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Abstract This article investigates gain self-scheduledH1 robust control systemdesign for a tailless fold-

ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the air-

craft’s dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear

dynamic equations of themorphing aircraft are linearized byusing Jacobian linearization approach, and a

linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. Amulti-loop

controller for themorphing aircraft is formulated to guarantee stability for the wing shape transition pro-

cess. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques,

whereas a gain self-scheduledH1 outer-loop controller is devised to guarantee a specific level of robust

stability and performance for the time-varying dynamics. The closed-loop simulations show that speed

and altitude vary slightly during the whole wing folding process, and they converge rapidly after the pro-

cess ends. This proves that the gain self-scheduled H1 robust controller can guarantee a satisfactory

dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally,

the flight control system’s robustness for the wing folding process is verified according to uncertainties of

the aerodynamic parameters in the nonlinear model.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Morphing aircraft can automatically change its aerodynamic
configuration to adapt to different flight environments and

combat missions by using advanced materials and actuators.1,2
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Compared to conventional fixed-wing aircraft, morphing air-

craft possesses multi-objective adaptability and higher combat
effectiveness.3,4 The typical objective of morphing aircraft de-
sign includes enhancing flight performance and combat effec-

tiveness, but not improving the flying quality. So application
of morphing techniques may bring disadvantage to the air-
craft’s dynamic characteristics.

The wing transition process is obviously complicated and
very important for morphing aircraft. Generally, the wing
morphing approach will involve large rigid-body motions of

the wing structure. The dynamic response of morphing aircraft
will be governed by time-varying aerodynamic forces and
moments which are related to the wing shape. Dynamic models
for morphing aircraft must take into account the dynamic
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coupling betweenwing area andmass distribution change, aerody-
namics, structure, and control forces. Thus, the wing morphing
process is a complicated time-varying dynamic system.5–7 As wing

configuration parameters and aerodynamics do vary in large
ranges, the dynamic response in wing morphing and the final bal-
ancedkinetic parameterswill also exhibit large variations. Further-

more, the aircraft needs a long time to achieve a new state of level
flight without control. Consequently, the flying quality of morp-
hing aircraft may deteriorate and flight safety may be threatened.

To guarantee satisfactory flying quality, a morphing aircraft capa-
ble of shape reconfiguration requires a flight control system to
maintain stability during the morphing transition phase.

Current research on flight control design for morphing air-

craft mainly focuses on static configuration control.8–11 There
is a notable lack of published work on flight control design for
morphing aircraft’s wing transition phase. When the aerody-

namic shape is changing, the controller should adapt online
to maintain stability in shape transition between different con-
figurations. Since the wing transition process is time-varying, it

is obviously quite difficult to use general control techniques to
control such a complex dynamic behavior. One possible ap-
proach is to assume that the time-varying dynamics could be

represented by a linear parameter varying (LPV) plant model
that approximately captures the wing transition phase’s com-
plex behavior. In this LPV framework, nonlinear dynamic
equations of morphing aircraft could be simplified and trans-

formed to an LPV model. Then gain self-scheduled control
technique12–14 based on the LPV model could be used for wing
transition control. The gain self-scheduled control technique

based on the LPV model can rapidly change controller param-
eters to adapt to the aircraft’s dynamic response. Additionally,
this control approach can guarantee stability of the closed-

loop system. Therefore, the gain self-scheduled control tech-
nique can be utilized to solve flight control design problems
for the wing transition process of morphing aircraft.

This article focuses on gain self-scheduledH1 robust control
design during the wing folding process of a tailless folding-wing
morphing aircraft. According to the properties of wing folding
process, longitudinal nonlinear dynamic equations of the morp-

hing aircraft in wing shape varying are simplified and trans-
formed to an LPV model. Then, a multi-loop controller
designed based on the LPV model is presented. It is found that

this control approach can successfully maintain stability for
the morphing aircraft in the whole wing transition process.
Fig. 1 LPV control of LPV system.
2. Gain self-scheduled H‘ robust control for LPV system

The class of finite dimensional linear systems whose state-space
matrixes depend continuously on a time varying parameter

vector h(t) is called linear parameter varying. In state-space
form, an LPV system model can be expressed as

_x ¼ AðhðtÞÞxþ BðhðtÞÞu
y ¼ CðhðtÞÞxþDðhðtÞÞu

�
ð1Þ

where the state matrixes A, B, C, D vary with h(t), u is the con-

trol input. It is a time-varying vector that can consist of system
outputs, exogenous inputs, or combinations of both. LPV
systems are linear systems where the state-space description

is an explicit function of h(t).
Here we focus on the standard H1 control problem of LPV

system. As shown in Fig. 1, the resulting LPV controller K(h)
exploits all available information on h(t) to adjust the current
plant’s dynamics. This provides smooth and automatic gain
self-scheduled with respect to the varying parameter h(t).

