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1. Introduction

Wework over an infinite field F of arbitrary characteristic char(F). All vector spaces, algebras, and
modules are over F and all algebras are associative unless otherwise stated.

A quiver Q = (Q0,Q1) is a finite oriented graph, where Q0 stands for the set of vertices and Q1

stands for the set of arrows. For an arrow a denote by a′ its head and denote by a′′ its tail. The notion of

quiver was introduced by Gabriel in [8] and it was applied to describe different problems of the linear

algebra. The importance of this notion from point of view of the representation theory is due to the

following fact. Let A be a finite dimensional basic algebra over an algebraically closed field. Then the

category of finite dimensional modules over A is a full subcategory of the category of representations

of some quiver (for example, see Chapter 3 from [6]).
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Given a dimension vectorn = (nv | v ∈ Q0), we assign annv-dimensional vector spaceVv to v ∈ Q0.

We identify Vv with the space of column vectors F
nv . Fix the standard basis e(v, 1), . . . , e(v, nv) for

F
nv , where e(v, i) is a columnvectorwhose ith entry is 1 and the rest of entries are zero. A representation

of Q of dimension vector n is a collection of matrices

h = (ha)a∈Q1
∈ H = H(Q, n) = ⊕

a∈Q1

F
na′×na′′ � ⊕

a∈Q1

HomF(Va′′ , Va′),

where F
n1×n2 stands for the linear space of n1 × n2 matrices over F and the isomorphism is given by

the choice of bases. We will refer to H as the space of representations of Q of dimension vector n. The

group

GL(n) = ∏
v∈Q0

GL(nv)

acts onH as change of the bases forVv (v ∈ Q0). In otherwords,GL(nv) acts onVv by leftmultiplication,

and this action induces the action of G on H by

g · h = (ga′hag
−1
a′′ )a∈Q1

,

where g = (ga)a∈Q1
∈ GL(n) and h = (ha)a∈Q1

∈ H.

The coordinate ring of the affine variety H is the polynomial ring

F[H] = F

[
xaij | a ∈ Q1, 1 � i � na′ , 1 � j � na′′

]
,

where xaij is the coordinate function on H that takes a representation h ∈ H to the (i, j)th entry of a

matrix ha. Denote by

Xa =

⎛
⎜⎜⎜⎜⎝

xa1,1 · · · xa1,na′′
...

...

xana′ ,1 · · · xana′ ,na′′

⎞
⎟⎟⎟⎟⎠

thena′ ×na′′ genericmatrix. The action ofGL(n) onH induces the action onF[H] as follows: (g ·f )(h) =
f (g−1 · h) for all g ∈ GL(n), f ∈ F[H], h ∈ H. In other words,

g · xaij = (i, j)th entry of g
−1
a′ Xaga′′ . (1)

The algebra of invariants is

I(Q, n) = F[H]GL(n) = {f ∈ F[H] | g · f = f for all g ∈ GL(n)}.
Similarly, for the group

SL(n) = ∏
v∈Q0

SL(nv) < GL(n)

we define the algebra of semi-invariants

SI(Q, n) = F[H]SL(n).

To describe generators for I(Q, n)we use the following notions. Denote by σt(X) the tth coefficient

in the characteristic polynomial of an n × n matrix X , i.e.,

det(λE + X) = λn + σ1(X)λn−1 + · · · + σn(X).

In particular, σ1(X) = tr(X) and σn(X) = det(X). We say that a = a1 · · · as is a path in Q (where

a1, . . . , as ∈ Q1), if a
′′
1 = a′

2, . . . , a
′′
s−1 = a′

s, i.e.,

�������	��
a1

�������	 �������	��
as

�������	 .�� �
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The head of the path a is a′ = a′
1 and the tail of a is a′′ = a′′

s . If a
′
1 = a′′

s = v, then the path a is called

closed in the vertex v. We write Xa for Xa1 · · · Xas . Denote the degree of a by deg(a) = s and the degree

of a in an arrow x by degx(a).
In [5] Donkin proved that F-algebra I(Q, n) is generated by σt(Xa) for all closed paths a in Q and

1 � t � na′ . In characteristic zero case generators for I(Q, n) had earlier been described by Le Bruyn

and Procesi in [9]. Relations between generators were described by Zubkov in [16]. In characteristic

zero case this result had earlier been obtained by Domokos in [3].

Generators for SI(Q, n)were described byDomokos and Zubkov in [4] and, independently, byDerk-

senandWeyman in [1], [2]. Simultaneously, similar result in thecaseof characteristic zerowasobtained

by Schofield and van den Bergh in [15]. These results were generalized for semi-invariants of mixed

representations of quivers by the author and Zubkov in [11] and for semi-invariants of supermixed

representations by the author in [12].

In this paper we assume that n = (2, . . . , 2) unless otherwise stated and write I(Q), SI(Q) for

I(Q, n) and SI(Q, n), respectively.

Definition 1.1. Define the quiver Q∗ as follows: Q∗
0 = Q0 and Q∗

1 = Q1 � {a∗ | a ∈ Q1}, where

(a∗)′ = a′′ and (a∗)′′ = a′. We set Xa∗ = X∗
a = −J2X

T
a J2 for all a ∈ Q1, where J2 =

⎛
⎝ 0 1

−1 0

⎞
⎠ is the

matrix of the skew-symmetric bilinear form on F
2.

Let g ∈ SL(n) and a ∈ Q1. By (1), det(Xa) is a semi-invariant. For short, we write g · Xa for the

matrix whose (i, j)th entry is g · xaij . Defining g · Xa∗ similarly, we have

g · Xa∗ = −J2(g · Xa)
T J2 = g

−1
a′′ Xa∗ga′ , (2)

where we use the equality AJ2A
T = J2 for an A ∈ SL(2). It is not difficult to see that (1) and (2) imply

that tr(Xb) is a semi-invariant for any closed path b in Q∗.
Applying the general description of semi-invariants from [4], Fedotov has recently showed that

in characteristic zero case the above mentioned semi-invariants actually generate the algebra SI(Q)
(see [7]). In this paper we present an independent proof, which also covers the case of arbitrary

characteristic.

Theorem 1.2. The algebra SI(Q) is generated by

• det(Xa) and tr(Xb), if char F = 2;

• tr(Xb), otherwise,

where a ranges overQ1 and b ranges over all closed paths b inQ∗. Moreover, we can assume that degx(b) �
1 for all x ∈ Q∗

1.

Our main result is the explicit description of a minimal (by inclusion) generating set for the F-algebra

SI(Q):

• if char F = 2, then see Theorem2.3; note that in the case of arbitrary characteristic Theorem2.3

yields the generating set for SI(Q), which is smaller than the generating set from Theorem 1.2

and is not as complicated as the generating set from Theorem 2.20;

• if char F �= 2, then see Theorem 2.20.

Let N = {0, 1, 2, . . .} and n be arbitrary. The algebra F[H] has the natural N-grading by degrees

and N
#Q1 -grading by multidegrees defined as follows. For a monomial f ∈ F[H] we set

deg(f ) = ∑
a∈Q1

dega(f ) and mdeg(f ) = (dega(f ) | a ∈ Q1),



A.A. Lopatin / Linear Algebra and its Applications 434 (2011) 1920–1944 1923

where dega(f ) = ∑
ij degxaij

(f ). The algebras I(Q, n) and SI(Q) have also gradings induced by the

mentioned ones. To describe these gradings for the given generators of algebras, we introduce the

multidegree of a path b in Q∗ by mdeg(b) = (da | a ∈ Q1), where da = dega(b) + dega∗(b). Since

dega(σt(Xb)) = t(dega(b) + dega∗(b))

for an a ∈ Q1 and t > 0, we have

deg(σt(Xb)) = t deg(b) and mdeg(σt(Xb)) = t mdeg(b).

Note that minimal generating sets from Theorems 2.3 and 2.20 are N
#Q1 -homogeneous.

Given an N-graded algebra A, denote by A+ the subalgebra generated by elements of A of positive

degree. It is easy to see that an N-homogeneous set {ai} ⊆ A is a minimal set of generators if and

only if {ai} is a basis of A = A/(A+)2. We say that an element a ∈ A is decomposable and write a ≡ 0

if it belongs to the ideal (A+)2. In other words, a decomposable element is equal to a polynomial in

elements of strictly lower degree.

As a consequence of Theorems 2.3 and 2.20, we obtain the following results:

• Up to isomorphism, SI(Q) does not depend on the orientation of arrows ofQ (see Corollary 7.1).

• Up to multiplication on elements of F, a minimal N#Q1 -homogeneous generating set for SI(Q)
is unique modulo indecomposable semi-invariants (see Corollary 7.3).

• Relations between generators for SI(Q) are described modulo decomposable semi-invariants

(see Corollary 7.4). Note that the ideal of relations between generators for I(Q) is known in

contrast to SI(Q). Nevertheless, the only known result concerning a minimal generating set

for I(Q) is an upper bound on degrees of indecomposable invariants (see [13] and [14]) and a

minimal generating set for I(Q) is still not known.

• As an example, we consider a partial case of so-called tree-like quivers in Section 8. In particular,

we prove that if Q is a tree, then SI(Q) is a polynomial algebra. Considering a quiver with two

vertices, we compare the generating set from Theorem1.2with theminimal generating set from

Theorems 2.3 and 2.20 (see Remark 8.7).

