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1. Introduction

We work over an infinite field IF of arbitrary characteristic char(IF'). All vector spaces, algebras, and
modules are over IF and all algebras are associative unless otherwise stated.

A quiver @ = (Qp, Q1) is a finite oriented graph, where Qg stands for the set of vertices and 9
stands for the set of arrows. For an arrow a denote by a’ its head and denote by a” its tail. The notion of
quiver was introduced by Gabriel in [8] and it was applied to describe different problems of the linear
algebra. The importance of this notion from point of view of the representation theory is due to the
following fact. Let A be a finite dimensional basic algebra over an algebraically closed field. Then the
category of finite dimensional modules over A is a full subcategory of the category of representations
of some quiver (for example, see Chapter 3 from [6]).
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Given a dimension vectorn = (n, | v € Qp), we assign an n,-dimensional vector space V,, tov € Q.
We identify V, with the space of column vectors F™. Fix the standard basis e(v, 1), ..., e(v, n,) for
[F™ where e(v, i) is a column vector whose jth entryis 1 and therest of entries are zero. A representation
of Q of dimension vector n is a collection of matrices

h= (ha)aco, € H=H(Q,n) = @ F" " =~ P Homp(Vy, Vy).

acQ acQ

where [F"1*"2 stands for the linear space of n; x n, matrices over [F and the isomorphism is given by
the choice of bases. We will refer to H as the space of representations of Q of dimension vector n. The
group

GLm) = [] GL(ny)
veQo
actson H as change of the bases for V,, (v € Qp). In other words, GL(n, ) acts on V,, by left multiplication,
and this action induces the action of G on H by
g h=(grhag, )aco, -
where g = (g4)qeo, € GL(n) and h = (hg)qeo, € H.
The coordinate ring of the affine variety H is the polynomial ring

F[H]=IF[X§}IaeQ1,1<i<nau1<j<na~},

where x{; i is the coordinate function on H that takes a representation h € H to the (i, j)™ entry of a

matrix hy. Denote by

a a
xl,] Xl,nﬂ//
Xq =
a a
xna/,l e xna/,na//

the ny x nyr generic matrix. The action of GL(n) on H induces the action on [F[H] as follows: (g-f)(h) =
f(g=' . h)forallg € GL(n),f € F[H], h € H. In other words,

g x§ = (i,j)™ entry of g, 'Xagqr. (1)
The algebra of invariants is

1(Q,n) = F[HI®*™ = {f e F[H]|g - f = f for all g € GL(n)}.
Similarly, for the group

SL(n) = H SL(n,) < GL(n)

veQo

we define the algebra of semi-invariants
SI(Q, n) = F[H]™™.

To describe generators for I(Q, n) we use the following notions. Denote by o;(X) the
in the characteristic polynomial of an n x n matrix X, i.e.,

™ coefficient
det(AE4+X) = A"+ o1 COA" 4 -+ + 0,(X).

In particular, o1 (X) = tr(X) and on (X) = det(X). We say that a = ay - - - a5 is a path in Q (where
ar,....a5 € Q) ifd] =d, ..., al_, =d,1ie,

ai ds
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The head of the path a is ' = @} and the tail of ais a” = a].1f a} = a! = v, then the path a is called
closed in the vertex v. We write X, for X,, - - - X,,. Denote the degree of a by deg(a) = s and the degree
of a in an arrow x by deg, (a).

In [5] Donkin proved that [F-algebra I(Q, n) is generated by o;(X,) for all closed paths a in Q and
1 < t < ngy. In characteristic zero case generators for I(Q, n) had earlier been described by Le Bruyn
and Procesi in [9]. Relations between generators were described by Zubkov in [16]. In characteristic
zero case this result had earlier been obtained by Domokos in [3].

Generators for SI(Q, n) were described by Domokos and Zubkov in [4] and, independently, by Derk-
senand Weymanin [1], [2]. Simultaneously, similar result in the case of characteristic zero was obtained
by Schofield and van den Bergh in [15]. These results were generalized for semi-invariants of mixed
representations of quivers by the author and Zubkov in [11] and for semi-invariants of supermixed
representations by the author in [12].

In this paper we assume that n = (2, ..., 2) unless otherwise stated and write I(Q), SI(Q) for
1(Q, n) and SI(Q, n), respectively.

Definition 1.1. Define the quiver Q" as follows: Qj = Qg and Q] = Q; U {a* |a € Qi}, where
/ " " / T 01 :
(a*) =d"and (a*)" = d'.We set Xg+ = X; = —J2X,J2 foralla € Qy, where J, = is the
-10
matrix of the skew-symmetric bilinear form on F2.

Let g € SL(n) and a € Q;. By (1), det(X,) is a semi-invariant. For short, we write g - X, for the
matrix whose (i,j)th entryis g - xg Defining g - X+ similarly, we have

g Xe = —h@ X)) =g, Xaga', )

where we use the equality Al,A” = J, foran A € SL(2). It is not difficult to see that (1) and (2) imply
that tr(Xp) is a semi-invariant for any closed path b in Q*.

Applying the general description of semi-invariants from [4], Fedotov has recently showed that
in characteristic zero case the above mentioned semi-invariants actually generate the algebra SI(Q)
(see [7]). In this paper we present an independent proof, which also covers the case of arbitrary
characteristic.

Theorem 1.2. The algebra SI(Q) is generated by

e det(X,) and tr(Xp), ifchar F = 2;
e tr(Xp), otherwise,

where aranges over Q1 and b ranges over all closed paths b in Q*. Moreover, we can assume that deg, (b) <
1forallx € Q7.

Our main result is the explicit description of a minimal (by inclusion) generating set for the [F-algebra
SI(Q):

e ifchar F = 2, then see Theorem 2.3; note that in the case of arbitrary characteristic Theorem 2.3
yields the generating set for SI(Q), which is smaller than the generating set from Theorem 1.2
and is not as complicated as the generating set from Theorem 2.20;

e if char[F # 2, then see Theorem 2.20.

Let N = {0, 1, 2, ...} and n be arbitrary. The algebra IF[H] has the natural N-grading by degrees
and N#91 _grading by multidegrees defined as follows. For a monomial f € F[H] we set

deg(f) = > deg,(f) and mdeg(f) = (deg,(f) |a € Q1).

a€Qq
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where deg,(f) = >3 degxg_ (f). The algebras I(Q, n) and SI(Q) have also gradings induced by the

mentioned ones. To describe these gradings for the given generators of algebras, we introduce the
multidegree of a path b in 9* by mdeg(b) = (dq | a € Q1), where d, = deg,(b) + deg,«(b). Since

deg,(0¢(Xp)) = t(deg,(b) + degg- (b))
forana € Q7 andt > 0, we have
deg(o:(Xp)) = tdeg(b) and mdeg(o¢(Xy)) = t mdeg(b).

Note that minimal generating sets from Theorems 2.3 and 2.20 are N*€1_-homogeneous.

Given an N-graded algebra A, denote by A™ the subalgebra generated by elements of A of positive
degree. It is easy to see that an N-homogeneous set {a;} C A is a minimal set of generators if and
only if {@;} is a basis of A = A/(A")?. We say that an element a € A is decomposable and write a = 0
if it belongs to the ideal (A1)2. In other words, a decomposable element is equal to a polynomial in
elements of strictly lower degree.

As a consequence of Theorems 2.3 and 2.20, we obtain the following results:

e Up to isomorphism, SI(Q) does not depend on the orientation of arrows of Q (see Corollary 7.1).

e Up to multiplication on elements of F, a minimal N*21-homogeneous generating set for SI(Q)
is unique modulo indecomposable semi-invariants (see Corollary 7.3).

e Relations between generators for SI(Q) are described modulo decomposable semi-invariants
(see Corollary 7.4). Note that the ideal of relations between generators for I(Q) is known in
contrast to SI(Q). Nevertheless, the only known result concerning a minimal generating set
for I(Q) is an upper bound on degrees of indecomposable invariants (see [13] and [14]) and a
minimal generating set for I(Q) is still not known.

e Asanexample, we consider a partial case of so-called tree-like quivers in Section 8. In particular,
we prove that if Q is a tree, then SI(Q) is a polynomial algebra. Considering a quiver with two
vertices, we compare the generating set from Theorem 1.2 with the minimal generating set from
Theorems 2.3 and 2.20 (see Remark 8.7).

