1.0 4.57 5.18 5.78 6.38 15.68 18.74 22.41 26.76
2.0 5.71 6.72 7.72 8.73 22.58 28.93 37.04 47.18
3.0 6.69 8.04 9.40 10.75 30.36 40.61 54.16 71.59
4.0 7.61 9.28 10.95 12.62 38.88 53.69 73.72 99.93
5.0 8.45 10.43 12.40 14.36 47.97 67.91 95.31 131.65

be integers such thatj1 +· · ·+ jp = j anda1, . . . , ap be non-negative real numbers. Then∑
a
-1
1 · · · a-pp �(p − 1)!(aj1 + · · · + a

j
p), (5.1)

where summation on the left-hand side is taken over allp! permutations(-1, . . . , -p) of
(j1, . . . , jp).

Proof. We prove (5.1) by mathematical induction onp. If p = 1, then (5.1) is obvious. We
assume that (5.1) is valid forp − 1 (�1). We write the left-hand side of (5.1) in the form∑

a
-1
1 . . . a

-p
p = a

j1
1 Pj−j1(a2, . . . , ap) + · · · + a

jp
1 Pj−jp (a2, . . . , ap),

wherePj−j1(a2, . . . , ap) = ∑
a
-2
2 . . . a

-p
p and the summation here is taken over all(p −

1)! permutations(-2, . . . , -p) of (j2, . . . , jp). PolynomialsPj−j2, . . . , Pj−jp are defined
similarly. The hypothesis of the induction asserts that for allk = 1,2, . . . , p we have

Pj−jk (a2, . . . , ap)�(p − 2)!(aj−jk
2 + · · · + a

j−jk
p ).
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Therefore we get∑
a
-1
1 . . . a

-p
p � (p − 2)!

[
a
j1
1

(
a
j−j1
2 + · · · + a

j−j1
p

)
+ · · ·

+a
jp
1

(
a
j−jp
2 + · · · + a

j−jp
p

)]
. (5.2)

It is clear that on the right-hand side of (5.2) we can replacea1 by any otherai , that is, for
i = 1,2, . . . , p we have

∑
a
-1
1 · · · a-pp �(p − 2)!


a

j1
i

p∑
k=1,k �=i

a
j−j1
k + · · · + a

jp
i

p∑
k=1,k �=i

a
j−jp
k


 . (5.3)

Note that for any positiveb1 andb2 a functionbj−x
1 bx2 + bx1b

j−x
2 of x is convex on[0, j ]

and is equal tobj1 + b
j
2 for x = 0 andx = j (cf. Lemma 2 in[9]). Therefore for all integers

i = 0,1, . . . , j we have

b
j−i
1 bi2 + bi1b

j−i
2 �b

j
1 + b

j
2. (5.4)

Thus summing up inequalities (5.3) for i = 1,2, . . . , p we get from (5.4) that

p
∑

a
-1
1 · · · a-pp �(p − 2)!(p − 1)p(aj1 + · · · + a

j
p).

Hence we obtain (5.1). �

Remark 5.1. Note whena1 = · · · = ap = 1 inequality (5.1) is written in the formp!�p!.
Therefore, (5.1) is sharp.

Lemma 5.2. In Lemma5.1we assume

0�j1 = · · · = ji1 < ji1+1 = · · · = ji1+i2

< · · · < ji1+···+im−1+1 = · · · = ji1+···+im(= jp)�j.

Then

∑
1

a
-1
1 · · · a-pp � (p − 1)!

i1! · · · im! (a
j
1 + · · · + a

j
p), (5.5)

where summation on the left-hand side is taken over all different permutations(-1, . . . , -p)

of (j1, . . . , jp).

Proof. The result follows from∑
a
-1
1 · · · a-pp = i1! · · · im!

∑
1

a
-1
1 · · · a-pp

and by applying Lemma 5.1 to the left-hand side of the above equality.�
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Lemma 5.3. Assume thatg(x) satisfiesA1 in Section2. Let j (0 < j �k) be a positive
integer and

I (x) =
∑
(j)

p∏
i=1

a
ji
i

1

ji ! y
−ji
iji

b�,ji (xiy
−��
iji

)g(xiy
−��
iji

),

wherea1, . . . , ap are positive numbers. If allyiji �	 > 0, i = 1,2, . . . , p, then

‖I (x)‖1,p�	−j v�,j,p(a
j
1 + · · · + a

j
p), (5.6)

wherev�,j,p is given by(3.5).