The paper is organized as follows. Section 2 contains formulations of the main results. Using the

notion of tableau with substitution introduced in [10], we prove Theorem 1.2 in Section 3. Key lemmas

are proven in Section 4. The proof of Theorem 2.3 is given at the end of Section 5 and Theorem 2.20

is proven at the end of Section 6. Some applications and examples are considered in Sections 7 and 8,

respectively.

2. Results

2.1. The case of char F = 2

Westart this sectionwith somedefinitions. Leta = a1 · · · as beapath inQ∗,wherea1, . . . , as ∈ Q∗
1.

Denote ver(a) = {a′
1, . . . , a

′
s, a

′′
s } and arr(a) = {a1, . . . , as}. We define ver(�) and arr(Ω) for a set

Ω ⊂ Q∗
1 similarly. We write (a∗)∗ for a and a∗ for the path a∗

s · · · a∗
1 in Q∗. Note that Xa∗ = X∗

a and

X(a∗)∗ = (X∗
a )

∗ = Xa for any path a. Denote by supp(a) the support of a, i.e., supp(a) is a quiver with

supp(a)0 = ver(a) and supp(a)1 = arr(a).

Definition 2.1. Amultilinear path in Q∗ is a closed path a in Q∗ such that degx(a) � 1 for all x ∈ Q∗
1.

Definition 2.2. A tree path a is a multilinear path in Q∗ such that if degx(a) = degx∗(a) = 1 for an

x ∈ Q1, then

arr(a) = Γ1 � Λ1 � {x, x∗}
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for some quivers �, 	 with non-empty �1, 	1, and �0 ∩ 	0 = ∅, i.e.,
��

x

x∗
��� 	 .

Let a be a tree path in Q∗. Then

ver(a) = ⊔
j∈J

Γ
(j)
0 and arr(a) = ⊔

i∈I

{xi, x∗
i } � ⊔

j∈J

Γ
(j)
1 ,

where xi ∈ Q1 andΓ (j) is a quiver with non-empty set of vertices such that for any j there is no x ∈ Q1

with {x, x∗} ⊂ Γ
(j)
1 . Moreover, consider a graph with vertices 1, . . . ,#J and edges 1, . . . ,#I, where

an edge i connects vertices j1 and j2 if and only if x′
i ∈ Γ

(j1)
0 and x′′

i ∈ Γ
(j2)
0 . Hence this graph is a tree

and it is called the tree of path a. Quivers Γ (j) are called blocks of a. Note that some blocks can have

empty sets of arrows. But if a block corresponds to a leaf of tree of path a, then the set of arrows of this

block is not empty.

We denote by S2 a maximal (by inclusion) subset of tree paths such that elements of S2 have

pairwise different multidegrees.

Theorem 2.3. The algebra SI(Q) is generated by {det(Xa), tr(Xb) | a ∈ Q1, b ∈ S2} over F.

Moreover, if char F = 2, then the given set is a minimal generating set for SI(Q).

2.2. The case of char F �= 2

Let char(F) �= 2. Since tr(Xa1 · · · Xa4) ≡ 0 for all closed paths a1, . . . , a4 inQ∗ with a′
1 = · · · = a′

4
(see Lemma 4.2), we have to remove some elements from the generating set given in Theorem 2.3 to

obtain a minimal generating set. To perform this operation we introduce the following notions.

We endow the set of closed paths in Q∗ with the equivalence ∼ as follows:

• a ∼ a∗,
• xy ∼ yx,

where a and xy are closed paths in Q∗. As an example, if xy∗z is a closed path in Q∗, then

xy∗z ∼ x∗z∗y.

Definition 2.4. Assume that a is a closed path in Q∗. We say that {b1, . . . , bs} is a decomposition of a

into primitive closed paths, if

• b1, . . . , bs are primitive (i.e., without self-intersections) closed paths in Q∗ satisfying

arr(bi) ∩ arr(bj) = ∅ for i �= j;

• arr(a) = arr(b1)� · · · � arr(bs).

Remark2.5.Adecompositionof a closedpath intoprimitive closedpaths isnotunique (seeExample2.6

below).

Example 2.6. Let Q be the following quiver:

�������	
a3

����

a4

�������	��

b4 a2

��

b3
���������	��

c4 b2

��

c3
���������	

c2

��

��

d4

d3
���������	

d2

���������	��
a1

�������	��
b1

�������	��
c1

�������	��
d1

�������	
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Then the closed path h = a1a2b4b1b2c4c1c2d4d1d2d3c3b3a3a4 in Q is multilinear and it has the fol-

lowing decompositions into primitive closed paths:

(a) {a, b, c, d} for a = a1b1c1d1d2d3c3b3a3a4, b = a2b4, c = b2c4, d = c2d4;

(b) {a, b, c, d} for a = a1a2a3a4, b = b1b2b3b4, c = c1c2c3c4, d = d1d2d3d4.

Lemma 2.7. Every multilinear path in Q∗ has some decomposition into primitive closed paths.

Proof. Let a = a1 · · · ar be a closed multilinear path in Q∗, where a1, . . . , ar ∈ Q∗
1. We prove the

lemma by induction on r � 1.

If r = 1, then {a1} is the required decomposition.

Let r > 1. Then one of the following possibilities holds.

(a) a is primitive. Then {a} is the required decomposition.

(b) a = xby, where b is a primitive closedpath inQ∗, y is a path, and x = x1 · · · xl for x1, . . . , xl ∈ Q∗
1

with pairwise different vertices x′
1, . . . , x

′
l, x

′′
l . By induction hypothesis, there exists a decom-

position {b1, . . . , bs} of xy into primitive closed paths. Since a is multilinear, {b, b1, . . . , bs} is
the required decomposition.

(c) a = by, where b is a primitive closed path inQ∗ and y is a path. This case is similar to case b. �

Definition 2.8. A diagram D is a finite graph without loops and multiple edges such that its edges are

marked with positive integers.

Definition 2.9. Assume that a is a multilinear path inQ∗, {b1, . . . , bs} is some decomposition of a into

primitive closed paths. Then the following diagramD is called the type of a with respect to {b1, . . . , bs}:
(a) D0 = {v1, . . . , vs}.
(b) If bi and bj do not intersect, i.e., # ver(bi) ∩ ver(bj) = 0, then there is no edge in D that goes

from vi to vj (i �= j).

(c) If bi and bj intersect at t different vertices, i.e., # ver(bi)∩ ver(bj) = t, then there is an edge in

D that goes from vi to vj (i �= j) and this edge is marked with t.

Example 2.10. Let h be the closed path from Example 2.6 and {a, b, c, d} be the decomposition of h

from part a (part b), respectively) of Example 2.6. Then the type of h with respect to {a, b, c, d} is the
following diagram B (D, respectively):

B : 
������b

2


������c
2


������a
2


������d

D : 
������a
2


������b
2


������c
2


������d

Here vertices of B and D are denoted by the corresponding closed primitive paths from the given

decomposition.

Definition 2.11. A diagram D is called admissible if

• its edges are marked only with 1, 2;
• if a is a closed primitive path in D, then deg a = 3 and all edges of a are marked with 1; in this

case we say that a is a triangle.
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Remark2.12.Note that every twodifferent triangles of an admissible diagramD donot have a common

edge. Moreover, if we shrink all triangles, then D turns into a tree, where it is said that we shrink a

triangle, if we remove its edges and add a new vertex u and new edges that connect uwith vertices of

this triangle, i.e.,
�������	

11

�������	

1

�������	

�������	

�������	

�������	 �������	

⇒ .
�

�
�

�

Definition 2.13. Assume that {b1, . . . , bs} is some decomposition of a multilinear path a in Q∗ into

primitive closed paths and a diagram D is the type of a with respect to {b1, . . . , bs}. We say that a is

admissible with respect to {b1, . . . , bs} if D is admissible and the following conditions hold:

(a) If there is a triangle in D with vertices vi, vj, vk , then bi, bj, bk form a fan, i.e., there is a u ∈ Q0

such that

ver(bi) ∩ ver(bj) = ver(bi) ∩ ver(bk) = ver(bj) ∩ ver(bk) = {u}.
(b) If vi, vj as well as vj, vk are connected by means of edges marked with 2, then bi, bj, bk form a

chain, i.e., bj ∼ c1c2 for paths c1, c2 with c′1, c′′1 ∈ ver(bi) and ver(c1)∩ ver(bk) = ∅. Schemat-

ically, we depict this condition as follows:

��������vi
2

��������vj
2

��������vk ⇒
��
��

��
��

��
��bi bj bk

c1

The orientations of closed paths bi, bj, bk can be arbitrary, so we do not specify it on the picture.

In other words, for ver(bj) ∩ ver(bk) = {u, v} we do not have the following situation:

��
��

��
���u � v

bi bj

If a is admissible with respect to some decomposition of a, then a is called admissible; otherwise, we

say that a is not admissible.

Remark2.14.Obviously, using notations from the previous definitionwehave the following statement.

Letpathsbi, bj intersect at avertexu (i �= j) andk �= i, j. Thenu∈ver(bk) if andonly ifbi, bj, bk forma fan.

Remark 2.15. If a multilinear path a is admissible, then degv(a) � 3 for all v ∈ Q0, where degv(a) is
a number of closed primitive paths a1, . . . , as with a′

1 = · · · = a′
s = v such that a ∼ a1 · · · as.

Example 2.16. The path h from Example 2.6 is admissible with respect to decomposition from part (a)

as well as part (b) of Example 2.6 (see Example 2.10).