The paper is organized as follows. Section 2 contains formulations of the main results. Using the
notion of tableau with substitution introduced in [ 10], we prove Theorem 1.2 in Section 3. Key lemmas
are proven in Section 4. The proof of Theorem 2.3 is given at the end of Section 5 and Theorem 2.20
is proven at the end of Section 6. Some applications and examples are considered in Sections 7 and 8,
respectively.

2. Results
2.1. The case of char F = 2

We start this section with some definitions.Leta = a; - - - asbeapathin Q*,whereay, ..., a; € Q.
Denote ver(a) = {d, ..., a,, a/} and arr(a) = {ay, ..., as}. We define ver(£2) and arr(2) for a set
£2 C 9 similarly. We write (a*)* for a and a* for the path a; - - - a] in Q. Note that X, = X; and
X@* = (X;)* = X, for any path a. Denote by supp(a) the support of a, i.e., supp(a) is a quiver with
supp(a)o = ver(a) and supp(a); = arr(a).

Definition 2.1. A multilinear path in Q* is a closed path a in Q* such that deg,(a) < 1forallx € Q7.

Definition 2.2. A tree path a is a multilinear path in Q" such that if deg,(a) = deg,:(a) = 1 for an
X € Q1, then

arr(a) = I U Aq U {x, x™}
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for some quivers I', A with non-empty I'1, A,and g N Ag = @, i.e,

r | T3 A

Let a be a tree path in Q*. Then
ver(a) = |_| 1"0(7) and arr(a) = |_| {xi, X'} L |_| Fl(i),
jeJ iel je
wherex; € Qi and I’ 0) is a quiver with non-empty set of vertices such that for any j thereisnox € Q;
with {x, x*} C Fl(’). Moreover, consider a graph with vertices 1, ..., #] and edges 1, ..., #I, where

an edge i connects vertices j; and j, if and only if x; € I 0(1'1) andx' € 1"0("2). Hence this graph is a tree

and it is called the tree of path a. Quivers 9 are called blocks of a. Note that some blocks can have
empty sets of arrows. But if a block corresponds to a leaf of tree of path a, then the set of arrows of this
block is not empty.

We denote by S, a maximal (by inclusion) subset of tree paths such that elements of S, have
pairwise different multidegrees.

Theorem 2.3. The algebra SI(Q) is generated by {det(Xy), tr(Xp) |a € Q1, b € Sy} over FF.
Moreover, if char ' = 2, then the given set is a minimal generating set for SI(Q).

2.2. The case of char ' # 2

Let char(F) # 2.Sincetr(Xy, - - - Xq,) = Oforall closed pathsay, ..., asin Q* witha) = --- = d
(see Lemma 4.2), we have to remove some elements from the generating set given in Theorem 2.3 to
obtain a minimal generating set. To perform this operation we introduce the following notions.

We endow the set of closed paths in ©* with the equivalence ~ as follows:

e a~ a*,
® Xy ~ VX,
where a and xy are closed paths in Q*. As an example, if xy*z is a closed path in Q*, then
xy'z ~ x*z%y.
Definition 2.4. Assume that a is a closed path in Q*. We say that {b, ..., bs} is a decomposition of a

into primitive closed paths, if

e by,...,bs are primitive (i.e., without self-intersections) closed paths in Q* satisfying
arr(b;) Narr(bj) = ¥ fori # j;
e arr(a) = arr(by) U - - - U arr(by).

Remark 2.5. Adecomposition of a closed path into primitive closed pathsis not unique (see Example 2.6
below).

Example 2.6. Let Q be the following quiver:

3 d;

a3 bs c:
a4 C ﬁﬁ W dz
ap b1 c1
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Then the closed path h = ayaybsb1bycscicadadidadscsbsazay in Q is multilinear and it has the fol-
lowing decompositions into primitive closed paths:

(a) {a, b, c, d} fora = a1b1c1d1d2d3C3b3a3a4, b= a2b4, c= b2C4, d= Czd4;
(b) {(1, b, C, d} fora = ajapasdy, b= b]b2b3b4, C = (C1CxC3C4, d= d1d2d3d4.

Lemma 2.7. Every multilinear path in Q* has some decomposition into primitive closed paths.

Proof. Let a = a; - - - a, be a closed multilinear path in Q*, where ay, ..., a; € Qj. We prove the
lemma by inductiononr > 1.

If r = 1, then {a,} is the required decomposition.

Let r > 1. Then one of the following possibilities holds.

(a) ais primitive. Then {a} is the required decomposition.

(b) a = xby,where bis a primitive closed pathin Q*,yisapath,andx = x; - - - xforxq, ..., x; € Q]
with pairwise different vertices x, .. ., x/, x. By induction hypothesis, there exists a decom-
position {bq, ..., bs} of xy into primitive closed paths. Since a is multilinear, {b, by, ..., bs} is

the required decomposition.
(c) a = by, where b is a primitive closed path in Q* and y is a path. This case is similar to case b. O

Definition 2.8. A diagram D is a finite graph without loops and multiple edges such that its edges are
marked with positive integers.

Definition 2.9. Assume that a is a multilinear path in Q*, {b1, ..., bs} is some decomposition of a into
primitive closed paths. Then the following diagram D is called the type of a with respect to {b1, . . ., bs}:

(a) Dg = {v1, ..., vg}.

(b) If b; and b; do not intersect, i.e., # ver(b;) Nver(b;) = 0, then there is no edge in D that goes
from v; to vj (i # j).

(c) If b; and b; intersect at t different vertices, i.e., # ver(b;) Nver(b;) = t, then there is an edge in
D that goes from v; to v; (i # j) and this edge is marked with t.

Example 2.10. Let h be the closed path from Example 2.6 and {a, b, c, d} be the decomposition of h
from part a (part b), respectively) of Example 2.6. Then the type of h with respect to {a, b, c, d} is the
following diagram B (D, respectively):

2 2 2
B: ® D: @ o o o

2 2

o 0

Here vertices of B and D are denoted by the corresponding closed primitive paths from the given
decomposition.

Definition 2.11. A diagram D is called admissible if

e its edges are marked only with 1, 2;
e if ais a closed primitive path in D, then deg a = 3 and all edges of a are marked with 1; in this
case we say that a is a triangle.
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Remark 2.12. Note that every two different triangles of an admissible diagram D do not have a common
edge. Moreover, if we shrink all triangles, then D turns into a tree, where it is said that we shrink a
triangle, if we remove its edges and add a new vertex u and new edges that connect u with vertices of
this triangle, i.e.,

sl

Definition 2.13. Assume that {bq, ..., bs} is some decomposition of a multilinear path a in 9* into
primitive closed paths and a diagram D is the type of a with respect to {b1, ..., bs}. We say that a is
admissible with respect to {bq, . . ., bs} if D is admissible and the following conditions hold:

(a) If there is a triangle in D with vertices v;, vj, vk, then b;, b;, by form a fan, i.e., thereisau € Qg
such that
ver(b;) Nver(b;) = ver(b;) Nver(by) = ver(b;) Nver(by) = {u}.

(b) If v;, v; as well as vj, vy are connected by means of edges marked with 2, then b;, b;, by form a
chain, i.e., bj ~ c1¢; for paths ¢q, c; with ¢, ¢] € ver(b;) and ver(cy) Nver(by) = @. Schemat-
ically, we depict this condition as follows:

bi bj bk
2 2
@ O e =

The orientations of closed paths b;, bj, b, can be arbitrary, so we do not specify it on the picture.
In other words, for ver(b;) Nver(by) = {u, v} we do not have the following situation:

b; bj

If a is admissible with respect to some decomposition of a, then a is called admissible; otherwise, we
say that a is not admissible.

