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Abstract 

This paper deals with the study of the hypergeometric function with matrix arguments F(A,B;C;z). Conditions for 
matrices A, B, C so that the series representation of the hypergeometric function be convergent for Jz I = 1 and satisfies a 
matrix differential equation are given. After the study of beta and gamma matrix functions, an integral representation of 
F(A,B; C;z) is obtained for the case where B, C and C -  B are positive stable matrices with BC = CB. (~ 1998 Elsevier 
Science B.V. All rights reserved. 
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I. Introduction 

Many special functions encountered in physics, engineering and probability theory are special cases 
of  hypergeometric functions [17-19, 21]. Special matrix functions appear in the literature related to 
Statistics [1], Lie groups theory [11], and more recently in connection with matrix analogues of  
Laguerre, Hermite and Legendre differential equations and the corresponding polynomial families 
[12-14]. Apart from the close relationship with the well-known beta and gamma matrix functions, 
the emerging theory of  orthogonal matrix polynomials [4-6] and its operational calculus suggest the 
study of  hypergeometric matrix function. 

The paper is organized as follows. Section 2 deals with the study of  new properties of  the beta 
and gamma matrix functions. We are mainly concerned with the matrix analog of  the formula 

F(p)F(q )  
B ( p , q ) -  (1) r (p  + q) 

and may be regarded as a continuation of  [16]. In Section 3 the Gauss hypergeometric matrix function 
F(A, B; C; z) is introduced as a matrix power series. Conditions for the convergence on the boundary 
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of the unit disc are treated. We also prove that if matrices B and C commute then F(A,B; C;z)  is 
a solution of the differential equation 

z(1 - z ) W "  - zA W' ÷ W(C - z(B + I ) )  - AWB = O. 

If A is an arbitrary matrix in C r×" and C is an invertible matrix whose eigenvalues are not negative 
integers then we prove that equation 

z(1 - z ) W "  - zA W' + W' (C + z(n - 1 )I)  + n A W  = 0 

has matrix polynomial solutions of degree n for all integer n I> 1. 
Finally in Section 4 an integral representation of the hypergeometric matrix function is given. 
Throughout this paper for a matrix A in C r×r its spectrum o-(A) denotes the set of  all the eigen- 

values of A. The 2-norm of  A will be denoted by I]AH and it is defined by 

]]Ax]12 
HA[[ = sup 

Ilxl12 

where for a y in C r×', [[Yll2=(yTy) ~/2 is the euclidean norm of y. Let us denote ~(A) and fl(A) 
the real numbers 

~(A) = max{Re(z): z E o-(A)}, fl(A) = min{Re(z): z E o-(A)}. (2) 

If f ( z )  and 9(z) are holomorphic functions of the complex variable z, which are defined in an open 
set ~2 of  the complex plane, and A is a matrix in C r×r with o-(A)C O, then from the properties of  
the matrix functional calculus [3, p.558], it follows that 

f ( A ) y ( A )  = 9 (A) f (A) .  (3) 

The reciprocal gamma function denoted by F - t =  1IF(z), is an entire function of  the complex 
variable z. Then the image of F-~(z)  acting on A, denoted by F - I ( A )  is a well defined matrix. 
Furthermore, if  

A + nI  is invertible for every integer n >~ 0, (4) 

then F(A)  is invertible, its inverse coincides with F -I(A), and one gets the formula 

A ( A + I ) . . . ( A + ( n - 1 ) I ) F - I ( A + n I ) = F - ~ ( A ) ,  n>~l, (5) 

see [10, p. 253]. Under condition (4), by (3), Eq. (5) can be written in the form 

A ( A + I ) . . . ( A + ( n - 1 ) I ) = F ( A + n I ) F - ~ ( A ) ,  n>~l. (6) 

Taking into account the Pochhammer symbol or shifted factorial defined by 

( z ) , , = z ( z +  l ) . . . ( z + n -  1), n>ll ,  (Z )o=l ,  

by application of  the matrix functional calculus to this function, for any matrix A in C ~×~ one gets 

( A ) , , = A ( A + I ) . . . ( A + ( n - 1 ) I ) ,  n>~l, (A)o=I.  (7) 
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Taking into account the Schur decomposition of A, by [8, pp. 192-193] it follows that 

' - '  (ll~411r"2t) t>~0. (8) 
Ile'A[I "~< e'~A) ~--~ k! ' 

k 0 

2. On the beta and gamma matrix functions 

Beta and gamma matrix functions are frequent in statistics [1, 11], Lie groups theory [11] and in 
the solution of matrix differential equations [12-14]. Beta function of  two diagonal matrix arguments 
has been used in [1], and in [13] for the case where one of  the two matrix arguments is a scalar 
multiple of  the identity matrix. 