Example 2.17. Let Q be the following quiver:

�������	
x3

����

x4

�������	��

a3

�� 		

�������	��

b2 b1

��

�������	



c3
c2

���������	��
x1

�������	��
a1

�������	

c1

���������	
y1

����
y2

�������	
a2

x2
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Consider the closed path h = a2a3x2x3x4x1a1b1b2c2c3y2y1c1. Then {a, b, c, x, y} is some decompo-

sition of h into primitive closed paths, where a = a1a2a3, b = b1b2, c = c1c2c3, x = x1x2x3x4, and

y = y1y2. The type of h with respect to {a, b, c, x, y} is the following diagram D:


������b

1 1


������x

2


������a

1


������c

1


������y

Here vertices of D are denoted by the corresponding closed primitive paths. By definition, h is admis-

sible with respect to {a, b, c, x, y}.
Example 2.18. Let Q be the following quiver:

�������	
a1

���� a2
�������	��

y3

y2

��

�� �������	��
c1

c2 ��



�� �������	

�������	 �������	
x1

����
x2

�������	
y1

���������	

y4

��

z1
����

z2

�������	 �������	
b1

b2

d1

d2

For a = a1a2, b = b1b2, c = c1c2, d = d1d2, x = x1x2, y = y1y2y3y4, z = z1z2, we consider the closed

path h = y1xy2aby3cdy4z. Then {a, b, c, d, x, y, z} is some decomposition of h into primitive closed

paths. The type of h with respect to the given decomposition is the following diagram D:


������a 1

1


������b

1


������c 1

1


������d

1


������x

1


������y

1


������z

Here vertices of D are denoted by the corresponding closed primitive paths. By definition, h is admis-

sible with respect to {a, b, c, d, x, y, z}.
Definition 2.19. Denote by S1 a maximal (by inclusion) subset of admissible tree paths such that

elements of S1 have pairwise different multidegrees.

Theorem 2.20. If char F �= 2, then {det(Xa), tr(Xb) | a ∈ Q1, b ∈ S1} is a minimal generating set for

SI(Q).

3. Generating set

In this sectionwe prove Theorem 1.2 over a field of arbitrary characteristic. We have already shown

that elements from Theorem 1.2 belong to SI(Q).
Thedescriptionof generators for semi-invariantsof aquiver from[4]was reformulated inTheorem1

from [12], where more general notion of semi-invariants of supermixed representations of a quiver

was considered. In thementioned theorem semi-invariantswere described using the notion of tableau

with substitution (T, (Y1, . . . , Yl)) and block partial linearization of the pfaffian bpfT (Y1, . . . , Yl) that

were given in [10]. In this article we only use a partial case of the notion of tableau with substitution.

Definition 3.1. Assume that n ∈ N and Y1, . . . , Yl are n × n matrices. Let m = 2l/n ∈ N. A pair

(T, (Y1, . . . , Yl)) is called a multilinear tableau with substitution (m.t.s.) if



1928 A.A. Lopatin / Linear Algebra and its Applications 434 (2011) 1920–1944

• T is an n × m tableau filled with arrows {1, . . . , l};
• an arrow goes from one cell of the tableau into another one, and each cell of the tableau is either

the head or the tail of one and only one arrow.

We refer to T as tableau of dimension (n, . . . , n) (m times), and we write γ ∈ T for an arrow γ from

T . Given an arrow γ ∈ T , denote by γ ′ and γ ′′ the columns containing the head and the tail of γ ,

respectively. Similarly, denote by ′γ and ′′γ the rows containing the head and the tail ofγ , respectively.

Schematically this is depicted as

γ
���

γ ′′ γ ′

′γ
′′γ

Example 3.2. Let T be the tableau

α

�

β

���
γ

���

of dimension (2, 2, 2) and Y1, Y2, Y3 be 2 × 2 matrices. Then l = m = 3, n = 2 and (T, (Y1, Y2, Y3))
is an m.t.s. Note that ′α = 2, ′′α = 1, and α′ = α′′ = 1.

Definition 3.3. Let (T, (Y1, . . . , Yl)) be an m.t.s. of dimension (n, . . . , n) andm = 2s/n. Define

bpfT (Y1, . . . , Yl) = ∑
π1,...,πm∈Sn

sgn(π1) · · · sgn(πm)
∏
γ∈T

(Yγ )πγ ′′ (′′γ ),πγ ′ (′γ ), (3)

where (Yγ )ij stands for the (i, j)th entry of Yγ .

We assume thatQ0 = {1, . . . , r}. Theorem 1 of [12] immediately implies that the algebra SI(Q) is
generated by

(a) det(Xa), where a ∈ Q1;

(b) σt(Xb), where b is a closed path in Q and t = 1, 2;
(c) bpfT (Y1, . . . , Yl), where

• (T, (Y1, . . . , Yl)) is an m.t.s. of dimension (2, . . . , 2) with arrows {γ1, . . . , γl};• T is a union of 2r rectangular (possibly empty) blocks A1, . . . , Ar , B1, . . . , Br with two rows

such that every cell of T belongs to one and only one block;

• every arrow γk of the tableau T goes from Ai to Bj for some i, j; moreover, there is a path ck in

Q such that c′k = i, c′′k = j, and Xck = Yk .

Note that l is even. Obviously, a permutation of columns of T does not affect bpfT (Y1, . . . , Yl) and a

permutation of cells from a fixed column of T changes bpfT (Y1, . . . , Yl) by ±1. Hence without loss of

generality we can assume that T is equal to the following tableau Tl:

γ1

��� γ2
���

γl−1

���
�� � ,

where we have not depicted the arrow γl that goes from the bottom left cell to the top right cell.
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Lemma 3.4. Given 2 × 2matrices Z1, . . . , Zl (l > 0) over a commutative F-algebra, we have

bpfTl(Z1, . . . , Zl) = (−1)l tr(Z1J2Z
T
2 J2 · · · Zl−1J2Z

T
l J2).

Proof. We set Ck = Zk for odd k and Ck = ZTk for even k. By definition,

bpfTl(Z1, . . . , Zl) = ∑
π1∈S2,...,πl∈S2

sgn(π1) · · · sgn(πl)
l∏

k=1

(Ck)πk(1),πk+1(2),

where we assume that πl+1 = π1. On the other hand,

tr(C1J2 · · · ClJ2) = ∑
1�i1,...,il�2

l∏
k=1

(CkJ2)ik,ik+1
,

where il+1 = i1. Let τk ∈ S2 satisfies τk(1)= ik . Then τk(2)= ξ(ik) and sgn(τk)=−(−1)ik , where ξ is

the non-identical permutation from S2. The fact that (CkJ2)ij =(−1)j(Ck)i,ξ(j) completes the proof. �

Since c′′k = c′′k+1 for odd k and c′k = c′k+1 for even k (1 � k � l), where cl+1 stands for c1,

e = c1c
∗
2 . . . cl−1c

∗
l is a closed path in Q∗. Lemma 3.4 implies that bpfT (Y1, . . . , Yl) = ± tr(Xe).

Relation (D) from Lemma 4.1 (see below) completes the proof of Theorem 1.2.

4. Some relations

In what follows, we write σt(a) for σt(Xa), where a is a closed path Q∗.
For v ∈ Q0 we denote by 1v the empty path in the vertex v. We set ver(1v) = {v} and arr(1v) = ∅.

Given a path a with a′ = v, we assume 1va = a and for a path a with a′′ = v we assume a1v = a.

Denote by path(Q∗) the set of all paths and empty paths in Q∗.

Lemma 4.1. For closed paths a, b, c and paths x, x1, x2, y1, y2 in Q∗ the following relations hold.

(0) σt(a
∗) = σt(a), σt(y1y2) = σt(y2y1), where t = 1, 2; det(ab) ≡ 0.

(A) tr(a2b) ≡ 0, where a′ = b′, i.e.,
a ��	


��������	 b��	

	 .

(A′) tr(abc) ≡ − tr(acb), where a′ = b′ = c′.
(B) tr(a∗b) ≡ − tr(ab), where a′ = b′.
(C) tr(xx∗a) ≡ 0, where x′ = a′, i.e.,

a ��	

��������	��

x
�������	 .

(C′) tr(x1x
∗
2a) ≡ − tr(x2x

∗
1a), where x′

1 = x′
2 = a′.

(D) tr(x∗y1x∗y2) ≡ 0, where x′ = y′
1 = y′

2 and x′′ = y′′
1 = y′′

2 , i.e., �������	��
x∗

y1,y2

���������	 .

(D′) tr(x∗
1y1x

∗
2y2) ≡ − tr(x∗

2y1x
∗
1y2), where x′

1 = x′
2 = y′

1 = y′
2 and x′′

1 = x′′
2 = y′′

1 = y′′
2 .

(E) tr(xx∗) = 2 det(x).

Proof. Relations (0) and (E) are trivial. Relation (A) follows from

tr(a2b) = tr(a) tr(ab) − det(a) tr(b).

Relation (B) follows from

tr(ab) = − tr(a∗b) + tr(a) tr(b).

Relation (C) follows from

tr(xx∗a) = det(x) tr(a).
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Relation (D) follows from

tr(x∗y1x∗y2) = − det(x) tr(y∗
1y2) + tr(x∗y1) tr(x∗y2).