Remark 2.14. Obviously, using notations from the previous definition we have the following statement.
Let paths b;, bj intersectatavertexu (i #j)and k #1i, j. Thenu € ver(by) ifand only if b;, b;, by formafan.

Remark 2.15. If a multilinear path a is admissible, then deg, (a) < 3 for all v € Qg, where deg, (a) is
a number of closed primitive paths ay, ..., a; with a/l =...= a; = vsuchthata ~aq---as.

Example 2.16. The path h from Example 2.6 is admissible with respect to decomposition from part (a)
as well as part (b) of Example 2.6 (see Example 2.10).

Example 2.17. Let Q be the following quiver:

X3

X4
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Consider the closed path h = ayasx,x3x4Xx1a1b1bacacsyryici. Then {a, b, c, x, y} is some decompo-
sition of h into primitive closed paths, where a = ajazas, b = b1by, ¢ = c1¢2C3, X = X1X2X3X4, and
y = y1y2. The type of h with respect to {a, b, c, x, y} is the following diagram D:

®,

oA N
2 1 1
Here vertices of D are denoted by the corresponding closed primitive paths. By definition, h is admis-

sible with respect to {a, b, c, x, y}.

Example 2.18. Let Q be the following quiver:

X2 22

Fora = aya,b = b1by,c = c1¢y,d = dqdy, X = X1X2,Y = Y1Y2Y3Ya,Z = Z1Z2, We consider the closed
path h = yyxy,abyscdy4z. Then {a, b, c, d, X, y, z} is some decomposition of h into primitive closed
paths. The type of h with respect to the given decomposition is the following diagram D:

@\L, _® O 1 @

Here vertices of D are denoted by the corresponding closed primitive paths. By definition, h is admis-
sible with respect to {a, b, c, d, X, y, z}.

Definition 2.19. Denote by Sy a maximal (by inclusion) subset of admissible tree paths such that
elements of S; have pairwise different multidegrees.

Theorem 2.20. If char F # 2, then {det(Xy), tr(Xp) |a € Q1, b € S} is a minimal generating set for
SI(Q).

3. Generating set

In this section we prove Theorem 1.2 over a field of arbitrary characteristic. We have already shown
that elements from Theorem 1.2 belong to SI(Q).

The description of generators for semi-invariants of a quiver from [4] was reformulated in Theorem 1
from [12], where more general notion of semi-invariants of supermixed representations of a quiver
was considered. In the mentioned theorem semi-invariants were described using the notion of tableau
with substitution (T, (Y1, ..., Y;)) and block partial linearization of the pfaffian bpf; (Y1, ..., Y)) that
were given in [10]. In this article we only use a partial case of the notion of tableau with substitution.

Definition 3.1. Assume thatn € N and Yy, ..., Y; are n x n matrices. Let m = 2I/n € N. A pair
(T, (Y1, ...,Y))) is called a multilinear tableau with substitution (m.t.s.) if
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e Tisann x m tableau filled with arrows {1, ..., [};
e an arrow goes from one cell of the tableau into another one, and each cell of the tableau is either
the head or the tail of one and only one arrow.

We refer to T as tableau of dimension (n, . .., n) (m times), and we write € T for an arrow y from
T. Given an arrow y € T, denote by ¥ and y” the columns containing the head and the tail of y,
respectively. Similarly, denote by 'y and "y the rows containing the head and the tail of y, respectively.

Schematically this is depicted as .

v v

Example 3.2. Let T be the tableau

of dimension (2, 2, 2) and Y7, Yo, Y3 be 2 x 2 matrices. Then! = m = 3,n = 2 and (T, (Y1, Y2, Y3))
isan m.t.s. Note that'a = 2, = 1,and o' = o” = 1.

Definition 3.3. Let (T, (Y1, ..., Y;)) be an m.t.s. of dimension (n, ..., n) and m = 2s/n. Define
bpr(Y1 IO Yl) = Z Sgn(]T‘l) e Sgn(nm) H (Y)/)T[y//(//y),ﬂy/(/y)v (3)
1,y TMESn yeT
where (Y),);; stands for the (i, )™ entry of Y,.
We assume that Qo = {1, ..., r}. Theorem 1 of [12] immediately implies that the algebra SI(Q) is

generated by

(a) det(X,), wherea € 9y;
(b) o¢(Xp), where b is a closed pathin Qand t = 1, 2;
(c) bpfr(Yy, ..., Y)), where
e (T, (Y1,...,Y)))isan m.ts. of dimension (2, ..., 2) with arrows {y1, ..., ¥i};
e T is a union of 2r rectangular (possibly empty) blocks A+, ..., A, By, ..., B, with two rows
such that every cell of T belongs to one and only one block;
e every arrow Yy of the tableau T goes from A; to B; for some i, j; moreover, there is a path ¢, in
Qsuch that ¢, =i, ¢} = j,and X, = Yi.

Note that [ is even. Obviously, a permutation of columns of T does not affect bpf;(Yy, ..., Y;) and a
permutation of cells from a fixed column of T changes bpf;(Ys, ..., Y;) by £1. Hence without loss of
generality we can assume that T is equal to the following tableau T;:

12! Yi—1

V2

where we have not depicted the arrow y; that goes from the bottom left cell to the top right cell.
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Lemma 3.4. Given 2 x 2 matrices Z1, . . ., Z; (I > 0) over a commutative [F-algebra, we have
bpfy (Z1, ..., 2) = (=D 0 @i)2Z3)2 - - Zia)aZ{ o).

Proof. We set C, = Z for odd k and G, = Z,Z for even k. By definition,
I
bpfr,(Z1,...,2) = > sgn(my) - - sgn(m) [ [ (COm1),mer @)

T1E€SD,...,TES k=1
where we assume that ;41 = 1. On the other hand,

!
taCiz-- )= D [](CWiiesss
1<iy,...,ii<2 k=1
where ij;1 =i;. Let Ty €S satisfies 7 (1) =ik. Then 7, (2) = & (iy) and sgn(ty) = —(—1)%, where £ is
the non-identical permutation from S,. The fact that (CiJ2)ij = (—1) (Ci); (j) completes the proof. O

Since ¢ = ¢, for odd k and ¢, = ¢, for even k (1 < k < I), where ¢4 stands for ¢y,
e = c1C; ...c—1¢ is a closed path in Q. Lemma 3.4 implies that bpf;(Yy,...,Y) = L tr(Xe).
Relation (D) from Lemma 4.1 (see below) completes the proof of Theorem 1.2.

4. Some relations
In what follows, we write o¢(a) for o¢(X;), where a is a closed path O*.
Forv € Qp we denote by 1, the empty path in the vertex v. We set ver(1,) = {v} and arr(1,) = (.

Given a path a with @’ = v, we assume 1,a = a and for a path a with a’ = v we assume al, = a.
Denote by path(Q™*) the set of all paths and empty paths in Q*.

Lemma 4.1. For closed paths a, b, c and paths x, x1, X2, y1, 2 in Q* the following relations hold.

(0) o¢(a*) = or(a), ot (y1y2) = ot (y2y1), where t = 1, 2; det(ab) = 0.
(A) tr(a®b) = 0, whered =V, ie., . b

(A) tr(abc) = — tr(ach), whered' = b = ¢’.
(B) tr(a*b) = — tr(ab), whered’ = b'.

* _ VA X
(C) tr(xx*a) = 0, wherex’ = d/, i.e., a@‘/ﬁ\o _

(C) tr(x1x5a) = — tr(xox7a), wherex); = x, = d'. -

(D) tr(x*y1x*y2) = 0, where X' =y} =y, andx”" =y =y}, ie, --*\70
e ’
Y1.y2

(D)) tr(x{y1x5y2) = — tr(x3y1%;y2), wherex] = x5, =y}, =y and x| = xJ = y| = 5.

(E) tr(xx*) = 2 det(x).