Proof. Since allyiji �	 and for any permutation of(j1, . . . , jp) a product��,j1 . . . ��,jp
does not change, we get

‖I (x)‖1,p�	−j
∑
[j ]

(
�j1 . . . �jp

∑
1

a
-1
1 . . . a

-p
p

)
, (5.7)

where
∑

[j ] denotes summation over all non-negative integers 0�j1� · · · �jp such that
j1+· · ·+jp = j , and

∑
1 means summation over all different permutations{-1, -2, . . . , -p}

of a fixed set{j1, j2, . . . , jp}. We get (5.6) from (5.7) and Lemma 5.2.�

Remark 5.2. Leth(x, y) be the conditional density function defined by (3.1). Assume that
g(x) satisfies A1. Then for any positivea1, . . . , ap and a positive integerj : 0 < j �k we
have ∥∥∥∥∥

(
a1

�
�y1

+ · · · + ap
�

�yp

)j

h(x, y)

∣∣∣∣∣
yi=yi0,i=1,2,...,p

∥∥∥∥∥∥
1;p

�j !	−j v�,j,p(a
j
1 + · · · + a

j
p), (5.8)

providedyi0�	 > 0, i = 1,2, . . . , p, wherev�,j,p is defined by (3.5). The result follows
immediately from Lemma 5.3 and the fact that the left-hand side equals

∑
(j)

j !
p∏

i=1

a
ji
i

1

ji ! y
−ji−��
i0 b�,ji (xiy

−��
i0 )g(xiy

−��
i0 ).

Proof of Theorem 3.1. Note that

fp(x) = E[h(x,Y)] ,

where Y = (Y1, . . . , Yp)
′ and a functionh is defined in (3.1). We construct an

expansion for using (2.9) sequentially. Namely, at first we apply (2.9) toy
−��
1 g(x1y

−��
1 ).
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We get

h(x, y) =

g(x1) +

k−1∑
j=1

1

j ! b�,j (x1)g(x1)(y1 − 1)j + R�,k;1(y1 − 1)k




×h2(x, y), (5.9)

where

R�,k;1 = 1

(k − 1)! E

[
(1− �)k−1 �

�yk

(
y−��g(x1y

−��)
)∣∣∣∣∣

y=1+�(y1−1)

]
,

h2(x, y) =
p∏

i=2

y
−��
i g(xiy

−��
i ).

Now we apply (2.9) for a functiony−��
2 g(x2y

−��
2 ) so that for a summand

1

j ! b�,j (x1)g(x1)(y1 − 1)jh2(x, y),

we apply (2.9) withk replaced byk − j . At last we obtain the following expansion:

h(x, y) = g(x1) . . . g(xp)

+
k−1∑
j=1

∑
(j)

p∏
i=1

1

ji !b�,ji (xi)g(xi)(y1 − 1)j + ��,k,p(x, y), (5.10)

whereR�,k,p is a sum of terms each of which can be written in the form

(y1 − 1)k1 · · · (yp − 1)kp Ik1(y1) · · · Ikp (yp) (5.11)

with ki �0 for i = 1,2, . . . , p andk1 + · · · + kp = k. Each factorIj in (5.11) has one of
the following form:

Ik(y) = 1

(k − 1)!
∫ 1

0
(1− �)k−1 �k

�yk
1

(
y

−��
1 g(xy

−��
1 )

)∣∣∣∣∣
y1=1+�(y−1)

d�, (5.12)

I0(y) = g(x) or I0(y) = y−��g(xy−��) and whenj : 1�j �k −1, we have forIj (y) one
of the two representations:

1

j !b�,j (x)g(x) or

1

(j − 1)!
∫ 1

0
(1− �)j−1 �j

�yj
1

(
y

−��
1 g(xy

−��
1 )

)∣∣∣∣∣
y1=1+�(y−1)

d�.

Let

	 = (
v�,k,p/��,k,p

)1/k
. (5.13)
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At first we consider the case when 0< min(y1, . . . , yp)�	. Assume thaty1 is such that
0 < y1�	. We have for anyj : 1�j �k,

|1− y1|j + · · · + |1− yp|j � 1

(1− 	)k−j

(
|1− y1|k

+|1− y1|k−j |1− y2|j + · · · + |1− y1|k−j |1− yp|j
)

� p

(1− 	)k−j

(
|1− y1|k + · · · + |1− yp|k

)
. (5.14)

Therefore, using Lemma 5.3, (5.10) and (5.13) we get

‖R�,k,p‖1;p � 2 +
k−1∑
j=1

(
|y1 − 1|j + · · · + |yp − 1|j

)
v�,j,p

� 1

(1− 	)k

(
|1− y1|k + · · · + |1− yp|k

)
2 + p

k−1∑
j=1

v�,j,p




� ��,k,p

(
|y1 − 1|k + · · · + |yp − 1|k

)
. (5.15)

If min(y1, . . . , yp) > 	 then using Lemma 5.3, (5.12) and representations for summands
contained inR�,k,p we get

‖R�,k,p‖1;p � 	−kv�,k,p

(
|y1 − 1|k + · · · + |yp − 1|k

)
= ��,k,p

(
|y1 − 1|k + · · · + |yp − 1|k

)
. (5.16)

According to Remark 5.2 and combining (5.15) and (5.16) we finish the proof of
Theorem 3.1. �

Proof of Theorem 3.2. Let h(x, y) = ∏p
i=1 y

−��
i g(xiy

−��
i ), and

��,k,p(x, y) = h(x, y) − g�,k,p(x, y), (5.17)

whereg�,k,p(x, y) is defined by (3.3). In order to prove (3.8) it is enough as usual to show
that