Applying linearization to (C) and (E), i.e.,making a substitutionXx → Xx1 +Xx2 ,where x′
1 = x′

2 = x′
and x′′

1 = x′′
2 = x′′, and taking the homogeneous component of degree 1 with respect to both Xx1 and

Xx2 , we obtain relations (C′) and (D′). The proof of (A′) is similar. �

Lemma 4.2. Let char F �= 2 and a, b, c, d be paths in Q∗ that are closed in v ∈ Q0. Then

(R1) tr(abcd) ≡ 0;

(R2) tr(abc) ≡ 0, where a and b intersect at a vertex different from v.

Proof. Applying (A′) several times, we obtain the proof of (R1):

tr(a · b · cd) ≡ − tr(ac · d · b) ≡ tr(acbd) = tr(da · c · b) ≡ − tr(dabc).

Assume that a = x1y1 and b = x2y2 for paths x1, x2, y1, y2 in Q∗ with x′′
1 = x′′

2 = y′
1 = y′

2 = w for a

vertex w and w �= v. By (A′) we have

tr(abc) = tr(c · x1y1 · x2y2) ≡ − tr(cx2y2x1y1).

Applying (D′) two times we obtain

tr(cx2y2x1y1) ≡ − tr(cx2y1x1y2) ≡ tr(cx1y1x2y2) = tr(cab).

Thus, (R2) is proven. �

Note that if a ∼ b for closed paths a and b, then mdeg(a) = mdeg(b) and tr(a) = tr(b). The next

lemma generalizes this remark.

Lemma 4.3. Assume that a, b are closed paths in Q∗ and mdeg(a) = mdeg(b). Then tr(a) ≡ ± tr(b).

Proof. We assume a = a1 · · · as, where ai ∈ Q∗
1. Since mdeg(a) = mdeg(b), the equivalence b ∼

a1b2 · · · bs holds, where bi ∈ Q∗
1. If s = 1, then b ∼ a.

Let s > 1. Since mdeg(a2 · · · as) = mdeg(b2 · · · bs), we have b2 · · · bs = ca2d or b2 · · · bs = ca∗
2d

for c, d ∈ path(Q∗). By case by case consideration we will show that tr(b) ≡ ± tr(a1a2e) for e ∈
path(Q∗). Repeating this procedure we complete the proof.

Case 1. Assume that c is not empty and a2 is not a loop.

Case 1.1. Let b2 · · · bs = ca2d. Then we depict the closed path a1b2 · · · bs in Q∗ as follows:

c ��	

�

�������	

�������	��

a2

a1

		�������	

d

��

,

where d can be empty. Since mdeg(a) = mdeg(a1a2d) + mdeg(c) and a = a1a2 · · · as, we have that

ver(c) ∩ ver(d) is not empty. Denote v = a′′
1 .

Case 1.1.a. Let v ∈ ver(c) ∩ ver(d). Then d = d1d2 for a path d1 in Q∗ with d′′
1 = v and d2 ∈

path(Q∗). Hence we have
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c ��	

�

�������	


������v
��

a2

d1

��

a1

		

��
d2

�������	

.

Applying relation (A′), we obtain tr(b) = tr(d2a1 · c · a2d1) ≡ − tr(a1a2d1cd2).
Case 1.1.b. Let w ∈ ver(c) ∩ ver(d) for a vertex w with v �= w. Then c = c1c2 and d = d1d2 for

d1, d2 ∈ path(Q∗) and paths c1, c2 with c′2 = d′
2 = w. Hence we have

�������	


������v
��

a2

a1

		

c2
����

c1


������w

d1

��

��

d2

�������	

.

Applying relation (D′), we obtain tr(b) = tr(c1 · c2 · a2d1 · d2a1) ≡ − tr(a1a2d1c2c1d2).
Case 1.2. Let b2 · · · bs = ca∗

2d. Thus we depict a1b2 · · · bs as follows:

�������	

�������	

a∗
2

��

��
c

a1

		

��
d

�������	

.

By relation (B), tr(b) = tr(ca∗
2 · da1) ≡ − tr(a2c

∗da1) = − tr(a1a2c
∗d).

Case 2. Let c be a non-empty path and a2 be a loop.

If b2 · · · bs = ca2d, then relation (A′) implies that tr(b) = tr(da1ca2) ≡ − tr(a1a2cd).
If b2 · · · bs = ca∗

2d, then relations (A′) and (B) imply that tr(b) = tr(da1ca
∗
2) ≡ − tr(a1a

∗
2cd) ≡

tr(a1a2cd).
Case 3. Let c be empty.

If b2 · · · bs = a2d, then tr(b) = tr(a1a2d).
If b2 · · · bs = a∗

2d, then applying relation (B) we obtain tr(b) = tr(a1a
∗
2d) ≡ − tr(a1a2d).

Since we have considered all cases, the proof is completed. �

Lemma 4.4. Assume that a is a path inQ∗ such that a is not a tree path and a �∼ xx∗ for any x ∈ Q1. Then

tr(a) ≡ 0.

Proof. Since a is not a tree path, then one of the following two cases holds.

Case 1. Let degx(a) � 2 for an x ∈ Q∗
1. Then relations (A), (A′) and (D) imply that tr(a) ≡ 0.

Case 2. Assume that there exists an x ∈ Q∗
1 such that a ∼ a1xa2x

∗ for a1, a2 ∈ path(Q∗) satisfying
one of the following conditions:

• a1 or a2 is empty;

• there is a w ∈ Q0 such that w ∈ ver(a1)∩ ver(a2).
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If a1 or a2 is empty, then tr(a) ≡ 0 by relation (C).

Assume that a1 and a2 are not empty. If x is a loop, then relations (A′) and (C) imply the required

equality.

Assume that x is not a loop. Then ai = cidi for ci, di ∈ path(Q∗), i = 1, 2, satisfying c′′1 = c′′2 = w.

Denote x′ = u and x′′ = v. We can depict a1xa2x
∗ as follows:


������w

c1

��

��
c2

��

��


������u

x∗
����

x

������v

d1 d2 .

Case 2.1. If there is an i = 1, 2 such that ci or di is empty, then w ∈ {u, v}. If w = u, then relations

(A′) and (C) imply that tr(a) = tr(a1 · xc2 · d2x∗) ≡ − tr(a1d2x
∗xc2) ≡ 0. If w = v, then we obtain

the required equality similarly.

Case 2.2. If c1, c2, d1, d2 are non-empty paths, then applying (D′) and (C) we obtain tr(a) =
tr(c1d1xc2d2x

∗) = tr(d1x · c2 · d2 · x∗c1) ≡ − tr(d1x · x∗c1 · d2 · c2) ≡ 0. The proof is completed. �

5. The case of char F = 2

In this section we assume that char F = 2 unless otherwise stated. We say that a tree path a inQ∗
is simple if for every x ∈ arr(a) with x∗ �∈ arr(a) we have that x is a loop. In other words, every block

of simple tree path is a quiver with one vertex and several loops. We use the following remark in the

next two sections.

Remark 5.1. To define a homomorphism � : SI(Q) → R of F-algebras, where R is a commutative

F-algebra, for every z ∈ Q1 we will specify 2 × 2 matrix Φ(Xz) over R. Then we set that Φ(xzij) is the

(i, j)th entry ofΦ(Xz). Note that in some caseswe define onlyΦ(Xz∗), notΦ(Xz). Thenwe assume that

Φ(Xz) = Φ(Xz∗)
∗. (4)

With abuse of notation in some cases we defineΦ(Xz) together with Φ(Xz∗). In these cases the equal-

ity (4) holds.

Lemma 5.2. If a is a simple tree path in Q∗, then tr(a) is indecomposable.

Proof. Let ver(a) = {v1, . . . , vl}. By definition of simple tree path, we have

arr(a) = {a1, a∗
1, . . . , al−1, a

∗
l−1}

⋃ l⋃
i=1

{bi,1, . . . , bi,ti},

where t1, . . . , tl � 0 and bi,1, . . . , bi,ti are loops in vi (1 � i � l) such that bi,j �∼ bi,k for j �= k.

We prove the lemma by induction on l � 1.

Let l = 1. If t1 = 1, then tr(a) = tr(b11) �≡ 0.

Assume that t1 � 2. Define a homomorphism Φ : SI(Q) → F[xb11ij | 1 � i, j � 2] of F-algebras as

follows: for every y ∈ Q∗
1 we set

Φ(Xy) =
⎧⎨
⎩

Xy, if y = b11

E, otherwise

(see Remark 5.1). If tr(a) ≡ 0, then tr(a) = ∑
q αqfqhq for αq ∈ F and some products of traces fq, hq.

We haveΦ(tr(a)) = x
b11
11 + x

b11
22 �= 0. On the other hand, the equality tr(E) = 0 impliesΦ(tr(a)) = 0;

a contradiction.



A.A. Lopatin / Linear Algebra and its Applications 434 (2011) 1920–1944 1933

Induction step. Let l � 2 and tr(a) be decomposable, i.e., tr(a) = ∑
q αqfq for αq ∈ F and some

products of traces and determinants fq with two or more factors. Applying relation (B), we assume

that there is no tr(b∗
ijc), where c ∈ path(Q∗), among traces in fq. Without loss of generality we can

assume that v1 corresponds to a leaf of the tree of a (see the definition of tree path for details). Hence

t1 > 0. Moreover, without loss of generality we can assume that a1 connects v1 and v2. Therefore,

v1 �∈ {a′
i, a

′′
i } for all 2 � i � l − 1.