Proof. Relations (0) and (E) are trivial. Relation (A) follows from
tr(a®b) = tr(a) tr(ab) — det(a) tr(b).
Relation (B) follows from
tr(ab) = — tr(a*b) + tr(a) tr(b).
Relation (C) follows from

tr(xx*a) = det(x) tr(a).
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Relation (D) follows from
tr(x"y1x"y2) = —det(x) tr(yjy2) + tr(x"y1) tr(x"y2).
Applying linearization to (C) and (E), i.e., making a substitution Xy — Xy, +Xx,, wherex] = x;, =’

and x{ = x§ = x”, and taking the homogeneous component of degree 1 with respect to both Xy, and
Xx,, we obtain relations (C") and (D"). The proof of (A") is similar. O

Lemma 4.2. Let char F # 2 and a, b, c, d be paths in Q* that are closed inv € Q. Then

(Ry) tr(abcd) = 0;
(Ry) tr(abc) = 0, where a and b intersect at a vertex different from v.

Proof. Applying (A’) several times, we obtain the proof of (R;):
tr(a-b-cd) = —tr(ac-d-b) = tr(achd) = tr(da - c - b) = — tr(dabc).

Assume that a = x1y; and b = x,y; for paths x1, X2, y1, y2 in Q* withx] =x) =y; =y, =wfora
vertex w and w # v. By (A") we have

tr(abc) = tr(c - X1y1 - X2y¥2) = — tr(cxay2X1y1)-
Applying (D’) two times we obtain

tr(cxay2x1y1) = — tr(cxay1X1y2) = tr(cx1y1xay2) = tr(cab).
Thus, (Ry) is proven. [

Note that if a ~ b for closed paths a and b, then mdeg(a) = mdeg(b) and tr(a) = tr(b). The next
lemma generalizes this remark.

Lemma 4.3. Assume that a, b are closed paths in Q* and mdeg(a) = mdeg(b). Then tr(a) = = tr(b).

Proof. We assume a = ay - - - a5, where a; € Q7. Since mdeg(a) = mdeg(b), the equivalence b ~
aiby - - - bs holds, where b; € Q7. 1fs = 1,thenb ~ a.

Lets > 1. Since mdeg(ay - - - a;) = mdeg(by - - - bs), we have by - - - by = capd or by - - - by = cayd
for c,d € path(Q*). By case by case consideration we will show that tr(b) = +tr(ajaze) fore €
path(Q™). Repeating this procedure we complete the proof.

Case 1. Assume that c is not empty and a; is not a loop.

Case 1.1. Let by - - - bs = cayd. Then we depict the closed path a;b; - - - bs in Q* as follows:

where d can be empty. Since mdeg(a) = mdeg(aad) + mdeg(c) and a = aja; - - - a;, we have that
ver(c) Nver(d) is not empty. Denote v = d.

Case 1.la. Let v € ver(c) Nver(d). Then d = dyd; for a path dq in Q* withd{ = vandd, €
path(Q*). Hence we have
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az
dy
Cc
dy
a
Applying relation (A’), we obtain tr(b) = tr(d2a; - ¢ - apd;) = — tr(ajaydicdy).

Case 1.1.b. Let w € ver(c) Nver(d) for a vertex w with v # w. Then ¢ = cyc; and d = dqd, for
di, dy € path(Q*) and paths ¢y, ¢, with ¢ = d) = w. Hence we have

Applying relation (D), we obtain tr(b) = tr(cy - ¢ - axd; - dray) = — tr(ajaxdicacidy).
Case 1.2. Let by - - - by = ca;d. Thus we depict a; by - - - by as follows:

a
Cc
d
a
By relation (B), tr(b) = tr(ca; - day) = — tr(ayc*day) = — tr(ajaxc*d).
Case 2. Let ¢ be a non-empty path and a, be a loop.
If by - - - by = cayd, then relation (A") implies that tr(b) = tr(da;cay) = — tr(ajaxcd).
If by - - - bs = cajd, then relations (A") and (B) imply that tr(b) = tr(da;ca;) = — tr(qyajed) =

tr(aijaxcd).
Case 3. Let c be empty.
If by - - - bs = ayd, then tr(b) = tr(a;ayd).
If by - - - bs = a3d, then applying relation (B) we obtain tr(b) = tr(aja5d) = — tr(ajaxd).
Since we have considered all cases, the proof is completed. [

Lemma 4.4. Assume that a is a path in Q* such that a is not a tree path and a 7* xx* for any x € Q1. Then
tr(a) = 0.

Proof. Since a is not a tree path, then one of the following two cases holds.

Case 1. Let deg,(a) > 2 for anx € Q7. Then relations (A), (A") and (D) imply that tr(a) = 0.

Case 2. Assume that there exists anx € Q7 such that a ~ ajxayx* for a;, ay € path(Q*) satisfying
one of the following conditions:

e (4 Or ay is empty;
e thereisaw € Qg such that w € ver(ay) Nver(ay).
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If a; or a; is empty, then tr(a) = 0 by relation (C).

Assume that a; and a, are not empty. If x is a loop, then relations (A) and (C) imply the required
equality.

Assume that x is not a loop. Then a; = ¢;d; for ¢;, d; € path(Q*),i = 1, 2, satisfying ¢ = ¢} = w.
Denote X' = u and x” = v. We can depict a;xax* as follows:

Case 2.1. If there is an i = 1, 2 such that ¢; or d; is empty, then w € {u, v}. If w = u, then relations
(A’) and (C) imply that tr(a) = tr(a; - xcy - dox*) = — tr(a;dyx*xcy) = 0.If w = v, then we obtain
the required equality similarly.

Case 2.2. If ¢y, ¢, dq, dp are non-empty paths, then applying (D) and (C) we obtain tr(a) =
tr(cidixcadyx™) = tr(dix - ¢ - dy - X*c1) = — tr(di1x - X*c1 - dy - ¢o) = 0. The proof is completed. O

5. The case of char F = 2

In this section we assume that char [ = 2 unless otherwise stated. We say that a tree path a in Q*
is simple if for every x € arr(a) with x* ¢ arr(a) we have that x is a loop. In other words, every block
of simple tree path is a quiver with one vertex and several loops. We use the following remark in the
next two sections.

Remark 5.1. To define a homomorphism ® : SI(Q) — R of [F-algebras, where R is a commutative
F-algebra, for every z € Q¢ we will specify 2 x 2 matrix @ (X,) over R. Then we set that @ (xfj) is the

(i,j)th entry of @ (X;). Note that in some cases we define only @ (X,+), not @ (X;). Then we assume that

D(X;) = 2(Xz+)". (4)
With abuse of notation in some cases we define @ (X;,) together with & (X,+). In these cases the equal-
ity (4) holds.

Lemma 5.2. If a is a simple tree path in Q*, then tr(a) is indecomposable.

Proof. Let ver(a) = {v1, ..., v;}. By definition of simple tree path, we have

l
arr(a) = {(117 aT’ cees ap—1, a;(f‘]} U U{bi,l’ ) bi,fj}’
i=1

where ty, ..., = 0andb; 1, ..., bjy areloopsinv; (1 < i < I)such that b;j % b; forj # k.
We prove the lemma by inductionon [ > 1.
Let! = 1.1ft; = 1, then tr(a) = tr(by;) # 0.
Assume that t; > 2. Define a homomorphism @ : SI(Q) — F[x
follows: for every y € 07 we set

b1

i | 1<i,j< 2]of F-algebras as

Xy, ify = b11
o) =1" _
E, otherwise

(see Remark 5.1). If tr(a) = 0, then tr(a) = >, agfghq for aq € I and some products of traces fy, hy.

We have @ (tr(a)) = xl]’}‘ +x3121 # 0.0n the other hand, the equality tr(E) = 0 implies @ (tr(a)) = 0;

a contradiction.
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Induction step. Let | > 2 and tr(a) be decomposable, i.e., tr(a) = >4 aqfq for aq € F and some
products of traces and determinants f; with two or more factors. Applying relation (B), we assume
that there is no tr(b .c), where ¢ € path(Q"), among traces in f;. Without loss of generality we can
assume that v4 corresponds to a leaf of the tree of a (see the definition of tree path for details). Hence
t; > 0. Moreover, without loss of generality we can assume that a; connects v{ and v,. Therefore,
vy ¢ {d,a}forall2 <i<<I—1.