We consider LPV plants P(h) with state-space equations

_x ¼ AðhÞxþ B1ðhÞwþ B2ðhÞu
z ¼ C1ðhÞxþD11ðhÞwþD12ðhÞu
y ¼ C2ðhÞxþD21ðhÞwþD22ðhÞu

8><
>: ð2Þ

with state x e Rn, disturbance w 2 Rm1 , control input u 2 Rm2 ,
performance output z 2 Rp1 , and measured output y 2 Rp2 .

The plants P(h) can be described as

P ¼
P11 P12

P21 P22

� �
¼

AðhÞ B1ðhÞ B2ðhÞ
C1ðhÞ D11ðhÞ D12ðhÞ
C2ðhÞ D21ðhÞ D22ðhÞ

2
64

3
75 ð3Þ

We seek an LPV controller K(h) of the form

_xK ¼ AKðhÞxK þ BKðhÞy
u ¼ CKðhÞxK þDKðhÞy

�
ð4Þ

that guarantees H1 performance for the closed-loop system in
Fig. 1. The transfer function from w to z of the closed-loop
system is

TzwðsÞ ¼ P11 þ P12KðI� P22KÞ�1P21 ð5Þ
Definition 1.
15A matrix polytope is defined as convex hull of a

finite number of matrices Ni with the same dimensions, i.e.,

CofNi; i ¼ 1; 2; � � � ; rg :¼
Xr
i¼1

aiNi : ai P 0;
Xr
i¼1

ai ¼ 1

( )
ð6Þ

where ai is the weighting ratio. For the LPV system Eq. (2), if:
(A) the parameter dependence is affine, that is, the state-space
matrices A(h), B1(h), B2(h), C1(h), C2(h), D11(h), D12(h), D21(h)

and D22(h) depend affinely on h; (B) the tine-varying parameter
h varies in a polytope H, that is h e H = Co{h1, h2, . . ., hr}; the
plant is further assumed to be polytopic, i.e.,

AðhÞ B1ðhÞ B2ðhÞ
C1ðhÞ D11ðhÞ D12ðhÞ
C2ðhÞ D21ðhÞ D22ðhÞ

2
64

3
75 2

Co

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

2
64

3
75; i ¼ 1; 2; � � � ; r

8><
>:

9>=
>; ð7Þ

where Ai, B1i, . . ., denote the values of A(h), B1(h), . . ., at the
vertices h = hi of the parameter polytope.
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In the sequel the standard H1 control problem can be de-
fined as: finding an internally stabilizing controller K that
makes the closed-loop H1 gain from w to z less than c. If
Tzw(s) denotes the closed-loop transfer function w to z, this
control objective can be formalized as

kTzwðsÞk1 < c ð8Þ

It is known from Ref. 15 that there exists an LPV controller
Eq. (4) guaranteeing quadratic H1 performance c along all
parameter trajectories, if and only if there exist two symmetric

matrices R e Rn·n and S e Rn·n satisfying the system of 2r + 1
linear matrix inequalities (LMI).

If h is in the polytope Co{h1, h2, . . ., hr}, that is,

h 2 H :¼
Xr
i¼1

aihi : ai P 0;
Xr
i¼1

ai ¼ 1

( )
ð9Þ

Then the LPV controller’s state-space matrices are given by

AKðhðtÞÞ BKðhðtÞÞ
CKðhðtÞÞ DKðhðtÞÞ

� �
:¼
Xr
i¼1

aiðtÞ
AKi BKi

CKi DKi

� �
ð10Þ

where AKi, BKi, CKi, DKi can be obtained off-line, and AK(h(t)),
BK(h(t)), CK(h(t)), DK(h(t)) will update dependently on the
parameter h(t) in real time.