Let k = 2 satisfy the following property:

tk > 0 or vk ∈ {a′
i, a

′′
i } for at least three pairwise different i with 1 � i � l − 1. (5)

Denote

Ω = {a2, a∗
2, . . . , al−1, a

∗
l−1}

⋃ l⋃
i=2

{bi,1, . . . , bi,ti}.

Then arr(a) = {a1, a∗
1} ∪ {b1,1, . . . , b1,t1} ∪ Ω . Schematically this is depicted as

b11,...,b1t1 ��	

���������v1

��
c1

c∗
1

�� ��������v2 Ω ,

where c1 stands for a1 or a∗
1. Define a homomorphism Ψ : SI(Q) → F[xyij | 1 � i, j � 2, y ∈ Q1] of

F-algebras as follows: for every y ∈ Q∗
1 we set

Ψ (Xy) =
⎧⎨
⎩

E, if y ∈ arr(a) \Ω

Xy, otherwise

Let c be a closed path in Q∗ with arr(c) ⊂ arr(a). Then

• if degx(c) � 1 for an x ∈ Ω , then Ψ (tr(c)) = tr(d) for a closed path d with arr(d) ⊂ Ω;

• if arr(c) ∩ Ω is empty, then Ψ (tr(c)) = tr(E) = 0;

• Ψ (det(ai)) = det(ai) for all 2 � i � l − 1;

• if det(a1) is a factor of fq, then tr(b1,j1 · · · b1,js) is also a factor of fq for some j1, . . . , js; thus,
Ψ (fq) = 0.

This remark implies that Ψ (tr(a)) = tr(e) ≡ 0 for a path e with arr(e) = Ω . By condition (5), e is

a simple tree path. Since the tree of e has exactly l − 1 vertices, the induction hypothesis implies a

contradiction.

Let k = 2 do not satisfy property (5). Then without loss of generality we can assume that there is

a k > 1 satisfying property (5) such that 2, . . . , k − 1 do not satisfy property (5) and {a′
i−1, a

′′
i−1} ∩

{a′
i, a

′′
i } �= ∅ for all 2 � i � k − 1. Schematically this is depicted as

b11,...,b1t1 ��	

���������v1

��
c1

c∗
1

�� ��������v2 �������	��
ck−1

c∗
k−1

�� ��������vk
�� � Ω ,

where ci stands for ai or a
∗
i (1 � i � k − 1) and

Ω = {ak, a∗
k, . . . , al−1, a

∗
l−1}

⋃ l⋃
i=k

{bi,1, . . . , bi,ti}.

Repeating the above reasoning we obtain a contradiction with the induction hypothesis. �

Remark 5.3. Let u and v be two different vertices of Q. Denote by Quv the quiver that is the result of

gluing of uwith v, i.e., (Quv)0 = Q0\{v} and (Quv)1 = {x̃ | x ∈ Q1}, where
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x̃′ =
⎧⎨
⎩

x′, if x′ �= v

u, otherwise
and x̃′′ =

⎧⎨
⎩

x′′, if x′′ �= v

u, otherwise
.

Then (Q∗)uv = Q∗
uv. Let a be a closed path in Q∗ and let b be the image of a in Q∗

uv. If tr(a) ≡ 0 in

SI(Q), then tr(b) ≡ 0 in SI(Quv). Similar result is valid for gluing of several vertices.

The following lemma generalizes Lemma 5.2 for the case of arbitrary tree path.

Lemma 5.4. If a is a tree path in Q∗, then tr(a) is indecomposable.

Proof. Assume that tr(a) ≡ 0. Let Γ (1), . . . , Γ (l) be blocks of the tree path a (see Definition 2.2).

For every iwe glue all vertices ofΓ (i) together and denote the resulting quiver byΛ (see Remark 5.3

for details). Let b be the image of a inΛ. Then Remark 5.3 implies that tr(b) ≡ 0 in SI(Λ). On the other

hand, b is a simple tree path in Λ; a contradiction to Lemma 5.2. �

Proof of Theorem 2.3. Denote by P the set from the formulation of the theorem. Let the characteristic

of F be arbitrary. Theorem 1.2 together with Lemmas 4.3, 4.4 and relation (E) show that P generates

SI(Q).
Let char F = 2. Then Lemma 5.4, the indecomposability of det(a) for all a ∈ Q1 together with the

fact that all elements of P have pairwise different multidegrees imply that P is a minimal generating

set for SI(Q). �

6. The case of char F �= 2

In this section we assume that char F �= 2.

Lemma 6.1. Let a be a closed path in Q∗ and b be a multilinear path in supp(a) satisfying the following

condition:

for all x ∈ Q1 we have degx(b) = 0 or degx∗(b) = 0. (6)

If tr(b) ≡ 0, then tr(a) ≡ 0.

Proof. Let b = b1 · · · br for bi ∈ Q∗
1 and � = mdeg(a) − mdeg(b) ∈ N

#Q1 . Consider v = b′′
1 . Let

Pv,� = {x ∈ Q1 | v ∈ ver(x) and �x > 0}
be a non-empty set. Then there is a path c1 inQ∗ such that c′1 = c′′1 = v,�(1) = �−mdeg(c1) ∈ N

#Q1

and the set Pv,�(1) is empty.Moreover,we assume that thedegree of c1 ismaximal. If Pv,� is empty, then

weset c1 is theemptypath in thevertexv and�(1) = �. Thenapply thisprocedure tob′′
2, �(1) toobtain

c2, �(2) andsoon. Finally,weconstruct a closedpath c = b1c1 · · · brcr inQ∗ withmdeg(a) = mdeg(c),
where ci is either an empty path or a closed path inQ∗. By Lemma4.3, tr(a) ≡ ± tr(c). Since tr(b) ≡ 0,

we have

tr(b) = ∑
q

αqfqhq, (7)

where αq ∈ F and fq, hq ∈ SI(Q) are homogeneous of positive degree. We apply the substitution

bi → bici for all 1 � i � r to (7). Since bi �∼ bj for i �= j, this substitution is well defined. As the result,

we obtain that tr(c) is decomposable. Thus, tr(a) ≡ 0. �

Lemma 6.2. Let c = a1a2a3b1b2b3 be a closed path in Q∗, where ai, bi are such paths that a′
i = b′

i
(1 � i � 3). Then tr(c) ≡ 0.

Proof. By relation (D′), we have tr(c) = tr(a1a2 · a3 · b1b2 · b3) ≡ − tr(b1 · b2a3 · a1 · a2b3) ≡
tr(b2 · a3b1 · a2 · b3a1) ≡ − tr(c). �
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Corollary 6.3. Let a be a multilinear path in Q∗ such that tr(a) �≡ 0. Assume that some decomposition of

a into primitive closed paths contains b and c with b �∼ c. Then #(ver(b) ∩ ver(c)) � 2.

Proof. For every x ∈ Q1 with degx(a) = degx∗(a) = 1 we add a new arrow x̃ to Q with x̃′ = x′ and
x̃′′ = x′′ and substitute x̃∗ for x∗ in a. Let ã be the resulting multilinear path in the resulting quiver Q̃∗.
Note that tr(ã) is indecomposable in SI(Q̃∗). Therefore, without loss of generality we can assume that

a satisfies condition (6).

Let #(ver(b) ∩ ver(c)) � 3. Then b ∼ b1b2b3 and c ∼ c1c2c3 for paths bi, ci in Q∗ with b′
i = c′i

(1 � i � 3). Thus Lemma 6.2 implies that tr(e) ≡ 0 for e = b1b2b3c1c2c3. Since a is amultilinear path

satisfying (6), thene is alsoamultilinearpathsatisfying (6).ByLemma6.1,weobtainacontradiction. �

In the formulation of the next lemma we use notions from Definition 2.13.

Lemma 6.4. Let a be a multilinear path in Q∗ such that tr(a) �≡ 0. Assume that some decomposition of

a into primitive closed paths contains b1, b2, b3 such that bi �∼ bj for i �= j. Then up to permutation of

indices of b1, b2, b3 one of the following possibilities holds:

(a) ver(bi) ∩ ver(b3) is empty for i = 1, 2;
(b) ver(b1)∩ ver(b3) is empty and either b1, b2, b3 form a chain or

#(ver(b1) ∩ ver(b2)) � 2 and #(ver(b2)∩ ver(b3)) = 1;
(c) paths b1, b2, b3 form a fan.

Proof. As in the proof of Corollary 6.3, without loss of generality we can assume that a satisfies

condition (6). In particular, any multilinear path in supp(a) satisfies condition (6).

Assume that conditions (a), (b), and (c) are not valid. Applying Corollary 6.3, we can see that up to

permutation of indices of b1, b2, b3 one of the following possibilities holds:

(1) #(∩3
i=1 ver(bi)) � 1 and #(ver(b1) ∩ ver(b2)) � 2;

(2) ∩3
i=1 ver(bi) = ∅ and ver(bi)∩ ver(bj) is not empty for all i, j;

(3) ver(b1)∩ ver(b2) = {u1, u2}, ver(b2)∩ ver(b3) = {v1, v2}, ver(b1)∩ ver(b3) = ∅ for pairwise

different verticesu1, u2, v1, v2 ∈ Q0;moreover, b2 ∼ c1c2 for paths c1, c2 with c′i , c′′i ∈ {u1, u2}
and ver(ci) ∩ ver(b3) �= ∅ for i = 1, 2.