Let k = 2 satisfy the following property:

ty > 0orvg € {al, ; a’'} for at least three pairwise differentiwith1 <i <1 —1. (5)
Denote
QZ{aZ»a;’-- > a— ]7a[] UU{blla--~ lt,}

Then arr(a) = {ay, a7} U {by,1, ..., b1} U £2. Schematically this is depicted as

C1
Ve
bir,....biry @Dv@ 2 ’

*

G

where ¢ stands for a; or aj. Define a homomorphism ¥ : SI(Q) — ]F[xy 1< <2, y€ Qi]of
[F-algebras as follows: for every y € Q] we set

E, ify € arr(a) \£2

Xy, otherwise

w(X,) = [

Let ¢ be a closed path in 9* with arr(c) C arr(a). Then

e ifdeg,(c) > 1foranx € £2, then ¥ (tr(c)) = tr(d) for a closed path d with arr(d) C £2;

e if arr(c) N £2 is empty, then ¥ (tr(c)) = tr(E) = 0;

o W(det(a;)) = det(a;) forall2 <i<I—1;

o if det(ay) is a factor of fy, then tr(by j, - - - by j,) is also a factor of fg for some ji, ..., js; thus,
v (fy) =0.

This remark implies that ¥ (tr(a)) = tr(e) = O for a path e with arr(e) = £2. By condition (5), e is
a simple tree path. Since the tree of e has exactly [ — 1 vertices, the induction hypothesis implies a
contradiction.

Let k = 2 do not satisfy property (5). Then without loss of generality we can assume that there is
ak > 1 satisfying property (5) such that 2, ..., k — 1 do not satisfy property (5) and {a/_,, a/’_;} N

{a}, a]} # P forall2 < i< k — 1. Schematically this is depicted as

C1 Ck—1
Lo -
bn,.‘-,bMQ@\/@ cee & T 2 | .

* *

a

where ¢; stands for g; oraf (1 <i < k—1)and

2 =@, @, ..., a1, 01 1}UU{bz1,..  big ).

Repeating the above reasoning we obtain a contradiction with the induction hypothesis. [

Remark 5.3. Let u and v be two different vertices of Q. Denote by Q,, the quiver that is the result of
gluing of u with v, i.e., (Quy)o = Qo\{v} and (Quy)1 = {X | x € 91}, where
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- X, ifx #£v X', ifx" #£v
X = and

~!
X'= .
u, otherwise u, otherwise

Then (Q%)yy = Q. Let a be a closed path in Q* and let b be the image of a in Q},. If tr(a) = 0 in
SI(Q), then tr(b) = 01in SI(Qy,y). Similar result is valid for gluing of several vertices.

The following lemma generalizes Lemma 5.2 for the case of arbitrary tree path.

Lemma 5.4. If a is a tree path in QF, then tr(a) is indecomposable.

Proof. Assume that tr(a) = 0. Let r® .., r® peblocks of the tree path a (see Definition 2.2).

For every i we glue all vertices of I" @ together and denote the resulting quiver by A (see Remark 5.3
for details). Let b be the image of a in A. Then Remark 5.3 implies that tr(b) = 0in SI(A). On the other
hand, b is a simple tree path in A; a contradiction to Lemma 5.2. [

Proof of Theorem 2.3. Denote by P the set from the formulation of the theorem. Let the characteristic
of [F be arbitrary. Theorem 1.2 together with Lemmas 4.3, 4.4 and relation (E) show that P generates
SI(Q).

Let char ' = 2. Then Lemma 5.4, the indecomposability of det(a) for all a € Q7 together with the
fact that all elements of P have pairwise different multidegrees imply that P is a minimal generating
set for SI(Q). [J

6. The case of char F # 2
In this section we assume that char F # 2.
Lemma 6.1. Let a be a closed path in Q* and b be a multilinear path in supp(a) satisfying the following
condition:
forallx € Q1 we have deg,(b) = 0 or deg,-(b) = 0. (6)
Iftr(b) = 0O, then tr(a) = 0.
Proof. Letb = by - - - b, for b; € Q} and A = mdeg(a) — mdeg(h) € N*<1. Consider v = b/. Let
Py A ={x€ Q1|v e ver(x) and Ay > 0}

be anon-empty set. Then there isa path ¢; in Q* suchthatc} = ¢} = v, A = A—mdeg(c;) € N*
and the set P, , ) is empty. Moreover, we assume that the degree of ¢; is maximal. If Py A isempty, then

we set c1 is the empty pathin the vertex v and AM = A.Then apply this procedure to b}, A toobtain

¢z, A® and so on. Finally, we constructa closed pathc = byc; - - - byc, in ©* with mdeg(a) = mdeg(c),
where ¢; is either an empty path or a closed pathin Q*. By Lemma4.3, tr(a) = =+ tr(c).Since tr(b) = 0,
we have

tr(b) = > agfyhg, (7
q

where oy € IF and fy, hy € SI(Q) are homogeneous of positive degree. We apply the substitution
bi — bjciforall 1 < i < rto(7).Since b; 7 b; fori # j, this substitution is well defined. As the result,
we obtain that tr(c) is decomposable. Thus, tr(a) = 0. O

Lemma 6.2. Let c = ajayasbyb,bs be a closed path in Q*, where a;, b; are such paths that a; = b;
(1 <i<3).Thentr(c) =0.

Proof. By relation (D’), we have tr(c) = tr(ajay - a3 - byby - b3) = —tr(by - byas - ay - axb3) =
tr(by - asby - ay - bsa;) = —tr(c). O
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Corollary 6.3. Let a be a multilinear path in Q* such that tr(a) # 0. Assume that some decomposition of
a into primitive closed paths contains b and c with b % c. Then #(ver(b) Nver(c)) < 2.

Proof. For every x € Q; with deg,(a) = deg,-(a) = 1 we add a new arrow X to Q with ¥’ = x" and
X" = x"" and substitute X* for x* in a. Let @ be the resulting multilinear path in the resulting quiver O*.
Note that tr(d) is indecomposable in SI(Q*). Therefore, without loss of generality we can assume that
a satisfies condition (6).

Let #(ver(b) Nver(c)) > 3.Then b ~ bybybs and ¢ ~ cycac3 for paths by, ¢; in Q* with b} = ¢]
(1 < i < 3).Thus Lemma 6.2 implies that tr(e) = 0 fore = byb,b3c1coc3. Since a is a multilinear path
satisfying (6), then eis also a multilinear path satisfying (6). By Lemma 6.1, we obtain a contradiction. [J

In the formulation of the next lemma we use notions from Definition 2.13.

Lemma 6.4. Let a be a multilinear path in Q* such that tr(a) # 0. Assume that some decomposition of
a into primitive closed paths contains b1, by, b3 such that b; % b;j for i # j. Then up to permutation of
indices of b1, by, b3 one of the following possibilities holds:

(a) ver(b;) Nver(bs) is empty fori =1, 2;
(b) ver(b1) Nver(bs) is empty and either by, by, b3 form a chain or

#(ver(by) Nver(by)) < 2 and #(ver(by) Nver(b3)) = 1;
(c) paths by, by, b3 form a fan.

Proof. As in the proof of Corollary 6.3, without loss of generality we can assume that a satisfies
condition (6). In particular, any multilinear path in supp(a) satisfies condition (6).

Assume that conditions (a), (b), and (c) are not valid. Applying Corollary 6.3, we can see that up to
permutation of indices of by, by, b3 one of the following possibilities holds:

(1) #(ﬁ?:1 ver(b;)) = 1 and #(ver(by) Nver(by)) = 2;

(2) ﬂ?zl ver(b;) = ¥ and ver(b;) Nver(b;) is not empty for all i, j;

(3) ver(by) Nver(by) = {uy, uy},ver(by) Nver(bs) = {vq, vo},ver(by) Nver(b3) = ¥ for pairwise
different vertices uq, uy, v1, V2 € Qg; moreover, by ~ cqc; for paths ¢y, c; with c{, c{’ € {uq, uy}
and ver(c;) Nver(bs) # @ fori =1, 2.