In this section we address the extension to the matrix framework formula (1) that will be used 
in Section 4 to obtain an integral representation of the hypergeometric matrix function. For the sake 
of clarity in the presentation we state the following result recently proved in [16]. 

Theorem 1 (J6dar and Cortrs [16]). I f  M & a positive stable matrix in C r×r and n >~ I is an integer, 
then 

F(M) = ,!ira (n - 1)!(M)~-'n M. 

In accordance with [16], if P and Q are positive stable matrices in C "×r the beta function is well 
defined by 

L" B ( P , Q ) =  t P ' ( 1 - t ) Q - t d t .  (9) 

Hence one gets that if P and Q are commuting positive stable matrices then B ( P , Q ) = B ( Q , P ) ,  and 
commutativity is a necessary condition for the symmetry of the beta function, see [16]. 

Lemma 1. Let P, Q be positive stable matrices in C r×r such that PQ = QP and satisfy the condition 

P + Q + mI is invertible for  all integer m>~O. (10) 

I f  n >10 is an integer, then the following identies hoM: 

(i) B ( P , Q + n l ) = ( P + Q ) , ,  I(Q),,B(P,Q), 

(ii) B(P + nL O + nI)  = (P) , (O) , (P + Q)2,1B(P, O). 

Proof. (i) For n = 0 the equality is evident. Using that PQ = QP and (9) for m >~ 1 it follows that 

/o' B ( P , Q + m I )  te-t(1 t) O+'m-x)` d t =  lim ° f I '~ = - tP-~(1 -- t )  Q+(m-l)l dt 

= ,~-01im J,~fl-rtP+Q+(m 2)1(1--t)Q+(m-l)It-(Q+(m 1)I) d t  = ,5~01im / ' - a  u(t)vt(t)dt, 
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where 

u(t)--(1-- t)Q+~m-~lt  ~Q+~m-~)~lte; V,(t)=tP+Q*~m 211. 

Integrating by parts in the last integral one gets 

B(P, Q + mI) = lim [(P + Q + (m - 1 )I)-~(1 - t) Q+~m l)ltPlt=l ~ ~---+0 Jt=6 

+ l i m ( P + Q + ( m -  1)I) i { ( Q + ( m -  1)I)(1 --t)O+(m-2)/tP 
6---*0 

+(Q + (m - 1)I)(1 - t) Q+(m-l)l t e-' } dt 

I' = (P + 0 + (m - 1) I ) - I (Q + (m - 1)I) t P - ~ ( 1  - t )  e+ (m-2~  dt 

= (P + O + (m - 1 ) / ) - ' ( Q  + (m - 1 ) I ) B ( P , Q  + (m - 1)I).  

Hence using an induction argument part (i) is established. In order to prove (ii) let us apply (i) 
taking P = P  + nI, n~> 1. By (i) it follows that 

B(P, Q + nI) = (P + Q)21(Q),B(P, Q). (11) 

Since PQ = QP we also have PQ = Q/5 and B(/3, {2)= B(Q,P). By (11) it follows that 

B(P, Q + nI) = (fi' + Q), i(O),, B(Q,/~). (12) 

By (i) we have 

B(Q,P + nI) = (Q + P)~*(P),B(Q,P) = (Q + P),, ~(P), B(P, Q). (13) 

By (12) and ( 13 ) one gets 

B(P + nI, Q + nI) =B(/5, Q + nI) = (P + Q + nI)~t(Q),,(Q + P)~L(P),B(P, Q). 

By definition (P + Q + nI),(P + Q), = (P + Q)zn and by the last expression it follows that 

B(P + nI, Q + nI) = (P + Q)2,1(P),(Q),B(P, Q). 

Hence the result is established. [] 

Part (ii) of Lemma 1 permits to extend the definition of  the beta function of two not necessarily 
positive stable matrix arguments. 

