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We obtain the constitutive relations for the stress tensor and gauge current in (1 + 1)-dimensional
hydrodynamics in the presence of both gauge and gravitational (conformal as well as diffeomorphism)
anomalies. The relations between response parameters and anomaly coefficients are also found. The role
of the Israel Hartle Hawking vacuum is emphasised. Finally, in the absence of gauge fields, earlier results
obtained by a hydrodynamic expansion are reproduced.
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•
The study of hydrodynamics [1] in the presence of gauge and

gravitational anomalies has recently received considerable atten-
tion [2–20]. An important aspect of this study is the obtention
of constitutive relations that express the stress tensor and gauge
current in terms of the fluid variables like fluid velocity, chemi-
cal potential and temperature. These relations, in the absence of a
gauge field, were obtained earlier by the hydrodynamic expansion
approach [12,14] as well as other approaches [15,17,20]. Likewise,
connections between the anomaly coefficients and certain param-
eters appearing in the constitutive relations were also found.

In the presence of gauge fields, however, the above analysis be-
comes quite non-trivial. Even in (1 + 1) dimensions, general closed
form expressions for the constitutive relations or the connections
between the response parameters and the anomaly coefficients
have not been presented in the literature.

The present paper precisely addresses this issue. Deviating from
the usual gradient expansion technique we exploit the exact form
of the (1 + 1)-dimensional effective action that is given in the lit-
erature [21,22]. This exact result is a consequence of the conformal
flatness of the two-dimensional metric. From this result the stress
tensor and the current are obtained by taking appropriate func-
tional derivatives. It is then possible to express these relations in
terms of fluid variables thereby yielding our cherished constitu-
tive relations. These relations involve certain constants which are
the integration constants appearing in the solutions of differential
equations. They may be fixed by choosing an appropriate boundary
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condition that will be discussed later on. Finally, we compare our
results with the gradient expansion approach. This helps in ob-
taining the connection between response parameters and anomaly
coefficients in the presence of both gauge and gravitational anoma-
lies.

•
Consider a (1 + 1)-dimensional static background metric [15]:

ds2 = −e2σ (r)dt2 + g11dr2. (1)

It has a time-like Killing vector and the Killing horizon is given
by the solution of the equation e2σ |r0 = 0. The U(1) gauge field in
(1 + 1) dimension is given by

Aa = (
At(r),0

)
. (2)

The chemical potential is defined in this way

μ = At(r)e−σ . (3)

It is convenient to present the analysis in the null coordinates
(u, v) which are defined in terms of (t, r) coordinates as

u = t − r∗, v = t + r∗, (4)

where r∗ is the tortoise coordinate given by dr∗ = −e−σ g11dr. In
this coordinate system the metric takes the following off-diagonal
form:

ds2 = −e2σ (dudv + dvdu). (5)

In order to express the energy–momentum tensor and gauge cur-
rent we introduce the fluid variables. The chemical potential has
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already been defined in (3). The comoving velocity ua must satisfy
the time-like condition uaua = −1. Under the background (5) we
choose the familiar ansatz [10] that is compatible with this nor-
malisation condition. It is given by

ua = −eσ

2
(1,1), ua = e−σ (1,1). (6)

The velocity dual to ua is ũa = ε̄abub where ε̄ab is the antisym-

metric tensor with ε̄ab = εab√−g
and ε̄ab = √−gεab . Here εab is the

numerical antisymmetric tensor. In null coordinates these expres-
sions are given by

εuv = 1, εuv = −1,

ũa = eσ

2
(1,−1), ũa = e−σ (1,−1). (7)

Finally, the fluid temperature T is given in terms of the equilibrium
temperature T0 by the Tolman relation [23] T = T0e−σ .

In order to find the constitutive relations in anomalous hydro-
dynamics it is first necessary to give the expressions for these
anomalies. An anomaly is a breakdown of some classical symmetry
upon quantisation. Breakdown of diffeomorphism symmetry yields
the non-conservation of energy–momentum tensor, whereas, trace
anomaly is the manifestation of breakdown of conformal invari-
ance upon quantisation. A violation of gauge symmetry is revealed
by a non-conservation of the gauge current (gauge anomaly) or,
alternatively, by the presence of anomalous terms in the alge-
bra of currents. These anomalous terms are related to the gauge
anomaly. The general expressions for the diffeomorphism anomaly,
trace anomaly and gauge anomaly, relevant for the present paper,
are as follows [24–27],

∇b T ab = F a
b J b + C g ε̄

ab∇b R, (8)

T a
a = C w R, (9)

∇a Ja = Csε̄
ab Fab. (10)

Here C g , C w , and Cs are the coefficients of the respective anoma-
lies. All these expressions are covariant and are hence termed as
the covariant anomalies. The first term on the r.h.s. of (8) is the
usual Lorentz force term whereas the other piece gives the gravi-
tational anomaly in terms of the Ricci scalar. It may be observed
that the structures of the anomalous Ward identities follow from
dimensional considerations and covariant transformation proper-
ties. No other input is necessary.