We claim that there is a multilinear path e in supp(a) such that tr(e) = 0. By Lemma 6.1, this claim
implies tr(a) = 0; a contradiction. To prove the claim, we consider the above mentioned cases.

Case 1. We have by ~ cycy and by ~ did, for paths cq, ¢z, dy, dy in Q" such that we have the
following picture in Q*:

B by

’

where u # v. By relation (Ry) from Lemma 4.2, tr(e) = 0 for the multilinear path e = bscycydidy.
Case 2. We have b; ~ bj1bj> for paths bj1, bip in 9* (1 < i < 3) such that we have the following
picture in 9*:

where u, v, w are pairwise different. By Lemma 6.2, tr(e) = 0 for the multilinear path
e = by1ba1b31b32b22b12.
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Case 3. We have b1 ~ b11b12, b2 ~ d] s d4, and b3 ~ b31b32 for paths b],‘, bgi, dj in Q*
(i=1,2,1 < j < 4)such that up to permutations of vertices v, v, and uq, u; we have the following
picture:

dy
T —
\\ bs1 bn //
b N\ b
4| P *<,\\< 2|,
/// \\\
@ =0
dag

By Lemma 6.2, tr(e) = 0 for the multilinear path e = by;d}b3,d; - d3b3pdibyp. O

Lemma 6.5. Let a be a multilinear path in Q*. Assume that some decomposition of a into primitive closed
paths contains pairwise non-equivalent by, ..., b, (r > 3) such that #(ver(b;) Nver(b;)) # @ if and
onlyif|i —j| < 1ori,j e {1,r}). Thentr(a) = 0.

Proof. Let tr(a) be decomposable. As in the proof of Lemma 6.4, we can assume that a satisfies condi-
tion (6). Without loss of generality we can assume that case b) from Lemma 6.4 holds for b;, bit1, bi+2
forall 1 < i < r, where we set bry1 = by and b,y = b,. Further we proceed as in case 2) from
the proof of Lemma 6.4. Namely, it is not difficult to see that b; ~ c¢;d; for paths ¢;, d; in Q* such
that

o ¢ € ver(b;) Nver(biyq) forall1 <i<r;
e c=c - -c-andd = d; - - - dq are closed paths in Q*.

Since cd is a multilinear path and r > 3 we have that tr(cd) = 0 by Lemma 6.2. Lemma 6.1 implies a
contradiction. [

Lemma 6.6. Let a be a multilinear path in Q* and a is not admissible. Then tr(a) = 0.

Proof. Assume that tr(a) is indecomposable. Let {b1, ..., bs} be some decomposition of a into prim-
itive closed paths and a diagram D be the type of a with respect to {b1, . . ., bs}. Applying relation (R;)
from Lemma 4.2, Corollary 6.3 and Lemmas 6.4, 6.5 to bq, . . ., bs, we can see that a is admissible with
respect to {b1, ..., bs}; a contradiction. [J

Forany a = a; - - - as € path(Q*) with a; € Q] we set L(a) = {a;} and R(a) = {ay, ..., as}. Note
that if a is an empty path, then L(a) = R(a) = ¥; ifa € QF, thenR(a) = @.

Lemma 6.7. Let a be an admissible multilinear path in Q* that satisfies condition (6). Then tr(a) is inde-
composable.

Proof. Let{bq, ..., bs} besuchdecomposition of a into primitive closed paths that a is admissible with
respect to this decomposition. Assume that a diagram D is the type of a with respect to {b1, ..., bs}.
Denote by v; the vertex of D corresponding to b; (see Definition 2.9).

We prove the lemma by induction ons > 1. Let s = 1. Assume that tr(a) = 0. Then tr(a) =
>iai[]jtr(c;), where o; € T and ¢j is a closed path in Q" with >; mdeg(c;) = mdeg(a) and
deg(cjj) < deg(a). Since tr(a) # 0, we have ¢; ~ a; a contradiction.

Let s > 1. We shrink all triangles of D and obtain a tree (see Remark 2.12). Considering all leafs of
this tree, we can see that one of the following cases holds.

(1) There are 1 < i,j < s (i # Jj)such that v; and v; are connected by means of an edge marked
with 1 and ver(b;) Nver(by) # ¥ if and only if ¢ = i or ¢ = j. Hence for some ¢ ~ b; and
X,y € arr(bj) we have
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:y
o

(2) There are pairwise different 1 < i, j, k < s such that v;, v;, vy are vertices of a triangle and for
p =i, j we have ver(b,) Nver(by) # @ifandonlyifq € {i, j, k}. Hence for some ¢ ~ b;, d ~ b;

and x, y € arr(by) we have
Q
y
OO
X
o

(3) There are 1 < i,j < s (i # j) such that v;, vj are connected by means of an edge marked with
2 and ver(b;) Nver(by) # ¥ if and only if ¢ = i, j. Hence for some ¢ = cyc; ~ bj, arrows
X,y € arr(bj), and a path d in supp(b;) we have

y
@C],d
A

e
X

10
Denote I, = ( ) Define a homomorphism @ : SI(Q) — SI(Q) of F-algebras as follows (see
0

Remark 5.1): for every z € Q] we set

I, ifz € L(c)
e in case 1 we have @ (X,) = £, ifz € R(o) :
X1, ifz=1x
X;, otherwise
I, ifz € L(c)
Ja2, ifz € L(d)
ifz € R(c) UR() ;
XL, ifz=x

e in case 2 we have @ (X,) = E

X;, otherwise
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I, ifz € L(cy)

J2, ifz € L(cy)

e in case 3 we have @ (X;) = E, ifz € R(c1) UR(cy) Uarr(d) -
X XqhJ>, ifz =x

X,, otherwise

If tr(a) = 0, then tr(a) = >4 aqfq foraq € IF and some products f; of at least two traces. Note
that tr(ly) = tr(Jp) = tr(l);) = 0, I% = E,]% = —E, and [J, = —J,I;. Thus, there is a multilinear
path e in Q* such that @ (tr(a)) = % tr(e) and mdeg(e) = mdeg(a) — mdeg(c) in cases 1 and 3 and
mdeg(e) = mdeg(a) — mdeg(c) — mdeg(d) in case 2. On the other hand, @ (f;) is either zero or a
product of at least two traces of closed paths. Therefore, tr(e) = 0. Since there is a decomposition of
e into primitive closed paths that consists of s — 1 or s — 2 paths and e is admissible with respect to
the mentioned decomposition, induction hypothesis implies a contradiction. [J

Denote by D(Q) the set of all maps 6 : Q7 — {0, 1} such that if §(x) = 1, then x is a loop. Given
8 € D(Q), we define a homomorphism ¥ : SI(Q) — F[H(Q, (2, ..., 2))] of F-algebras as follows:
for every z € Q] we set

X;, if8(z) =0

Ws(X,) = ,
s ‘&—U%ﬁ%ﬁﬂﬂzl

00
where Eyy =
01

) (see Remark 5.1 for details). If particular, for z € 97 with §(z) = 1 we have

X1 X
we say that ¥ (f) is decomposable and write Ws(f) = 0 if Ws(f) is a polynomial in elements from
W5 (SI(Q)) of strictly less degree or ¥s(f) € F.
We say that s is a complexity of a multilinear path a in Q* if there is a decomposition {b1, ..., bs}
of a into primitive closed paths. Note that a can have several pairwise different complexities.

Z v4
Us(X,) = (X;] 2 ) where xg» € F[H(Q, (2,...,2))] (see Section 1). As above, for f € SI(Q)

Remark 6.8. If a € S; and b is a closed primitive path in supp(a) and deg,(b) 4 deg,: (b) > 0 for an
X € Qp,then b ~ xx* and b is called a double arrow of a.

The next lemma is a generalization of Lemma 6.7.

Lemma 6.9. Ifa € S; is not a loop and 6 € D(Q), then Ws(tr(a)) is indecomposable. In particular, tr(a)
is indecomposable.