Definition 1. Let P, Q be commuting matrices in C r×r such that for all integer n>~0 one satisfies 
the condition 

P + nI, Q + nI and P + Q + nI areinvertible. (14) 

Let ~(P, Q) = min{~(P), ~(Q), ~(P + Q)} and let no = no(P, Q) -- [ ] ~(P, Q) ] ] + 1, where [ ] denotes 
the entire part function. Then we define B(P, Q) by the formula 

B(P,Q) -, -1 = (P),o (Q),o (P + Q)2,oB(P + noI, Q + noI). (15) 
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Remark 1. Note that previous definition agrees with the one given in [16], because by Lemma 1 
formula (15) holds true for the case where P and Q are positive stable matrices. 

Lemma 2. Let /3 ,  Q be commuting matrices in C ~×" such that/3, 0 and/3 + 0 are positive stable. 
Then 

8(/3, 0) = r (p ) r (O)r  '(/3 + 0 )  

Proof. By the hypothesis of  positive stability of/3, 0 and the commutativity/30 = 0/3 we can write 

(f )(/o ) /o /o F(/3)F(Q) = e "u ~-s du e '~v ~-s dv = e- 'uP-% 'v O-t dudv. 

Considering the change of variables x = u/(u + v), y = u + v in the above integral, the positive 
stability of /3  + 0 one gets J(x, y)  = y and 

/0 /0 , F(/3)F(O ) = e-XY(xy)e-% --''(l -X)[y(1 - x)]O-Sy dx dy 

= ( L ' ~ ' e  ~'y~+O-'dy) ( f l x ~ - ' ( l - x ) O - l d x )  

= F(/3 + (Q)B(P, 0) .  [] 

Theorem 2. 
n >~ O. Then 

B(P, Q) = r ( p ) r ( Q ) r - l ( P  + Q). 

Proof. Let no = no(P, Q) be defined as in Definition 1 so that 

B(P, Q) = (P)L~(Q)L~(P + Q)2.oB(P + noI, Q + noI), 

where P + nol and Q + nol are positive stable. By (5) we can write 

F ( P ) =  F(P + nol)(P + (no - 1)I)- '  . . . (P + I ) -~P ~, 

F ( Q ) = F ( Q + n o I ) ( Q + ( n o  . . . .  1)1) I ( Q + I )  -1Q- ' ,  

F ( P + Q ) = F ( P + Q + Z n o I ) ( P + Q + ( 2 n o - 1 ) I )  - ~ - - . ( P + Q + I )  l ( p + Q )  ,. 

As PQ = QP from the last equalities it follows that 

F ( P ) F ( Q ) F - ' ( P  + Q) 

=F(P + noI)F(Q + noI)F l(p + Q + 2noI)(P + (no - 1)I) -~ ' "  

( P + I ) - I P  ' ( Q ÷ ( n o - 1 ) I ) - ' . . . ( Q ÷ I ) - ' Q  1 

× ( P + Q + ( 2 n 0 - 1 ) I ) . . . ( P + Q + I ) ( P + Q )  

-- F(P + noI)F(Q + noI)F i(p + Q + 2noi ) (p)Ll (Q)L, (p  + Q)2,0. 

Let  P, Q be commuting matrices in C "×~ satisfying the condition (14 ) fo r  all integer 

(16) 
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Since P + Q + 2noI, P + noI and Q + noI are positive stable matrices, by Lemma 2 one gets 

F(P + noI)F(Q + noI)F-l(P + Q + 2 n 0 I ) = B ( P  + noI, Q + noI) 

and by Lemma l(ii) one gets 

B(P + noI, Q + noI) = (P),o(Q),o(P + Q)2,I,B(P, Q). 

By (16)-(18)  it follows that 

r(P)r(Q)r-'(e + Q)=B(P,Q).  [] 

(17) 

(18) 

3. On  the hypergeometric matrix function 

Hypergeometric matrix function oF~(-;A,z) has been recently introduced in [15] in connection 
with Laguerre matrix polynomials and in this section we deal with the hypergeometric matrix function 
F(A,B; C;z) that is defined by 

(A ).(B).(C)2 'z" (19) F(A,B;C;z)= ~ n! 
n)O 

for matrices A, B, C in C r×r such that 

C + nI is invertible for all integer n~>0. (20) 

In an analogous way to [15] it is easy prove the convergence of  (19) for [z] < 1. Now we study the 
conditions so that F(A,B; C;z) converges for ]z[ = 1. 