A possible way to obtain the constitutive relations expressing
the stress tensor and current in terms of the fluid variables would
be to solve the above Ward identities. This is however, an elaborate
program. We take advantage of the fact that, due to the conformal
flatness of the two-dimensional metric, the effective action itself is
exactly solvable. Then, by suitable variations of the effective action
with respect to the gauge field and the metric, the current and the
stress tensor may be determined and eventually recast in terms of
the fluid variables. By exploiting our earlier results [17], we are
able to write the explicit forms for Tab and Ja ,

Tab =
[

C1T 2 − C w
(
uc∇d∇duc

) + μ2
(

1

2π
− Cs

)]
gab

+
[

2C w
(
uc∇d − ud∇c)∇cud + 2C1T 2

+ 2μ2
(

1

2π
− Cs

)]
uaub − [

2C g
(
uc∇d − ud∇c)∇cud

+ C2T 2 + Csμ
2](uaũb + ũaub)
+
{(

C

π
− 2(C + P )Cs

)
T

T0
μ

+
(

C2 + P 2

2π
− Cs(C + P )2

)
T 2

T0
2

}
(2uaub + gab)

+
{(

P

π
− 2(C + P )Cs

)
T

T0
μ

+
(

C P

π
− Cs(C + P )2

)
T 2

T0
2

}
(uaũb + ũaub) (11)

Ja = −2Csμ(ua + ũa) + μ

π
ua +

(
C

π
− 2(C + P )Cs

)
T

T0
ua

+
(

P

π
− 2(C + P )Cs

)
T

T0
ũa, (12)

where C1, C2, P and C are arbitrary constants that appear in the
solution of the effective action. Incidentally, the nonlocal form of
the effective action is converted into a local form by introduc-
ing extra auxiliary fields that satisfy certain differential equations.
These arbitrary constants are the integration constants related to
the solutions of the differential equations [17].

At this juncture, it is useful to illustrate the compatibility of the
constitutive relations (11), (12) with the Ward identities (8)–(10).
Using,

∇a(μua) = 0, ∇a(μũa) = −1

2
ε̄ab Fab, (13)

the Ward identity (10) for the current is easily obtained from (12).
Similarly, using the relation,

R = −2ua∇b∇aub, (14)

the trace anomaly (9) easily follows from (11). Finally, exploiting
the identities,

∇aμ + μub∇bua = F abub

∇a[e−2σ (2uaub + gab)
] = ∇a[e−2σ (uaũb + ũaub)

] = 0, (15)

and after some algebra, the Ward identity (8) is reproduced.
We now choose a boundary condition to fix the arbitrary con-

stants. It may be recalled that, in the absence of gauge field, the
Israel Hartle Hawking type of boundary condition [20] reproduced
the results obtained by the hydrodynamic expansion [14]. This
vacuum required that the stress tensor or the current in Kruskal
coordinates corresponding to both the outgoing and ingoing modes
must be regular near the horizon. It is thus essential to choose
Ju → 0, J v → 0, Tuu → 0 and T v v → 0 near the horizon. To imple-
ment these features, the metric (1) is considered to be a solution
of the Einstein equation. Also, since it is static, event and Killing
horizons will coincide [28] to give the condition 1

g11
= e2σ |r0 = 0,

where r = r0 is the location of the horizon. The constants C and P
pertaining to the gauge sector are explicitly determined by enforc-
ing Ju |r0 = J v |r0 → 0 to yield

P − C = At(r0) = μeσ
∣∣
r0

= 0, for Ju → 0

P + C = −At(r0) = −μeσ
∣∣
r0

= 0, for J v → 0. (16)

The trivial solution is P = C = 0. Once C and P have been fixed,
the constants C1 and C2 relevant for the gravitational sector may
be similarly obtained. The result is [20],

C1 = 4π2C w , C2 = 8π2C g . (17)

The energy–momentum tensor (11) and gauge current (12) after
enforcing the constants (16), (17) are expressed as
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Tab =
[

4π2C w T 2 − C w
(
uc∇d∇duc

) + μ2
(

1

2π
− Cs

)]
gab

+
[

2C w
(
uc∇d − ud∇c)∇cud + 8π2C w T 2

+ 2μ2
(

1

2π
− Cs

)]
uaub − [

2C g
(
uc∇d − ud∇c)∇cud

+ 8π2C g T 2 + Csμ
2](uaũb + ũaub) (18)

Ja = −2Csμ(ua + ũa) + μ

π
ua. (19)

These constitutive relations are new findings. In the absence of the
gauge fields there exists only the first relation (18) with μ = 0. It
correctly reproduces earlier findings in the literature [12,14,20].