Proof. We prove the lemma by induction on complexity of a. For short, we write f¥ for Ws(f), where
f € SI(Q).

If one is a complexity of a, then §(x) = O for all x € arr(a). We obtain the required statement in
the same way as in the proof of Lemma 6.7.

We assume that by, by, b3 € Q" are loopsinav € Qg and §(b;) = 1for1 < i < 3. We claim that

tr(b1by)¥ £ 0and tr(b;byb3)¥ 0. (8)

Let tr(by1byb3)¥ = 0.Since tr(b;))¥ = 0, we obtain tr(b1b,b3)¥ = 0.But the last equality is not valid;
a contradiction. In the same way we can see that tr(bb,)¥ is indecomposable.

Let {bq, ..., bs} be some decomposition of a into primitive closed paths in 9* and s > 1. Then we
can see that case 1, 2 or 3 from the proof of Lemma 6.7 holds. In what follows, we use notations from
the proof of Lemma 6.7. By Definition 2.2, we have that
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e cisnotadouble arrow in case 1,
e c and d are not double arrows in case 2,
e cand b; are not double arrows in case 3.

We set b = bjin cases 1 and 3 and b = by in case 2.

Let b be not a double arrow. If b is not a loop, then we define @ in the same way as in the proof of
Lemma 6.7 and apply induction hypothesis to complete the proof. If b is a loop, then either case 1 or 2
holds and tr(a)¥ = tr(bc)¥ in case 1 and tr(a)¥ = =+ tr(bed)? in case 2, where b, ¢ are closed paths
with arr(b) Narr(c) = @ in case 1 and similarly in case 2. Obviously, (8) implies tr(a)¥ # 0.

Let b be a double arrow. Therefore, b ~ xx* and y = x*. Without loss of generality, we can assume
thatx € Q3.

Case 1. Define a homomorphism @ : SI(Q) — F[H(Q, (2, ..., 2))] of F-algebras as follows: for
every z € Qf we set

E, ifz=xorz =x*
D (X;) = .
X,, otherwise

We remove the arrow x from Q and glue vertices X' and x” together. Denote the resulting quiver by
I'. We also remove arrows x, x* from a and obtain a new path e in I"* satisfying tr(e) = @ (tr(a)).
Moreover, e is an admissible tree path in I"* and e is not a loop. Let tr(a)¥ = 0. Applying relation
(C), we obtain tr(e)¥ = 0. Since a complexity of e is equal to s — 1, induction hypothesis implies a
contradiction.

Case 2. For X,C,D € TF?*? we define a homomorphism @ = Oxcp : SI(Q) —
F[H(Q, (2, ..., 2))] of F-algebras as follows: for every z € Q] we set

X, ifz=x
X*, ifz =x*
C, ifz=1L(c)
(D(Xz) = .
D, ifz = L(d)
E, ifz € R(c) UR(d)
X;, otherwise

We remove the arrows {x, x*} U arr(c) U arr(d) from Q*, add a new loop y in the vertex x”, and glue
vertices x” and x” together. As the result of this procedure, we obtain a quiver I"* for some quiver I.
We remove arrows {x*} U arr(c) U arr(d) from a and substitute y for x. As the result, we obtain a path
ein I'*. Note that e is an admissible tree path in I"* and e is not a loop. We set § (y) = 1. Thus, we can
consider § asamap I} — {0, 1}.

Let tr(a)¥ = 0. Applying relations (A’) and (C), we obtain

tr(a)¥ = Zi o tr(xedx*z) Y f; + Zj Bih;,
where o, B; € F, fi, hj € ¥5(SI(Q)), z; is a closed path in Q, and h; does not contain neither
tr(xcdx*z)¥ nor tr(xdcx*z)¥ as a factor for any closed path z in Q*. Assume that

tr(C) = tr(D) = tr(CD) = 0 and tr(XCDX*) = 0.
Since @ (3; Bjhj) = Oand tr(Y) = 0for Y = XCDX*, we obtain that tr(e) |x, .y = X; & tr(YX;) .

Lemma 6.10 (see below) implies that tr(e)? = ¥; &; tr(X,X) ¥ fi. Thus, tr(e)¥ = 0.Since a complexity
of e is equal to s — 2, induction hypothesis implies a contradiction. [

Lemma 6.10. Assume that Y € F?*2 satisfies tr(Y) = 0. Then there are X, C,D € F?*? such that
tr(C) = tr(D) = tr(CD) = 0 and Y = XCDX*.
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Proof. We setY = iy .
Y3 =0

—C1 603 0c
Let y» and y3 be non-zeroory, = y3 = 0. Wetake X = E,C = and D =

—C3 (1 10
for cq, ¢z, c3 € F.If y, = y3 = 0, then we consider c; = 0, c; = 1, c3 = y; and obtain the required.
If y; and y3 are non-zero, then we consider ¢; = y3, ¢ = —y2/y3, ¢3 = —y1y3/y2 and the required

statement follows.

1 —y3 0 0 —y3/y?
Lety, = Oandys; 7 0.Then matrices X = yi/ys ,C= ¥3 ,andD = Yilys
0 1 0 y; 1 0

satisfy the required property.

1 0 0 1
Let y # 0 and y3 = 0. Then matrices X = ,C = 5 ,and D =
—y1/y2 1 —y1/y5 0

—y2 0
( y2 ) satisfy the required property. [
0

Proof of Theorem 2.20. Denote by P the set from the formulation of the theorem. Theorem 1.2 together
with Lemmas 4.3, 4.4, 6.6 and relations (B) and (E) show that P generates SI(Q). Lemma 6.9 together
with the fact that all elements of P have pairwise different multidegrees imply that P is a minimal
generating set for SI(Q). [J

7. Corollaries

In this section we collect some corollaries concerning SI(Q). Let us recall that if we consider arrows
of a quiver Q as an undirected edges, then Q turns into the underlying graph of Q.

Corollary 7.1. Let I" and A be quivers with isomorphic underlying graphs. Then SI(I") >~ SI(A). Moreover,
the given isomorphism preserves multidegrees.

Proof. Since the underlying graphs of I" and A are isomorphic, there are isomorphisms ¢ : Iy — Ag
and @1 : I'T — Aq such that for every a € I'7 we have {¢g(d'), ¢o(a”)} = {¢1(a)’, ¢1(a)”}.
Define the map ¢ : I'7" — A7 as follows:

(@) = ¢1(a), ifwo(a?=<p1(a) and (@) = (@)
¢1(a)*, otherwise

where a € [I7. Given a patha = a;---as in I'*, where ay,...,a;, € IY, we write ¢(a) for
@(ay) - - - p(as). Obviously, if a is a closed path in I"*, then ¢(a) is a closed path in A*.

Define the homomorphism of algebras @ : F[H(I", (2,...,2))] — F[H(A, (2,...,2))] as fol-
lows: <15(xg~) is (i, j)™ entry of Xy (q), where a € I'1. Since @ (det(X)) = det(Xy(q)) and @ (tr(Xp)) =
tr(Xyp)) for ana € I'7 and a closed path b € I'*, Theorem 1.2 implies that the restriction of @ to

SI(I') is an epimorphism SI(I") — SI(A). Considering <p0_1 instead of ¢y and gal_l instead of ¢; and
repeating the above reasoning, we construct an epimorphism ¥ : SI(A) — SI(I") such that ® o ¥ is
the identity map. [

Remark 7.2. Corollary 7.1 does not hold for an arbitrary dimension vector n. As an example, assume

that
a C

rr e e A @l T

b d
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andn = (3, 3).Thenf = tr(X,Xp) € SI(I", n) and deg(f) = 2.0nthe other hand, forany h € SI(A, n)
withh ¢ F we have deg(h) > 3.Therefore, there is no an isomorphism between SI(I", n) and SI(A, n)
that preserves multidegrees, but the underlying graphs of " and A are isomorphic.

Corollary 7.3. Let {f1, . .., f;} and {hy, . .., hs} be minimal N¥<1 -homogeneous generating sets for SI(Q).
Thenr = sandthereisam € Syandnon-zerowy, ..., ar € Fsuchthatfi = athzq), ..., fr = orhz(r).