3. Longitudinal LPV model in wing shape varying for folding-

wing morphing aircraft

In this article a folding-wing morphing aircraft which has a tail-

less flying wing configuration is studied (shown in Fig. 2). The
wings include inner wings and outer wings, which can be folded
by smart actuators to change their shape. In the wing transition

process, the inner wings rotate and the outer wings keep level.
Fig. 2 Folding-wing morphing aircraft.
When the wing shape is changing, the dynamic response of
the morphing aircraft will be dependent on time-varying aero-
dynamic forces and moments, which are both functions of the

wing shape. In Ref. 16 the folding-wing morphing aircraft is re-
garded as a variable geometry rigid body, and a six-DOF non-
linear dynamic model in the wing folding process is founded. It

also shows that the aerodynamic forces and moments of the
folding-wing morphing aircraft almost linearly vary with the
wing fold angle hfold in wing folding. Hence, we can regard

the morphing process as an LPV system. In this LPV frame-
work, the nonlinear dynamic equations of the morphing air-
craft will be simplified and transformed to an LPV model by
LPV modeling approaches.17–20

Here we only consider the longitudinal motion of the air-
craft during the wing folding process. The longitudinal nonlin-
ear equations of motion in the wing folding process can be

expressed as16

_Vx ¼
Iy

mIy � S2
z

ð�mqVz � 2q _Sz þ FxÞ

� Sz

mIy � S2
z

� _Iyq� SzqVz þ
2S1x

€S1z

m1

þ 2S2x
€S2z

m2

þMy

� �

_Vz ¼
1

m
ðmqVx þ q2Sz � €Sz þ FzÞ

_q ¼ � Sz

mIy � S2
z

ð�mqVz � 2q _Sz þ FxÞ

þ m

mIy � S2
z

� _Iyq� SzqVz þ
2S1x

€S1z

m1

þ 2S2x
€S2z

m2

þMy

� �
_h ¼ q

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð11Þ

The variables in Eq. (11) are introduced in Ref.16 It is as-

sumed that the thrust line passes through the origin of the
fixed-body axes. The forces and moments in right-hand side
of Eq. (11) can be expressed as

Fx ¼ �D cos aþ L sin aþ T�mg sin h

Fz ¼ �D sin a� L cos aþmg cos h

My ¼MA � gSz sin h

8><
>: ð12Þ

where D, L, T are the drag, lift and thrust, MA is the pitching

moment caused by aerodynamic forces, a the angle of attack, h
the pitch angle, Sz the z-component of static momentum
S= � r · dm in fixed-body axes, and g the acceleration due

to gravity, respectively. The lift, drag, and pitching moments
in Eq. (12) are given as

L ¼ 1

2
qV2SCL

D ¼ 1

2
qV2SCD

MA ¼
1

2
qV2ScCm

8>>>>>><
>>>>>>:

ð13Þ

where q is the air density, S the wing area, and c the mean
aerodynamic chord. The lift, drag and pitching moment coef-
ficients are given as

CL ¼ CLða;VÞ ¼ CL0 þ CLaaþ CLVDV=Vþ CLdede

CD ¼ CDða;VÞ ¼ CD0 þ CDaaþ CDa2a2 þ CDVDV=Vþ CDdede

Cm ¼ Cmða; q;V; deÞ ¼ Cm0 þ Cmaaþ CmVDV=Vþ Cmqqþ Cmdede

8><
>:

ð14Þ

The variables in Eq. (14) are given in Ref.16 By combining
Eqs. (11)–(14) and using Jacobian linearization approach, we
get the LPV model presented in state-space form as
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_u

_w

_q
_h

2
6664

3
7775 ¼ AðhðtÞÞ

u� u0

w� w0

q

h� h0

2
6664

3
7775þ BðhðtÞÞ

Dde

DdT

� �
þWðhðtÞÞ ð15Þ

where u, w are the x and z components of airspeed in fixed-body
axes, u0, w0 the x and z components of balanced airspeed in
fixed-body axes before wing folding, V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2
p

, DdT is the

propulsion control, and h0 the initial pitch angle. W(h(t)) is the
force and moment variations affected by wing folding, which
can be considered as a disturbance source in the wing morphing
dynamic response. In Eq. (15) the state-space matrices vary with

hfold, and terms in the matrices are given in Appendix A.
When using Jacobian linearization approach to transform

nonlinear model to an LPV model, the dynamic response of

morphing transition phase produced by the two models should
be similar, i.e., the obtained LPV model should be rational.
Parameter comparisons of the dynamic response of the two

different models are shown in Fig. 3, in which it can be seen
Fig. 3 LPV vs nonlinear model simulations of morphing

aircraft.
that distinctions between the dynamic responses in LPV model
and nonlinear model are small. The LPV model is able to cap-
ture the dynamic behavior and match the nonlinear model.