We claim that there is a multilinear path e in supp(a) such that tr(e) ≡ 0. By Lemma 6.1, this claim

implies tr(a) ≡ 0; a contradiction. To prove the claim, we consider the above mentioned cases.

Case 1. We have b1 ∼ c1c2 and b2 ∼ d1d2 for paths c1, c2, d1, d2 in Q∗ such that we have the

following picture in Q∗:


������u ��
c2,d2

c1,d1

� 
������v b3��	

	 ,

where u �= v. By relation (R2) from Lemma 4.2, tr(e) ≡ 0 for the multilinear path e = b3c1c2d1d2.

Case 2. We have bi ∼ bi1bi2 for paths bi1, bi2 in Q∗ (1 � i � 3) such that we have the following

picture in Q∗:

������v

b11

��

�� ��
b21

��
������u

b31

����
b32


������w

b12 b22 .

where u, v,w are pairwise different. By Lemma 6.2, tr(e) ≡ 0 for the multilinear path

e = b11b21b31b32b22b12.
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Case 3. We have b1 ∼ b11b12, b2 ∼ d1 · · · d4, and b3 ∼ b31b32 for paths b1i, b3i, dj in Q∗
(i = 1, 2, 1 � j � 4) such that up to permutations of vertices v1, v2 and u1, u2 we have the following

picture:

��������v1
��

d2

��

��

d1



��������u1��

d3

��

����������u2

d4

�� ��������v2

b11

b12

b31

b32
.

By Lemma 6.2, tr(e) ≡ 0 for the multilinear path e = b11d
∗
4b

∗
31d2 · d3b32d∗

1b12. �

Lemma 6.5. Let a be a multilinear path in Q∗. Assume that some decomposition of a into primitive closed

paths contains pairwise non-equivalent b1, . . . , br (r > 3) such that #(ver(bi) ∩ ver(bj)) �= ∅ if and

only if |i − j| � 1 or i, j ∈ {1, r}. Then tr(a) ≡ 0.

Proof. Let tr(a) be decomposable. As in the proof of Lemma 6.4, we can assume that a satisfies condi-

tion (6). Without loss of generality we can assume that case b) from Lemma 6.4 holds for bi, bi+1, bi+2

for all 1 � i � r, where we set br+1 = b1 and br+2 = b2. Further we proceed as in case 2) from

the proof of Lemma 6.4. Namely, it is not difficult to see that bi ∼ cidi for paths ci, di in Q∗ such

that

• c′′i ∈ ver(bi) ∩ ver(bi+1) for all 1 � i � r;

• c = c1 · · · cr and d = dr · · · d1 are closed paths in Q∗.

Since cd is a multilinear path and r � 3 we have that tr(cd) ≡ 0 by Lemma 6.2. Lemma 6.1 implies a

contradiction. �

Lemma 6.6. Let a be a multilinear path in Q∗ and a is not admissible. Then tr(a) ≡ 0.

Proof. Assume that tr(a) is indecomposable. Let {b1, . . . , bs} be some decomposition of a into prim-

itive closed paths and a diagram D be the type of awith respect to {b1, . . . , bs}. Applying relation (R1)

from Lemma 4.2, Corollary 6.3 and Lemmas 6.4, 6.5 to b1, . . . , bs, we can see that a is admissible with

respect to {b1, . . . , bs}; a contradiction. �

For any a = a1 · · · as ∈ path(Q∗) with ai ∈ Q∗
1 we set L(a) = {a1} and R(a) = {a2, . . . , as}. Note

that if a is an empty path, then L(a) = R(a) = ∅; if a ∈ Q∗
1, then R(a) = ∅.

Lemma 6.7. Let a be an admissible multilinear path in Q∗ that satisfies condition (6). Then tr(a) is inde-
composable.

Proof. Let {b1, . . . , bs}be suchdecompositionof a intoprimitive closedpaths that a is admissiblewith

respect to this decomposition. Assume that a diagram D is the type of a with respect to {b1, . . . , bs}.
Denote by vi the vertex of D corresponding to bi (see Definition 2.9).

We prove the lemma by induction on s � 1. Let s = 1. Assume that tr(a) ≡ 0. Then tr(a) =∑
i αi

∏
j tr(cij), where αi ∈ F and cij is a closed path in Q∗ with

∑
j mdeg(cij) = mdeg(a) and

deg(cij) < deg(a). Since tr(a) �= 0, we have cij ∼ a; a contradiction.

Let s > 1. We shrink all triangles of D and obtain a tree (see Remark 2.12). Considering all leafs of

this tree, we can see that one of the following cases holds.

(1) There are 1 � i, j � s (i �= j) such that vi and vj are connected by means of an edge marked

with 1 and ver(bi)∩ ver(bq) �= ∅ if and only if q = i or q = j. Hence for some c ∼ bi and

x, y ∈ arr(bj) we have
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�������	

y

�!�������	

�������	 �
x

c��	

	

(2) There are pairwise different 1 � i, j, k � s such that vi, vj, vk are vertices of a triangle and for

p = i, jwe have ver(bp) ∩ ver(bq) �= ∅ if and only if q ∈ {i, j, k}. Hence for some c ∼ bi, d ∼ bj
and x, y ∈ arr(bk) we have

�������	

y

�!�������	

�������	 �
x

c��	

	d ��	


�

(3) There are 1 � i, j � s (i �= j) such that vi, vj are connected by means of an edge marked with

2 and ver(bi)∩ ver(bq) �= ∅ if and only if q = i, j. Hence for some c = c1c2 ∼ bi, arrows

x, y ∈ arr(bj), and a path d in supp(bj) we have

�������	
y

!"�������	

c1,d

"#

��

c2

�������	#$
x

�������	

Denote I2 =
⎛
⎝ 1 0

0 −1

⎞
⎠. Define a homomorphismΦ : SI(Q) → SI(Q) ofF-algebras as follows (see

Remark 5.1): for every z ∈ Q∗
1 we set

• in case 1 we have Φ(Xz) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I2, if z ∈ L(c)

E, if z ∈ R(c)

XzI2, if z = x

Xz, otherwise

;

• in case 2 we have Φ(Xz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I2, if z ∈ L(c)

J2, if z ∈ L(d)

E, if z ∈ R(c) ∪ R(d)

XzI2J2, if z = x

Xz, otherwise

;
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• in case 3 we have Φ(Xz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I2, if z ∈ L(c1)

J2, if z ∈ L(c2)

E, if z ∈ R(c1) ∪ R(c2) ∪ arr(d)

XzXdI2J2, if z = x

Xz, otherwise

.

If tr(a) ≡ 0, then tr(a) = ∑
q αqfq for αq ∈ F and some products fq of at least two traces. Note

that tr(I2) = tr(J2) = tr(I2J2) = 0, I22 = E, J22 = −E, and I2J2 = −J2I2. Thus, there is a multilinear

path e in Q∗ such that Φ(tr(a)) ≡ ± tr(e) and mdeg(e) = mdeg(a) − mdeg(c) in cases 1 and 3 and

mdeg(e) = mdeg(a) − mdeg(c) − mdeg(d) in case 2. On the other hand, Φ(fq) is either zero or a

product of at least two traces of closed paths. Therefore, tr(e) ≡ 0. Since there is a decomposition of

e into primitive closed paths that consists of s − 1 or s − 2 paths and e is admissible with respect to

the mentioned decomposition, induction hypothesis implies a contradiction. �

Denote by D(Q) the set of all maps δ : Q∗
1 → {0, 1} such that if δ(x) = 1, then x is a loop. Given

δ ∈ D(Q), we define a homomorphism Ψδ : SI(Q) → F[H(Q, (2, . . . , 2))] of F-algebras as follows:

for every z ∈ Q∗
1 we set

Ψδ(Xz) =
⎧⎨
⎩

Xz, if δ(z) = 0

Xz − tr(Xz)E22, if δ(z) = 1
,

where E22 =
⎛
⎝ 0 0

0 1

⎞
⎠ (see Remark 5.1 for details). If particular, for z ∈ Q1 with δ(z) = 1 we have

Ψδ(Xz) =
⎛
⎝ xz11 xz12

xz21 −xz11

⎞
⎠, where xzij ∈ F[H(Q, (2, . . . , 2))] (see Section 1). As above, for f ∈ SI(Q)

we say that Ψδ(f ) is decomposable and write Ψδ(f ) ≡ 0 if Ψδ(f ) is a polynomial in elements from

Ψδ(SI(Q)) of strictly less degree or Ψδ(f ) ∈ F.

We say that s is a complexity of a multilinear path a in Q∗ if there is a decomposition {b1, . . . , bs}
of a into primitive closed paths. Note that a can have several pairwise different complexities.

Remark 6.8. If a ∈ S1 and b is a closed primitive path in supp(a) and degx(b) + degx∗(b) > 0 for an

x ∈ Q1, then b ∼ xx∗ and b is called a double arrow of a.

The next lemma is a generalization of Lemma 6.7.

Lemma 6.9. If a ∈ S1 is not a loop and δ ∈ D(Q), then Ψδ(tr(a)) is indecomposable. In particular, tr(a)
is indecomposable.

Proof. We prove the lemma by induction on complexity of a. For short, we write fΨ for Ψδ(f ), where

f ∈ SI(Q).
If one is a complexity of a, then δ(x) = 0 for all x ∈ arr(a). We obtain the required statement in

the same way as in the proof of Lemma 6.7.