Proof. Theorem 1.2 and Lemma 4.3 together with relation (E) of Lemma 4.1 imply that the dimension
of every N*21 -homogeneous component of SI(Q) = SI(Q)/(SI(Q)*)? is either 0 or 1. Since an N*<1-
homogeneous set {f;} € SI(Q) is a minimal set of generators of SI(Q) if and only if {f;} is a basis of
SI(Q), the proof is completed. [

Corollary 7.4. Any relation > ; aifi = 0, where o; € F and f; € SI(Q) is indecomposable, is a linear
combination of relations from Lemma 4.1.

Proof. In the proofs of Theorems 2.3 and 2.20 we show that using relations from Lemma 4.1 we can
represent any semi-invariant as a linear combination of elements from the minimal generating set
modulo decomposable semi-invariants. Thus, the required statement holds. [J

8. Examples

In this section we apply our main result to tree-like quivers and its partial cases such as tree quivers
and quivers with two vertices.

8.1. Tree-like quivers

We say that a quiver Q is a tree if its underlying graph is a tree. A quiver Q is called a tree-like quiver
if the degree of every primitive closed path in the underlying graph of Q is less than three.

Given a quiver Q and its underlying graph I", denote by O the graph that we obtain from I” as the
result of the following procedure:

e remove all loops from I;
e for every u, v € Iy with u # v consider the set of edges connecting u, v and remove all edges
from it but one.

Obviously, Q is a tree-like quiver if and only if O is a tree.

Example 8.1. The following quiver Q is a tree-like quiver, since O is a tree:
Q: Q:

bq 2

dq €

Two arrows a, b in Q are parallel if {a’, a’} = {b’, b"}. Similarly, parallel edges are defined for a
graph. R R R
We say that & = (0,, 0y | v € Qqp, x € Qq) is a coloring of Q if

e 0, is a subset of loops of Q in the vertex v;
e 0, is a subset of arrows of Q that are parallel to x.
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Givena € Q1, we write a € 6 if ae 6y ora € Oy forsomevandx.Ifa ¢ 0 foralla € 9y, then 8 is
called empty. Let us remove from Q

e all edges x with empty 6y, R
e all vertices v with empty set {y € Qq | vis a vertex of y and 6, is not empty}

and denote the resulting graph by 0(0). If 0(0) is connected, then @ is called connected.
Let Q be a tree-like quiver. A coloring 6 is called good if

(a) Ois connected and 6 is not empty;

(b) foreveryx € O we hg/e that either #6, is even or #6, = 1; R

(c) if #0, = 1 for an x € Q7 and one of two vertices of x is a leaf v of the tree Q(0), then 6, is not
empty.

It is well-known that if I" is a connected graph such that for all u, v € Iy with u # v number of
edges connecting u and v is even, then there is a closed path in I" containing every edge of I" one time
exactly. Hence we obtain that for any good coloring 6 there is a closed path bg in Q* such that for every
a € Q1 we have

0, ifa &0

1, ifa € 8 and ais a loop
dEga(bG) + dEga* (bQ) = . . ,
1, ifa € 6, aisnotaloopand #6, > 1

2, ifa €6, aisnotaloopand #6, = 1

where in the 3™ and 4™ cases x stands for the only edge in O parallel to a. Note that
deg,(bg) = deg,«(bp) = 1
in the last case.

Example 8.2. Let Q be the tree-like quiver from Example 8.1. Then the following coloring 0 of O is
good, vlhere we write down 6y (6,, respectively) near arrow x (vertex v, respectively) of ©. We also
depict Q(0):

0 : o) o(0) :

C1,C2

—" g ®

dy,dy %

We can assume that by is the following closed path in Q*: abjcic;d d,bj.

Lemma 8.3. Assume that charF = 2 and Q is a tree-like quiver. Then the following set is a minimal
generating set for SI(Q):

det(Xq), tr(Xp,),
where a ranges over Q; and 0 ranges over good colorings of O.

Proof. Since 6 is a good colorillg, bg is a tree path in Q* (see Definition 2.2). Obviously, if 6 and ¥ are
pairwise different colorings of Q, then multidegrees of by and by are different. Theorem 2.3 completes
the proof. O
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Lemma 8.4. Assume that charF % 2 and Q is a tree-like quiver. Then the following set is a minimal
generating set for SI(Q):

det(Xq), tr(Xp,),

where a ranges over Q; and 0 ranges over good colorings of O satisfying one the following conditions:

a) thereis anx € Oy such that #6, = 4 and 6,, 0y are empty forallv € Qoandy € Q; withy #- X;
b) #0y < 2 forallx € Qq and for every v € Og we have

#0, + #{y € O | vis avertex of y and 0, is not empty} < 3.

Proof. Assume that case a holds. Then by is a tree path and its type with respect to any decomposition
into primitive closed paths is the diagram

2

o o

(see Definitions 2.2 and 2.9). Definition 2.13 implies that by is admissible.

Assume that case b holds. Then by is a tree path with unique decomposition into primitive closed
paths up to ~-equivalence and permutations of decomposition’s elements (see Definition 2.4). The
type of by with respect to this decomposition is a tree D such that all edges of D are marked with 1. It
is not difficult to see that by is admissible.

We have shown that the set from the formulation of the lemma lies in the minimal generating set
for SI(Q) from Theorem 2.20. Similarly we obtain the inverse inclusion of the sets. [

Corollary 8.5. If Q is a tree, then SI(Q) = F[det(X,) | a € Q1] is a polynomial algebra (i.e. a free algebra
over IF).

Proof. Let char[F = 2 and 6 be a good coloring of O. Consider a leaf v of O(f) and an arrow x € 0,
such that v is one of two vertices of x. Since 6, is empty, part c) of the definition of good coloring implies
that #6y # 1. Thus 6, is empty. Since 6 is connected, 6 is empty; a contradiction with part a) of the
definition of good coloring. Lemma 8.3 completes the proof.

Let char F # 2 and a good coloring 6 of O satisfy condition a) or b) from Lemma 8.4. If condition a)
holds, then Q is not a tree. If condition b) holds, then we use Lemma 8.4 instead of Lemma 8.3 to prove
the lemma similarly to the case of char[F = 2. O

8.2. Quivers with two vertices

Assume that Q is an arbitrary quiver with two vertices and its underlying graph is connected. Denote
vertices of Q by u and v. By Corollary 7.1, without loss of generality we can assume that there are no

arrows from u to vin Q. Obviously, Q is a tree-like quiver. Denote arrows of Qby X1, ..., Xp, y1, ..., Vg
z1, ...,2, where x; is aloop in u, yj is a loop in v, and zj goes from v to u. Schematically, we depict Q
as follows:

Then the set S, (see Section 2.1) consists of the following paths:

(@) xi, -+ - X, wherer > 0and1 < i <--- <ip <p;
(b) yj, -+ -yj,, wheres > 0and 1 < j; <--- <js <@,

(C) Xy -+ Xiy - Zk ~ Yj, - Vjs - g wherer,s > 0,1 < k < 1,1 <i; < -+ < i < p,and
I<jh<--<jssa
(d) Xiy =+~ Xip = Zky Yy = Vi * 2yt Zkar1 Py WHETE T, S > 0,8 > 0,1 < kg < -0 < kye <,

1<ii < <ip<pand1<ji < <js <q.
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The set S; (see Definition 2.19) consists of paths from S, that satisfy the following additional
conditions, respectively:

Lemmas 8.3 and 8.4 imply the following result.
Lemma 8.6. A minimal generating set for SI(Q) is

e Py = {det(Xy), tr(Xp) |a € Q1, b € Sy}, ifcharF = 2;
o Py = {det(Xy), tr(Xp) |a € Q1, b € S1},ifcharF # 2.

Remark 8.7. Note that the generating set P for SI(Q) from Theorem 1.2 is essentially bigger than the
minimal generating sets from Lemma 8.6. As an example, if p = q = | = 4, then #P; = 1167,
#P, = 2734, but #P > 108,
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