Therefore, the control system design of the morphing aircraft
in wing folding can be based on the LPV model. Keeping
the altitude and speed constant during wing shape varying

can ‘be the control objective. According to the property of
the LPV model, LPV control techniques could be chosen to
guarantee smooth transition between different configurations.

The initial dynamic response of the wing folding process
mainly represents variations in the aircraft’s pitching moment.
The aerodynamic forces acting on the aircraft change a little.
Then the speed and altitude vary only slightly, and a, h, q all

increase as the pitching moment in zero lift increases when
the wing begins to fold. When the wing continues to fold, a
and q gradually converge, the altitude increases and the speed

decreases, indicating that the aircraft begins to climb with
decreasing speed. Every parameter will converge to a stable va-
lue after a long period of time and the aircraft will enter a new

state of balanced flight.
In the wing folding process of the tailless folding-wing air-

craft, the altitude, speed and pitch angle vary largely, and the

aircraft will need a long time to achieve new stable flight. In
order to guarantee satisfactory flying quality and safety in
the process of wing folding, a flight control system is required.
4. Multi-loop controller design and simulation for the wing

morphing process

We know from the dynamic response of the folding-wing morp-

hing aircraft in transition phase that the altitude and speed do
change a lot. Moreover, it takes a long time for the aircraft to
achieve newbalance in stable flight. To ensure that themorphing

aircraft canmaintain stable flight duringwing shape varying, the
wing morphing process needs a flight control system to obtain a
prospective objective. In this article, the control objective is to

keep the altitude and speed constant during the transition from
extended-wing configuration to folded-wing configuration.

The longitudinal LPV model of the morphing aircraft in

morphing can be rewritten as

_x ¼ AðhðtÞÞxþ BðhðtÞÞuþ B1wðhðtÞÞ ð16Þ

where x e R4, u e R2, w e R4·1, A e R4·4, B e R4·2, B1 = I4.
Considering w(h(t)) as a disturbance, then the system can be

regarded as an LPV system _x ¼ AðhðtÞÞxþ BðhðtÞÞu with a dis-

turbance w(h(t)). Therefore, the flight control objective is to
keep the altitude and speed stable when the system _x ¼
AðhðtÞÞxþ BðhðtÞÞu is disturbed by w(h(t)).

According to the property of the LPV system, the inner loop
of the control system is a linear quadratic output feedback con-
troller which provides stability, as well as tracking performance

characteristics for the linear system _x ¼ AðhðtÞÞxþ BðhðtÞÞu.
The outer loop is composed of a gain self-scheduled robust
H1 controller which can be solved by using a convex hull algo-

rithm. The multi-loop controller is shown in Fig. 4.

4.1. Inner-loop linear quadratic optimal control with output
feedback

The controller design objective in wing transition phase for the
folding-wing morphing aircraft is to keep the altitude and



Fig. 4 The multi-loop control structure.
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speed constant. The inner-loop of the control system is an LQ
optimal controller with output feedback, as shown in Fig. 5.

The augmented state equations of the system shown in
Fig. 5 can be expressed in the form of

_x ¼ Axþ Buþ Gr

y ¼ Cxþ Fr

z ¼ Hx

8><
>: ð17Þ

where

x ¼ Du Dw Dq Dh DH de dT eH eu½ �T

y ¼ Dq Dh eH eH eu eu½ �T

z ¼ DH Du½ �T

u ¼ de dT½ �T

8>>><
>>>:

ð18Þ

With this structure, the plant matrices are given by

A ¼

a11 a12 a13 a14 0 b11 b12 0 0

a21 a22 a23 a24 0 b21 b22 0 0

a31 a32 a33 a34 0 b31 b32 0 0

a41 a42 a43 a44 0 b41 b42 0 0

0 �1 0 u0 0 0 0 0 0

0 0 0 0 0 �20 0 0 0

0 0 0 0 0 0 �2 0 0

0 0 0 0 �1 0 0 0 0

�1 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

ð19Þ
Fig. 5 Inner-loop output feedback control structure.
B ¼

0 0

0 0

0 0
0

0

20

0

0

0

0

0

0

2

0

0

2
6666666666666664

3
7777777777777775

ð20Þ

C ¼

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 0 1 0

�1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

2
666666664

3
777777775

ð21Þ

H ¼
0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0

� �
ð22Þ

F ¼
0 0 1 0 0 0

0 0 0 0 1 0

� �T
ð23Þ

G ¼
0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

� �T
ð24Þ

According to Fig. 5, the control input is given by

u ¼ �KLQy ¼ �
Kq

0

Kh

0

KeH

0

KeH

0

0

Keu

0

Keu

� �
y

ð25Þ

In the augmented description, the gains Kq, Kh, KeH, KeH,

Keu and Keu are unknown, and need to be selected to yield
acceptable closed-loop performance.