We assume that b1, b2, b3 ∈ Q∗ are loops in a v ∈ Q0 and δ(bi) = 1 for 1 � i � 3. We claim that

tr(b1b2)
Ψ �≡ 0 and tr(b1b2b3)

Ψ �≡ 0. (8)

Let tr(b1b2b3)
Ψ ≡ 0. Since tr(bi)

Ψ = 0, we obtain tr(b1b2b3)
Ψ = 0. But the last equality is not valid;

a contradiction. In the same way we can see that tr(b1b2)
Ψ is indecomposable.

Let {b1, . . . , bs} be some decomposition of a into primitive closed paths inQ∗ and s > 1. Then we

can see that case 1, 2 or 3 from the proof of Lemma 6.7 holds. In what follows, we use notations from

the proof of Lemma 6.7. By Definition 2.2, we have that
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• c is not a double arrow in case 1,

• c and d are not double arrows in case 2,

• c and bj are not double arrows in case 3.

We set b = bj in cases 1 and 3 and b = bk in case 2.

Let b be not a double arrow. If b is not a loop, then we define Φ in the same way as in the proof of

Lemma 6.7 and apply induction hypothesis to complete the proof. If b is a loop, then either case 1 or 2

holds and tr(a)Ψ = tr(bc)Ψ in case 1 and tr(a)Ψ ≡ ± tr(bcd)Ψ in case 2, where b, c are closed paths

with arr(b) ∩ arr(c) = ∅ in case 1 and similarly in case 2. Obviously, (8) implies tr(a)Ψ �≡ 0.

Let b be a double arrow. Therefore, b ∼ xx∗ and y = x∗. Without loss of generality, we can assume

that x ∈ Q1.

Case 1. Define a homomorphism Φ : SI(Q) → F[H(Q, (2, . . . , 2))] of F-algebras as follows: for

every z ∈ Q∗
1 we set

Φ(Xz) =
⎧⎨
⎩

E, if z = x or z = x∗

Xz, otherwise
.

We remove the arrow x from Q and glue vertices x′ and x′′ together. Denote the resulting quiver by

Γ . We also remove arrows x, x∗ from a and obtain a new path e in Γ ∗ satisfying tr(e) = Φ(tr(a)).
Moreover, e is an admissible tree path in Γ ∗ and e is not a loop. Let tr(a)Ψ ≡ 0. Applying relation

(C), we obtain tr(e)Ψ ≡ 0. Since a complexity of e is equal to s − 1, induction hypothesis implies a

contradiction.

Case 2. For X, C,D ∈ F
2×2 we define a homomorphism Φ = ΦX,C,D : SI(Q) →

F[H(Q, (2, . . . , 2))] of F-algebras as follows: for every z ∈ Q∗
1 we set

Φ(Xz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X, if z = x

X∗, if z = x∗

C, if z = L(c)

D, if z = L(d)

E, if z ∈ R(c) ∪ R(d)

Xz, otherwise

.

We remove the arrows {x, x∗} ∪ arr(c) ∪ arr(d) from Q∗, add a new loop y in the vertex x′′, and glue

vertices x′ and x′′ together. As the result of this procedure, we obtain a quiver Γ ∗ for some quiver Γ .

We remove arrows {x∗} ∪ arr(c) ∪ arr(d) from a and substitute y for x. As the result, we obtain a path

e in Γ ∗. Note that e is an admissible tree path in Γ ∗ and e is not a loop. We set δ(y) = 1. Thus, we can

consider δ as a map Γ ∗
1 → {0, 1}.

Let tr(a)Ψ ≡ 0. Applying relations (A′) and (C), we obtain

tr(a)Ψ = ∑
i
αi tr(xcdx

∗zi)Ψ fi +
∑

j
βjhj,

where αi, βj ∈ F, fi, hj ∈ Ψδ(SI(Q)), zi is a closed path in Q∗, and hj does not contain neither

tr(xcdx∗z)Ψ nor tr(xdcx∗z)Ψ as a factor for any closed path z in Q∗. Assume that

tr(C) = tr(D) = tr(CD) = 0 and tr(XCDX∗) = 0.

SinceΦ(
∑

j βjhj) = 0 and tr(Y) = 0 for Y = XCDX∗, we obtain that tr(e)Ψ |Xy→Y = ∑
i αi tr(YXzi)

Ψ fi.

Lemma6.10 (seebelow) implies that tr(e)Ψ = ∑
i αi tr(XyXzi)

Ψ fi. Thus, tr(e)
Ψ ≡ 0. Since a complexity

of e is equal to s − 2, induction hypothesis implies a contradiction. �

Lemma 6.10. Assume that Y ∈ F
2×2 satisfies tr(Y) = 0. Then there are X, C,D ∈ F

2×2 such that

tr(C) = tr(D) = tr(CD) = 0 and Y = XCDX∗.
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Proof. We set Y =
⎛
⎝ y1 y2

y3 −y1

⎞
⎠.

Let y2 and y3 be non-zero or y2 = y3 = 0. We take X = E, C =
⎛
⎝ −c1 c2c3

−c3 c1

⎞
⎠ and D =

⎛
⎝ 0 c2

1 0

⎞
⎠

for c1, c2, c3 ∈ F. If y2 = y3 = 0, then we consider c1 = 0, c2 = 1, c3 = y1 and obtain the required.

If y2 and y3 are non-zero, then we consider c1 = y3, c2 = −y2/y3, c3 = −y1y3/y2 and the required

statement follows.

Let y2 = 0 and y3 �= 0. Thenmatrices X =
⎛
⎝ 1 y1/y3

0 1

⎞
⎠, C =

⎛
⎝ −y3 0

0 y3

⎞
⎠, andD =

⎛
⎝ 0 −y21/y

2
3

1 0

⎞
⎠

satisfy the required property.

Let y2 �= 0 and y3 = 0. Then matrices X =
⎛
⎝ 1 0

−y1/y2 1

⎞
⎠, C =

⎛
⎝ 0 1

−y21/y
2
2 0

⎞
⎠, and D =

⎛
⎝ −y2 0

0 y2

⎞
⎠ satisfy the required property. �

Proof of Theorem2.20.Denote by P the set from the formulation of the theorem. Theorem1.2 together

with Lemmas 4.3, 4.4, 6.6 and relations (B) and (E) show that P generates SI(Q). Lemma 6.9 together

with the fact that all elements of P have pairwise different multidegrees imply that P is a minimal

generating set for SI(Q). �

7. Corollaries

In this sectionwe collect some corollaries concerning SI(Q). Let us recall that if we consider arrows

of a quiver Q as an undirected edges, then Q turns into the underlying graph of Q.

Corollary 7.1. LetΓ andΛ be quivers with isomorphic underlying graphs. Then SI(Γ ) � SI(Λ). Moreover,

the given isomorphism preserves multidegrees.

Proof. Since the underlying graphs ofΓ andΛ are isomorphic, there are isomorphismsϕ0 : Γ0 → Λ0

and ϕ1 : Γ1 → Λ1 such that for every a ∈ Γ1 we have {ϕ0(a
′), ϕ0(a

′′)} = {ϕ1(a)
′, ϕ1(a)

′′}.
Define the map ϕ : Γ ∗

1 → Λ∗
1 as follows:

ϕ(a) =
⎧⎨
⎩

ϕ1(a), if ϕ0(a
′) = ϕ1(a)

′

ϕ1(a)
∗, otherwise

and ϕ(a∗) = ϕ(a)∗,

where a ∈ Γ1. Given a path a = a1 · · · as in Γ ∗, where a1, . . . , as ∈ Γ ∗
1 , we write ϕ(a) for

ϕ(a1) · · · ϕ(as). Obviously, if a is a closed path in Γ ∗, then ϕ(a) is a closed path in Λ∗.
Define the homomorphism of algebras Φ : F[H(Γ , (2, . . . , 2))] → F[H(Λ, (2, . . . , 2))] as fol-

lows: Φ(xaij) is (i, j)th entry of Xϕ(a), where a ∈ Γ1. Since Φ(det(Xa)) = det(Xϕ(a)) and Φ(tr(Xb)) =
tr(Xϕ(b)) for an a ∈ Γ1 and a closed path b ∈ Γ ∗, Theorem 1.2 implies that the restriction of Φ to

SI(Γ ) is an epimorphism SI(Γ ) → SI(Λ). Considering ϕ−1
0 instead of ϕ0 and ϕ−1

1 instead of ϕ1 and

repeating the above reasoning, we construct an epimorphism Ψ : SI(Λ) → SI(Γ ) such that Φ ◦ Ψ is

the identity map. �

Remark 7.2. Corollary 7.1 does not hold for an arbitrary dimension vector n. As an example, assume

that

Γ : �������	��
a

b

���������	 , Λ : �������	��
c

��
d

�������	 ,
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andn = (3, 3). Then f = tr(XaXb) ∈ SI(Γ , n) anddeg(f ) = 2.On theother hand, for anyh ∈ SI(Λ, n)
with h �∈ Fwehave deg(h) � 3. Therefore, there is no an isomorphismbetween SI(Γ , n) and SI(Λ, n)
that preserves multidegrees, but the underlying graphs of Γ and Λ are isomorphic.

Corollary 7.3. Let {f1, . . . , fr} and {h1, . . . , hs} beminimalN#Q1-homogeneous generating sets for SI(Q).
Then r = s and there is aπ ∈ Sr andnon-zeroα1, . . . , αr ∈ F such that f1 ≡ α1hπ(1), . . . , fr ≡ αrhπ(r).