Theorem 3. Let A,B C be positive stable matrices in C r×~ such that 

fl(C) > c~(A) + ~(B). (21) 

Then the series (19) is absolutely convergent for ]z] = 1. 

Proof. By hypothesis (21), there exists a positive number 6 such that 

f l (C) - ~(A) - ~(B) = 26. 

Let us write 

n'+~ (~.(A),(B),(C)~ l) 

n 1+6 ( n -  1)!n An -A(A), 

n! ( n -  1)! 

(n - 1)! n 8 n -8 (B), 

(n - 1)! 

(22) 

• ( C ) ~  1 n c n - C  

1)!(c)~lnC)n c. 
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Or 

n 1`'~ ( ( A ) " ( B ) " ( C ) 2 " ~  = n  '~ (n--A-(-A)"'~nA (n-8-(-B-)"'~n8 ( (n - -1 ) , (C)~ , 'nC)n  c. 
\ i n !  \ ( n - l ) ! ]  \ ( n -  1)!] 

By (8), taking into account that ~ ( - C ) = - / ~ ( C )  we can write 

11.411 IIn~ll IIn-CII 

/=o J! s=o J! 

<n_26 (max{llAII, IIBII, IICll} r ':2 Inn) / 
j! 

j=0 

By (22)-(24) and Theorem 1, for [z[ = 1, it follows that 

lim n 1+'~ (A)"(B)"(C)2tz" 

n-A(A), n 8(B),, <n '~ ~im (n- 1)~ IInAII (n - 1)~ IIn~ll II(n-  

L ./=o 
-- l i t  '(A)[I Ilr-'(B)[I IIr(C)ll. o=o,  

(IIBI[ r ~2 Inn): 

because 

lim n -'~ (In n) ~ = O, for k ~> 0 integer. 

Since 

} I~(llCIIr':21nn)/}t :=o J! 

1)~(c) .  'n"ll IIn-CII 

( rL'2 max{ IIAJl IIBII, II cII}) j (inn)/}3 

(23) 

(24) 

) . (B) . (C).  z lim n I+'~ (A -1 ,, . . . . .  n! =0,  [z[=l ,  

by the comparison theorem of numerical series of positive numbers one concludes the absolute 
convergence of series (19). [] 

We conclude this section showing that under certain conditions F(A ,B;C;z )  satisfies a matrix 
differential equation of bilateral type. 

Theorem 4. Suppose that C is a matrix in C "×" satisfying (20) and C B = B  C. Then F(A,B; C;z) 
is the solution o f  

z ( 1 - z ) W " - z A W ' + W ' ( C - z ( B + I ) ) - A W B = 0 ,  0~<Izl<l (25) 

satisfying F(A, B; C; O) = L 
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Proof. By the hypothesis C B = B C  we can write 

F = ( A ) . ( B ) . ( C ) ; '  = ( A ) . ( C ) ~ ' ( B ) . .  W ( z ) = F ( A , B ; C ; z ) =  ~--~F.z', [zl<l. (26) 
n! n! ' 

n >~O 

Since W(z)  is a power series convergent for Iz] < 1, it is termwise differentiable in this domain and 

W' (z )=  ~--~nF.z"- ' ,  W"(z)=  ~ n ( n -  1 )F . z"  2, Iz l<l .  
n~>l n~>2 

Hence 

z(1 - z ) W " ( z )  - zA  W' ( z )  + W ' ( z ) (C  - z(B + I ) )  - A W ( z ) B  

= ~ - ~ n ( n -  1)F.z  ~ - 1 -  Z n ( . -  1 ) F ~ z " - A ~ - - ~ n F . z " +  E n F .  Cz "-l 
n>~2 n>~2 n>~l n>~l 

- ~ nF,(B + I ) z " -  ~ AF.Bz ~ 
n >~ l n >~O 

= Z {n(n + 1)F.+I - n(n - 1)F. - nAF. + (n + 1)F.+,C - nF.(B + I )  - A F . B } z "  
n>~2 

+ 2F2z - AF~z + F~ C + 2FzCz - F~(B + I ) z  - AFoB - AF~Bz = O. 