To solve the output gain problem, Stevens and Lewis21 de-
vised the conversion from tracking to a regulator problem,

using a new set of deviation variables. To make both the er-
ror deviation ~eðtÞ and the steady-state error �e small, the out-
put gain K is selected to minimize the performance index (PI)

J ¼ 1

2

Z 1

0

ð~eT~eþ ~uTR~uÞdtþ 1

2
�eTV�e ð26Þ

with R> 0, V P 0. The optimization problem can be solved

numerically using an iterative procedure through Lyapunov
equations.22,23

As the state-space matrices of the LPV model change with

the wing fold angle hfold, the optimal output gain KLQ will also
change with corresponding hfold. Nevertheless, a time-invariant
gain KLQ is preferred, although only a suboptimal solution

would be achieved in such a case. The performance of the
closed-loop system in the wing folding process can be achieved
by outer-loop self-scheduled H1 robust control design. Here
we select the optimal output feedback gain in extended-wing

configuration as the inner-loop gain:
KLQ ¼
�16:5

0

�68:7
0

0:14

0

0:03

0

0

�15:8
0

�18:9

� �
ð27Þ
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4.2. Outer-loop gain self-scheduled H1 robust control

The closed-loop system with LQ output feedback inner-loop
controller is found to be

_x ¼ AcðhðtÞÞxþ BðhðtÞÞuþ B1wðhðtÞÞ
z ¼ Hx

y ¼ Cx

8><
>: ð28Þ

where

AcðhðtÞÞ ¼ AðhðtÞÞ � BðhðtÞÞKLQC:

The gain self-scheduled H1 control problem consists in

finding an LPV controller

u ¼ KLPVðhÞy ð29Þ

to make the altitude and speed remain constant during the
wing morphing process. The reference input

r ¼ ½ rDH rDu �T ¼ 0, and the outer-loop LPV control structure
is shown in Fig. 6.

When using convex hull algorithm to design the LPV con-

troller, if there are n variable elements in Ac(h(t)) and B(h(t)),
the convex hull will have 2n vertices. The calculation will be
complicated if n is big. Therefore, we assume that the elements

in Ac(h(t)) and B(h(t)) do not change as they vary in very small
range. In other words, we only consider the elements that vary
in large ranges during the wing folding process.

From the simplified LPV equations of morphing aircraft we

find that the variable elements a22 and a32 in Ac(h(t)) vary in
large ranges, which both depend on the aerodynamic changes
during the wing folding process. Hereafter, the parameter vec-

tor of the LPV plant is denoted as hðtÞ :¼ a22
a32

� �
. And

a22 � a22min a22max½ � ¼ �1:3392 �0:5212½ �
a32 � a32min a32max½ � ¼ �0:0618 �0:0344½ �

�
ð30Þ

So h(t) ranges in the polytope H e Co{hi, i = 1, 2, 3, 4}. The
vertices hi are the values of h(t) at the four vertices of the

parameter box: h1 ¼
a22min

a32min

� �
; h2 ¼

a22max

a32min

� �
; h3 ¼

a22min

a32max

� �
; h4 ¼

a22max

a32max

� �
.It is clear that the state-space ma-

trix Ac(h(t)) ranges in a polytope of matrices whose vertices
are the images of the vertices h1, h2, h3, h4. In other words,

AcðhðtÞÞ 2 CofAi :¼ AðhiÞ; i ¼ 1; 2; 3; 4g ð31Þ

Finally, a formal expression for the LPV controller is
derived by solving the convex decomposition problem. The
Fig. 6 Outer-loop LPV control structure.
following formulas for the state-space data of the LPV control-
ler are obtained:

AKðhðtÞÞ BKðhðtÞÞ
CKðhðtÞÞ DKðhðtÞÞ

� �
:¼
X4
i¼1

aiðtÞ
AKi BKi

CKi DKi

� �
ð32Þ

It is easy to check that ai are convex coordinates satisfying
h 2 H :¼ f

P4
i¼1aihi : ai P 0;

Pr
i¼1ai ¼ 1g. The resulting poly-

topic LPV controller enforces stability and H1 performance
over the entire parameter polytope H and for arbitrary param-

eter variations.