It is now possible to compare our results with the gradient ex-
pansion approach [14]. This will also immediately fix the response
parameters. It is pertinent to point out that one of these parame-
ters in the presence of the U(1) gauge field could not be fixed by
the gradient expansion approach. This was one of the reasons that
constitutive relations could not be completely determined in that
approach. Since these relations have now been obtained in (18),
(19), it is possible, by a comparison, to fix the response parame-
ters.

In the derivative expansion approach, the covariant gauge cur-
rent is expressed as [14]

Ja = −2Csμũa +
(

∂ P

∂μ
− a′

2

T 2
S2 + 4a2

T
S4

)
ua (20)

where,

P = T 2 p0

(
μ

T

)
(21)

and S2, S4 are some combinations of the gauge field that occur
in the second order expansion. The coefficient a2 (as well as its
derivative a′

2) and the response parameter p0 are undetermined
functions of (

μ
T ).

Comparing (20), (21) with (19), it is found that

∂ P

∂μ
= T 2 ∂ p0

∂μ
=

(
−2Cs + 1

π

)
μ

a2 = a′
2 = 0 (22)

leading to the solution,

p0 =
(

1

2π
− Cs

)
μ2

T 2
+ Q (23)

where Q is an integration constant which is determined subse-
quently by comparing expressions for Tab in the gradient expan-
sion approach, as given in [14], subjected to the relations (22),
with (18). The result in the gradient expansion approach simpli-
fies to

Tab = (
p0T 2 − C w uc∇d∇duc

)
gab

+ [
2C w

(
uc∇d − ud∇c)∇cud + 2p0T 2]uaub

− [
2C g

(
uc∇d − ud∇c)∇cud − C̄2d T 2

+ Csμ
2](uaũb + ũaub). (24)

Now comparing (23) and (24) with (18) immediately yields

p0 = 4π2C w +
(

1

2π
− Cs

)
μ2

T 2
(25)

C̄2d = −8π2C g . (26)
The relation (25) is a new finding. In the absence of gauge field
(μ = 0), it reproduces earlier results [17]. Also, as claimed in [14],
the relation (26) does not incur any correction in the presence of
the gauge field.

Let us summarise our findings. We have constructed the con-
stitutive relations for the stress tensor and gauge current in (1 +
1)-dimensional hydrodynamics in the presence of gauge, confor-
mal and gravitational anomalies. Also, we were able to provide
relations connecting the anomaly coefficients with certain response
parameters. Both these results are new findings. As a consistency
check we reproduced the known expressions in the absence of the
gauge field.

A standard approach in the context of anomalous hydrodynam-
ics is the derivative expansion method. While such an approach
seems mandatory in higher (greater than (1 + 1)) dimensions, the
same is not true for the (1 + 1)-dimensional example. This is due
to the conformal flatness of the metric which leads to an exact
expression for the effective action. From this expression both the
stress tensor and the gauge current may be exactly evaluated by
taking appropriate functional derivatives. We take recourse to such
an approach, more so because in the presence of gauge fields the
hydrodynamic expansion is laced with great difficulties.

By exploiting our previous results [15,17] we succeeded in ob-
taining the cherished constitutive relations. The compatibility of
these relations with the anomalous Ward identities was explicitly
demonstrated.

The constitutive relations involved several constants that were
an outcome of the solutions of differential equations. By choosing
the Israel Hartle Hawking boundary condition, all these constants
were determined. The efficacy of this boundary condition was ear-
lier discussed [20] in the absence of gauge fields and led to results
that were identical with the hydrodynamic expansion technique.
Incidentally, as shown in [20], the method of imposing the bound-
ary condition was similar to the derivation of the Cardy formula. It
was reassuring to note that the same boundary condition provided
consistent results in the presence of both gauge and gravitational
fields. This consistency was linked to the fact that our results could
be satisfactorily matched with those found by the hydrodynamic
expansion by providing additional inputs, namely, the connection
of response parameters with anomaly coefficients (25), (26) and
the identification of certain variables (22). Indeed, it was because
of this lack of information that the hydrodynamic expansion was
unable to yield constitutive relations in the presence of the gauge
anomalies.

As a final remark we note that the choice of the vacuum ap-
pears to play a significant role in anomalous fluid dynamics. To
what extent this role will exist in higher dimensions is a question
for the future.
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