By equating the coefficients of  each power z" and taking into account that F0 = I one gets 

z°: F I C -  A B = O ,  

z': 2F2 - AF~ + 2F2C - F~(B + I )  - AF~B= 2F2(I + C)  - AFI(I  + B)  - F~(B + I ) = O ,  

z" " n(n + 1)F~+l - n(n + 1)F , , -nAF,  - nF, B - nF,, + (n + 1)F,+IC - AF ,  B 

= F.+, (n + 1)(nI + C) - (A + nI )  F. (B + nI)  = O, 

because from (26) one gets 

(A + nI )F . (B  + n I ) ( C  + n l )  -1 
F, + l : , n >~ O. 

n + l  

Hence W ( z ) : F ( A , B ;  C; z )  is the only solution of (25) satisfying W ( 0 ) = / ,  [2, p. 287]. [] 

Corollary 1. Let  C be a matr ix  in C r×r satisfy&g (20), let A be an arbitrary matrix  in C r×È and 
let n be a positive integer. Then equation 

z(1 - z)  W" - zA W' + W' (C  + z(n - 1 ) I )  + nAW -- 0 (27) 

has matrix  polynomial  solutions o f  degree n. 

Proof. Let B =  - n l .  By Theorem 4 the function W ( z ) = F ( A , - n I ; C ; z )  satisfies Eq. (25) for 
B = - n L  but (B),+j = 0 for j >/1. 
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Hence 

W(z) =F(A , -n I ;  C;z) = ~ (A)k(--nI)k(C)~' 
k! k=O 

Z k 

is a matrix polynomial solution of degree n of Eq. (27). [] 

4. An integral representation 

We begin this section considering the binomial function of  a matrix exponent. If  y is a complex 
number with [y] < 1 and b is a complex number then (1 - y)h = exp(blog(1 - y)), where Log is 
the principal branch of  the logarithm function, see [20, p. 72]. The Taylor expansion of (I - y) " 
about y = 0 is given by [22, p. 73] 

(a)n 
(1 - y ) - " =  Z ~ - . ~  y ' ,  lY[<l ,  aEC. 

n~>O 

(28) 

Now we consider the function of complex variable a defined by (28). Let f,,(a) be the function 
defined by 

(a).y. a(a+ l ) . . . (a+n-1)  
f,,(a) = ~.t = n! y", a E C, (29) 

for a fixed complex number y with lY[ < 1. It is clear that f ,  is an holomorphic function of variable 
a defined in the complex plane. Given a closed bounded disc De = {a E C: lal ~<g}, one gets 

(lal),,lYl" (R)n lYI" 
If,,(a)l~ n! ~ n-~-T~' n~O, lal~R. 

Since 

(R),, lyl" < + ~ ,  
n! 

n~>O 

by the Weierstrass theorem for the convergence of holomorphic functions [20] it follows that 

(a)n , g ( a ) =  ~ - ~ - .  y = ( 1 - y ) - a  
n~>0 

is holomorphic in C. By application of the holomorphic functional calculus, [3], for any matrix A 
in C r×r, the image of  g by this functional calculus, acting on A yields 

(A),t 
(1 - -y) -A=g(A)= ~-~---~.y", lYl< l ,  (30) 

n~>O 

where (A),, is given by (7). 
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Suppose that B and C are matrices in C "×" such that 

BC = CB, 

C, B and C -  B are positive stable. 

By (5), (7) and (32) one gets 

(B).  (C)~'  = F - ' ( B ) F ( B  + n I )F -~ (C)  F(C + nI)  -1 

= F ' (B)F(B + n I ) F - ' ( C  + n I ) F ( C )  

= F - ' ( B ) F - ' ( C  - B ) F ( C  - B ) F ( B  + n I ) F - ~ ( C  + n I ) F ( C ) .  

By (32) and Lemma 2 it follows that 

f J tB+("-l)~(1 -- = B ( B  + nL - B) = F(C - B)F(B  + + nI),  t) C-8 1 dt C n / ) / ' - l ( c  

and by (33) - (34)  one gets 

(/0 ) (B)~(C)2 '  = r - ' ( B l r - ¿ ( c  - B)  tB+("-~)~(1 - t) c-8-~ dt F(C).  