4.3. Closed-loop simulation

The resulting gain self-scheduled H1 robust Controller based
on the LPV model is applied at the morphing aircraft’s wing
Fig. 7 Closed-loop response in morphing process.
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shape transition phase. The response of the aircraft in closed-
loop simulation is shown in Fig. 7. It is clear that the speed is
almost constant and the altitude decreases about 0.7 m to the

maximum during the wing folding process. They can both con-
verge in 10 s after the wing finishes folding. Since the wing area
decreases after it folds, the angle of attack will increase to

achieve a new balance. In addition, the changes in elevator
deflection and throttle are both within acceptable ranges. It
is obvious that the gain self-scheduled H1 robust controller

based on the morphing aircraft’s LPV model can eliminate
the disturbance caused by wing folding and guarantee con-
stant-speed and altitude flight during the wing transition
process.
Fig. 8 Closed-loop response in parameter perturbation during

wing folding process.
4.4. Robustness verification

In this article the aerodynamics in wing folding obtained by
CFD is assumed to be quasi-steady, and unsteady aerodynam-
ics is ignored. Consequently, the aerodynamics in the nonlin-

ear model of the morphing aircraft is not modeled precisely,
and not exactly the same with aerodynamics in actual flight
conditions. In other words, the aerodynamic model of the wing
folding process is uncertain within a range. Thus it is impor-

tant for the controller to have the ability to provide stability
in spite of modeling errors due to unmodeled dynamics and
plant parameter variations.

The unpredictable manner of the model can be described by
parameter perturbation. Here we use the parameter perturba-
tion of the aerodynamic force and moment coefficients to de-

scribe model parameter perturbation. The aerodynamic
coefficient perturbation is dependent on the angle of attack.
When the angle of attack is bigger, the perturbation will be

greater. Thus the perturbations of aerodynamic force and mo-
ment coefficients are set to be

C0L ¼ ð0:8� 0:5
p
180

aÞCL

C0D ¼ ð1:2þ 0:5
p
180

aÞCD

C0m ¼ ð0:8� 0:5
p
180

aÞCm

8>>>><
>>>>:

ð33Þ

where C0 are the perturbation values, and C the rated values.
According to the aerodynamic parameter uncertainties in

the model, the closed-loop response of the morphing aircraft

during the wing folding process is shown in Fig. 8. It is seen
that the parameter amplitude of the closed-loop response in-
creases slightly due to the aerodynamic parameter perturba-

tion. The motion of the morphing aircraft converges slower
after wing folding is completed. Even so, the flight control sys-
tem can still ensure that the speed variation in the wing morp-

hing process is small, and that the altitude varies less than 1 m.
This means the gain self-scheduled H1 robust control system
can maintain good robustness under modeling uncertainty of
aerodynamics.
5. Conclusion

(1) The LPV model for the folding-wing morphing aircraft

in wing folding is derived from longitudinal nonlinear
dynamic equations by using Jacobian linearization
approach. The LPV model includes the variants of aero-
dynamic force and moment caused by wing folding,

which can be regarded as a disturbance source. The
dynamic response is simulated using the nonlinear
model and LPV model. It is shown that the longitudinal

LPV model obtained by Jacobian linearization approach
can capture the morphing aircraft’s complex behavior in
the wing transition process.

(2) In order to ensure that the morphing aircraft flies at a
given altitude and speed in the wing folding process,
an inner-loop optimal quadratic output feedback and
outer-loop gain scheduled H1 robust controller based

on convex optimization algorithm is designed. The sim-
ulations show that the control objective of maintaining
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speed and altitude change only slightly when the wing

folding process can be achieved via the multi-loop con-
trol approach. The morphing aircraft can rapidly return
to stable flight when the wing completes folding. In addi-

tion, the multi-loop flight control system’s robustness is
verified according to the aerodynamic parameter uncer-
tainties in the wing morphing dynamic model.
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Appendix A

A ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

2
6664

3
7775

B ¼

b11 b12

b21 b22

b31 b32

b41 b42

2
6664

3
7775

W ¼

w11

w21

w31

w41

2
6664

3
7775
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m
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