‖��,k,p(x, y)‖1;p���,k,p

p∑
i=1

|yi − 1|k, (5.18)

whereyi, i = 1, . . . , p, are considered as positive real numbers. In the following we show
that the result can be proved by using arguments similar to the proof of Lemma 2 in[9].
We prove (5.18) by mathematical induction with respect top. Forp = 1, ��,k,1 = ��,k, and
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hence inequality (5.18) was proved in Lemma 2.1 or Theorem 2.1. Forp�2 we use

h(x, y) =

g(xp) +

k−1∑
j=1

1

j ! (yp − 1)j b�,j (xp)g(xp) + ��,k,1(xp, yp)




×
p−1∏
i=1

y
−��
i g(xiy

−��
i ), (5.19)

where‖��,k,1(xp, yp)‖1���,k|yp−1|k.We apply equality (5.17) to
∏p−1

i=1 y
−��
i g(xiy

−��
i )

with p replaced byp − 1 andk replaced byk − j when
∏p−1

i=1 y
−��
i g(xiy

−��
i ) is a factor

by (yp − 1)j in (5.19). Thus we get

��,k,p(x, y) = g(xp)��,k,p−1(x(−p), y(−p))

+
k−1∑
j=1

1

j ! (yp − 1)j b�,j (xp)g(xp)��,k−j,p−1(x(−p), y(−p))

+��,k,1(xp, yp)

p−1∏
i=1

y
−��
i g(xiy

−��
i ), (5.20)

wherex(−p) = (x1, . . . , xp−1)
′ andy(−p) = (y1, . . . , yp−1)

′. Assume that (5.18) holds for
p − 1. Then from (5.20) we get

‖��,k,p(x, y)‖1;p � ��,k|yp − 1|k

+
k−1∑
q=0

��,q |yp − 1|q��,k−q,p−1

p−1∑
i=1

|yi − 1|k−q . (5.21)

It is clear we could use the same arguments to the function
∏p

i=1,i �=j y
−��
i g(xiy

−��
i ) with

anyj = 1,2, . . . , p. Then we could get (5.21) with |yp − 1| replaced by|yj − 1|. Since
in all these inequalities the left-hand sides will coincide, summing up the inequalities for
j = 1,2, . . . , p and using

p∑
i �=j

|yi − 1|k−q |yj − 1|q �(p − 1)
p∑

i=1

|yi − 1|k, (5.22)

we obtain

p‖��,k,p(x, y)‖1;p�


��,k + (p − 1)

k−1∑
q=0

��,k−q,p−1��,q




p∑
i=1

|yi − 1|k. (5.23)

Note that (5.22) follows from (5.4). Therefore, we come to (5.18) and recurrence formula
for ��,k,p stated in Theorem 3.2.�



Y. Fujikoshi et al. / Journal of Multivariate Analysis 96 (2005) 1–19 19

Acknowledgments

The authors would like to thank a reviewer and editors for their careful readings and
useful comments.

References

[1] T.W. Anderson, An Introduction to Multivariate Analysis, second ed., Wiley, NewYork, 1984.
[2] Y. Fujikoshi, Asymptotic expansions of the distributions of test statistics in multivariate analysis, J. Sci.

Hiroshima Univ. Ser. A-I 34 (1970) 73–144.
[3] Y. Fujikoshi, Error bounds for asymptotic approximations of some distribution functions, in: C.R. Rao (Ed.),

Multivariate Analysis: Future Directions, North-Holland Publishing Company, Amsterdam, 1993, pp. 181–
208.

[4] Y.Fujikoshi,R.Shimizu,Asymptotic expansionsof somemixturesof univariateandmultivariatedistributions,
J. Multivariate Anal. 30 (1989) 279–291.

[5] Y. Fujikoshi, R. Shimizu, Asymptotic expansions of some mixtures of the multivariate normal distribution
and their error bounds, Ann. Statist. 17 (1989) 1124–1132.

[6] P. Hall, On measures of the distance of a mixture from its parent distribution, Stochastic Process. Appl. 8
(1979) 357–365.

[7] A.I. Khuri, Advanced Calculus with Applications in Statistics, second ed., Wiley, NewYork, 2003.
[8] S.T. Rachev, Probability Metrics and Stability of Stochastic Models, Wiley, NewYork, 1991.
[9] R. Shimizu, Expansion of the scale mixture of the multivariate normal distribution, J. Multi. Anal. 53 (1)

(1995) 126–138.
[10] R. Shimizu,Y. Fujikoshi, Sharp error bounds for asymptotic expansions of the distribution functions of scale

mixtures, Ann. Inst. Statist. Math. 49 (1997) 285–297.
[11] V.V. Ulyanov,Y. Fujikoshi, R. Shimizu, Nonuniform error bounds in asymptotic expansions for scale mixtures

under mild moment conditions, J. Math. Sci. 93 (1999) 600–608.