Hence, for Iz] < 1 we can write 

(A). (B)n (C);-' 
F(A,B; C;z)  = ~ z" 

n! n>~O 

n>~O 

Now we are interested in the permutation of  the series and the integral in the last 
To legitimate this operation let us consider the sequence of  matrix functions defined by 

S.( t )  = ( A ) ' F - ~ ( B ) F - ' ( C  - B)tB+(n-')t(ln! - t )C -B- 'F (C) z" '  0~<t~<l, 

and note that for 0 < t < 1 and n >~ 0 one gets 

(IIAII). I[r-l(n)ll I I r - ' (C-g) l l  IIr(C)ll IIt~-'ll I1(1 -t)c-8-Illlzln 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

expression. 

Ilgn(t)[I ~ n! (37) 
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By (8) it follows that 

II t~ '11 I1(1-t) c ~-'11 

~<t~,e)_,(1 _ t)~,c_8)_, (lib - 1Hj~ ''2 l n t )  i (liE- n-jtlIIr'"2 ln t ) i  

\./=o \ j=0 

and taking into account that for 0 < t < l  one gets l n t < / < l  and I n ( 1 - 0 < 1  - t < l ,  from the 
above expression one gets 

II tB '11 H( 1 - t ) c - 8 - ' l l ~ A  t=~B)-'( I - t )  ~(c-8) i 0 < t < l ,  (38) 

where 

A =  ( ~ ( ] [ B - I H r ' " 2 ) J )  o J' \n=0 -J! . (39) 

Let S be the sum of  the convergent numerical series 

s= ~ ( l lAl l ) . lz l "  
n! ' Izl < 1 (40) 

n~>O 

and note that by (37)-(40)  one gets 

IIS,(t)II<~o(t)=LASt'(B) '(1 - t y  (c-B)-' ,  0 < t < l ,  (41) 
n>~0 

where 

t = I IF- ' (B) I I  I I r  ' (C - B)II I I r (C) l l .  

Since 0¢(B)>0, c z ( C - B ) > 0 ,  the function cp( t )=LASt  ~(B)-l (1 - t )  ~lc B)-1 is integrable and 

f ~ qg(t) = LASB(~(B) ,  ~(C - B)). dt 

By the dominated convergence theorem [7, p. 83], the series and the integral can be permuted in 
(36) an using (31) we can write 

F(A;B; C;z )=  ((A),(tz)" ' ]  ? - ' ( I  - t) c-B-' d t r  ' ( B ) r - ' ( C -  B)r(C). (42) 
\ n! ) 

Now by (30) one gets 

(A).(tz)"----(1 - tz) -A, Iz[<l, 0 < t < l ,  (43) 
n~>0 

and (42) takes the form 

Jo" F(A,B;  C;z)  = (1 - tz)-AtB-t(1 -- t) c-B-I  dt F - I ( B ) F - I ( C  - B)F(C) .  (44) 
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Summarizing, the following result has been established: 

Theorem 5. Let A,B and C be matrices in C r×" such that C B = B C  and C , B , C -  B are positive 
stable. Then for  Izl < 1 it follows that 

(/o ) F(A,B; C;z) = (1 - tz)-AtS-~(1 - t )  c - B  i dt F - ' (B )F-~ (C  - B)F(C).  (45) 

The following corollary is a consequence o f  Theorem 5. 

Corol lary  2. Let A, B and C be matrices in C "×" and/et  ~(B, C ) =  min{~(B), ~(C), ~ ( C - B ) }  and 
nl = nl(B, C) = [1 ~(B, C) I] + 1, where [ ] denotes the entire part function. Suppose that BC : CB, 
and 

a(B) C C ~ {-n;n>~nl,  n integer}, 

a(C - B) C C ~ { - n ;  n >~nl, n integer}, (46) 

a ( C )  c C ~ { - 2 n ; n ~ n l ,  n integer}. 

Then for  ]z[ < 1 one gets 

F(A,B  + nlI; C + 2n l I ; z )  

[/o 1 = (1 - tz)-AtS+~"~-l)~(1 -- t) c-8+C"~-I)~ dt F - I (B  + n I I )F- I (C  - B + nII )F(C + 2n~I). 

Proof .  Consider matrices A, /} = B + n l I,  d = C + 2nl I and note that C , /}  and d - / }  = C - B + n 11 
are both positive stable. The result is now a consequence of  Theorem 5. [] 
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