Proof. Theorem 1.2 and Lemma 4.3 together with relation (E) of Lemma 4.1 imply that the dimension

of every N
#Q1 -homogeneous component of SI(Q) = SI(Q)/(SI(Q)+)2 is either 0 or 1. Since an N

#Q1 -

homogeneous set {fi} ⊆ SI(Q) is a minimal set of generators of SI(Q) if and only if {fi} is a basis of

SI(Q), the proof is completed. �

Corollary 7.4. Any relation
∑

i αifi ≡ 0, where αi ∈ F and fi ∈ SI(Q) is indecomposable, is a linear

combination of relations from Lemma 4.1.

Proof. In the proofs of Theorems 2.3 and 2.20 we show that using relations from Lemma 4.1 we can

represent any semi-invariant as a linear combination of elements from the minimal generating set

modulo decomposable semi-invariants. Thus, the required statement holds. �

8. Examples

In this sectionwe apply ourmain result to tree-like quivers and its partial cases such as tree quivers

and quivers with two vertices.

8.1. Tree-like quivers

We say that a quiverQ is a tree if its underlying graph is a tree. A quiverQ is called a tree-like quiver

if the degree of every primitive closed path in the underlying graph of Q is less than three.

Given a quiver Q and its underlying graph Γ , denote by Q̂ the graph that we obtain from Γ as the

result of the following procedure:

• remove all loops from Γ ;

• for every u, v ∈ Γ0 with u �= v consider the set of edges connecting u, v and remove all edges

from it but one.

Obviously, Q is a tree-like quiver if and only if Q̂ is a tree.

Example 8.1. The following quiver Q is a tree-like quiver, since Q̂ is a tree:

Q :

a ��	

�

�������	

�������	��
b1

��
b2

�������	

d2



��

d1

��

c1

��
c2

�������	

e

���������	

f��	

	

Q̂ : �������	

�������	 �������	

��
��

��
��

��
�

����������� �������	

��
��

��
��

��
�

�������	

Two arrows a, b in Q are parallel if {a′, a′′} = {b′, b′′}. Similarly, parallel edges are defined for a

graph.

We say that θ = (θv, θx | v ∈ Q̂0, x ∈ Q̂1) is a coloring of Q̂ if

• θv is a subset of loops of Q in the vertex v;

• θx is a subset of arrows of Q that are parallel to x.
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Given a ∈ Q1, we write a ∈ θ if a ∈ θv or a ∈ θx for some v and x. If a �∈ θ for all a ∈ Q1, then θ is

called empty. Let us remove from Q̂

• all edges x with empty θx ,• all vertices v with empty set {y ∈ Q̂1 | v is a vertex of y and θy is not empty}
and denote the resulting graph by Q̂(θ). If Q̂(θ) is connected, then θ is called connected.

Let Q be a tree-like quiver. A coloring θ is called good if

(a) θ is connected and θ is not empty;

(b) for every x ∈ Q̂1 we have that either #θx is even or #θx = 1;

(c) if #θx = 1 for an x ∈ Q̂1 and one of two vertices of x is a leaf v of the tree Q̂(θ), then θv is not

empty.

It is well-known that if Γ is a connected graph such that for all u, v ∈ Γ0 with u �= v number of

edges connecting u and v is even, then there is a closed path in Γ containing every edge of Γ one time

exactly. Hencewe obtain that for any good coloring θ there is a closed path bθ inQ∗ such that for every

a ∈ Q1 we have

dega(bθ ) + dega∗(bθ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if a �∈ θ

1, if a ∈ θ and a is a loop

1, if a ∈ θ, a is not a loop and #θx > 1

2, if a ∈ θ, a is not a loop and #θx = 1

,

where in the 3rd and 4th cases x stands for the only edge in Q̂ parallel to a. Note that

dega(bθ ) = dega∗(bθ ) = 1

in the last case.

Example 8.2. Let Q be the tree-like quiver from Example 8.1. Then the following coloring θ of Q̂ is

good, where we write down θx (θv, respectively) near arrow x (vertex v, respectively) of Q̂. We also

depict Q̂(θ):

θ : 
������∅


������a
b1 
������∅

d1,d2
��

��
��

��
��

��

c1,c2

������������ 
������∅

∅
��

��
��

��
��

��


������∅

Q̂(θ) : �������	

�������	 �������	

��
��

��
��

��
�

�����������

�������	

We can assume that bθ is the following closed path in Q∗: ab1c1c∗
2d1d2b

∗
1.

Lemma 8.3. Assume that char F = 2 and Q is a tree-like quiver. Then the following set is a minimal

generating set for SI(Q):

det(Xa), tr(Xbθ ),

where a ranges over Q1 and θ ranges over good colorings of Q̂.

Proof. Since θ is a good coloring, bθ is a tree path in Q∗ (see Definition 2.2). Obviously, if θ and ϑ are

pairwise different colorings of Q̂, thenmultidegrees of bθ and bϑ are different. Theorem 2.3 completes

the proof. �
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Lemma 8.4. Assume that char F �= 2 and Q is a tree-like quiver. Then the following set is a minimal

generating set for SI(Q):

det(Xa), tr(Xbθ ),

where a ranges over Q1 and θ ranges over good colorings of Q̂ satisfying one the following conditions:

a) there is an x ∈ Q̂1 such that #θx = 4 and θv, θy are empty for all v ∈ Q̂0 and y ∈ Q̂1 with y �= x;

b) #θx � 2 for all x ∈ Q̂1 and for every v ∈ Q̂0 we have

#θv + #{y ∈ Q̂1 | v is a vertex of y and θy is not empty} � 3.

Proof. Assume that case a holds. Then bθ is a tree path and its typewith respect to any decomposition

into primitive closed paths is the diagram

�������	
2

�������	 .

(see Definitions 2.2 and 2.9). Definition 2.13 implies that bθ is admissible.

Assume that case b holds. Then bθ is a tree path with unique decomposition into primitive closed

paths up to ∼-equivalence and permutations of decomposition’s elements (see Definition 2.4). The

type of bθ with respect to this decomposition is a tree D such that all edges of D are marked with 1. It

is not difficult to see that bθ is admissible.

We have shown that the set from the formulation of the lemma lies in the minimal generating set

for SI(Q) from Theorem 2.20. Similarly we obtain the inverse inclusion of the sets. �

Corollary 8.5. IfQ is a tree, then SI(Q) = F[det(Xa) | a ∈ Q1] is a polynomial algebra (i.e. a free algebra

over F).

Proof. Let char F = 2 and θ be a good coloring of Q̂. Consider a leaf v of Q̂(θ) and an arrow x ∈ Q̂1

such that v is one of two vertices of x. Since θv is empty, part c) of the definition of good coloring implies

that #θx �= 1. Thus θx is empty. Since θ is connected, θ is empty; a contradiction with part a) of the

definition of good coloring. Lemma 8.3 completes the proof.

Let char F �= 2 and a good coloring θ of Q̂ satisfy condition a) or b) from Lemma 8.4. If condition a)

holds, thenQ is not a tree. If condition b) holds, then we use Lemma 8.4 instead of Lemma 8.3 to prove

the lemma similarly to the case of char F = 2. �

8.2. Quivers with two vertices

Assume thatQ is an arbitraryquiverwith twovertices and its underlying graph is connected.Denote

vertices of Q by u and v. By Corollary 7.1, without loss of generality we can assume that there are no

arrows from u to v inQ. Obviously,Q is a tree-like quiver. Denote arrows ofQ by x1, . . . , xp, y1, . . . , yq,
z1, . . . , zl , where xi is a loop in u, yj is a loop in v, and zk goes from v to u. Schematically, we depict Q
as follows:

x1,...,xp ��	

�
������u ��

z1,...,zl

������v y1,...,yq��	

	 .

Then the set S2 (see Section 2.1) consists of the following paths:

(a) xi1 · · · xir , where r > 0 and 1 � i1 < · · · < ir � p;

(b) yj1 · · · yjs , where s > 0 and 1 � j1 < · · · < js � q;

(c) xi1 · · · xir · zk · yj1 · · · yjs · z∗
k , where r, s > 0, 1 � k � l, 1 � i1 < · · · < ir � p, and

1 � j1 < · · · < js � q;

(d) xi1 · · · xir · zk1 · yj1 · · · yjs · z∗
k2

· · · zk2t−1
z∗
k2t

, where r, s � 0, t > 0, 1 � k1 < · · · < k2t � l,

1 � i1 < · · · < ir � p, and 1 � j1 < · · · < js � q.
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The set S1 (see Definition 2.19) consists of paths from S2 that satisfy the following additional

conditions, respectively:

(a) r � 3;

(b) s � 3;

(c) r, s � 2;

(d) t � 2; moreover, if t = 1, then r, s � 2; if t = 2, then r = s = 0.

Lemmas 8.3 and 8.4 imply the following result.

Lemma 8.6. A minimal generating set for SI(Q) is

• P2 = {det(Xa), tr(Xb) | a ∈ Q1, b ∈ S2}, if char F = 2;

• P1 = {det(Xa), tr(Xb) | a ∈ Q1, b ∈ S1}, if char F �= 2.

Remark 8.7. Note that the generating set P for SI(Q) from Theorem 1.2 is essentially bigger than the

minimal generating sets from Lemma 8.6. As an example, if p = q = l = 4, then #P1 = 1167,

#P2 = 2734, but #P > 108.
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