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Abstract

In this paper we investigate planar polynomial multi-parameter deformations of Hamiltonian vector
fields. We study first all coefficients in the development of the displacement function on a transversal to
the period annulus. We show that they can be expressed through iterated integrals, whose length is bounded
by the degree of the monomials.

A second result expresses the principal terms in the division of the displacement function in the Bautin
ideal. More precisely, the principal terms in its division in a reduced basis of the Bautin ideal are given
by iterated integrals. Our approach is algorithmic and generalizes Françoise algorithm for one-parameter
families.
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1. Introduction

Small one-parameter polynomial deformations of integrable planar vector fields

ωε = dF + εω, ε ∈R

and their displacement function �(t, ε) = ∑
Mi(t)ε

i along γ (t) ⊂ F−1(t) have been extensively
studied. Classical results express the term M1(t) as the abelian integral M1(t) = − ∫

γ (t)
ω. In [2]

Françoise gives an algorithm for calculating the principal part (i.e. first non-zero term Mi(t)) of
the displacement function of small one-parameter deformations of a Hamiltonian system under
a condition (*). In [11] and [12] the algorithm was extended to an example where condition (*)
was not satisfied. Next [4] Gavrilov (see also [5]) extends the algorithm to general one-parameter
systems without the (*) condition and proves that in the one-parameter case the principal term
is an iterated integral. The length of the integral is bounded by the order of the principal term
of the displacement function. Finally, in [3], Gavrilov’s algorithm is shown to work in general
permitting to express any term Mi(t) of the displacement function with the help of iterated inte-
grals. A special example of the development of the displacement function for a multi-parameter
family of quadratic vector fields in relationship with abelian integrals has been investigated in
[18,8–10,15]. Here we want to extract from these studies a general approach.

Multi-parameter families can also be studied by choosing a one-parameter family in the re-
gion where the maximal number of limit cycles can appear (see for instance Roussarie [17] and
Gavrilov [6] and references therein). The difficulty resides in the choice of the one-parameter
family.

In this paper we study multi-parameter polynomial deformations of integrable systems given
by

Ωε = 0, where Ωε = dF +
n∑

i=0

εiωi, ε = (ε0, . . . , εn) ∈R
n+1. (1.1)

We are interested in their displacement functions

�(t, ε) =
∑

Mα(t)εα (1.2)

along a family of loops γ (t) ⊂ F−1(t) on a transversal Σ to the period annulus parametrized by
the values of F . Here α = (α0, . . . , αn) and εα = ε

α0
0 · · · εαn

n .
We consider the displacement function only on the interior of the period annulus (or possibly

at a non-degenerate center or focus) where all functions are analytic. First, in Theorem 2.1, we
give a generalization of the algorithm of Françoise calculating all terms Mα(t) in the above
expression.

Next assume that B = (η0(ε), . . . , ηk(ε)) is the Bautin ideal of the displacement function
�(t, ε). (The name comes from the fact that the ideal B was calculated by Bautin in [1] for
quadratic vector fields with a center-focus.) Then the displacement function can be written:

�(t, ε) =
k∑

i=0

ηi(ε)φi(t, ε) (1.3)

with φi analytic on the regular part of orbits we consider (see e.g. [16]). We want to calculate the
principal term of each φi , that is φi(t,0). We show in Theorem 2.2 that this can be done once we
change the bases B for a reduced standard basis (see Definition 1).
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2. Main results

Consider general linear families deforming integrable planar vector fields of the form (1.1).
For β = (β0, . . . , βn) ∈N

n+1
0 put |β| = β0 + · · · + βn.

We define inductively (on the order |β|) a sequence of multivalued functions (fβ, gβ):

g0,...,0 = 1,

ωi = gei
dF + dfei

,∑
δ+ei=β

gδωi = gβ dF + dfβ, |β| > 1. (2.4)

Here ei = (0, . . . ,1, . . . ,0) ∈ N
n+1
0 , with 1 on the place of index i = 0, . . . , n.

Once the left-hand side is given, analytic functions fβ , gβ verifying the above system exist.
Note however that in general they are multivalued. The functions gβ are obtained by integration

of a one-form
d(

∑
δ+ei=β gδωi)

dF
along trajectories γε (1.1) starting from points of the transversal Σ

parametrized by F . Next fβ are defined analogously by integration of
∑

δ+ei=β gδωi − gβ dF .
In particular we can assume fβ(t) = 0. See [3] for more details.

Theorem 2.1. The coefficients Mα(t) in the development (1.2) of the displacement function
�(t, ε) are given by iterated integrals of length � |α|. More precisely Mα(t) is equal to

(−1)|α|
∫

γ0(t)

∑
β+ei=α

gβωi (2.5)

plus a linear combination of at most |α|+1 terms. Each of these terms is a product of derivatives
of Mβ of order at most |α| − 1, with |β| < |α|.

In particular if the displacement function �(t, ε) has no terms of order |β| < |α|, then

Mα(t) = (−1)|α|
∫

γ0(t)

∑
β+ei=α

gβωi.

The second problem addressed in this paper is the problem of expressing principal terms
φi(t,0) in the division of the displacement function �(t, ε) in the Bautin ideal B . We will rather
express analogous principal terms ψi(t, ε) in the division of �(t, ε) with respect to a reduced
standard basis of the Bautin ideal. Let ≺ be the negative degree reverse lexicographic order
among monomials in C[ε]:

εα ≺ εβ if |α| > |β|, or |α| = |β| and ∃i αn = βn, . . . , αi+1 = βi+1, αi > βi.

(2.6)

In the symbolic calculation program Singular this local order is denoted ds. Let μ ∈ C[ε], we
denote L(μ) the leading monomial of μ �= 0 i.e. the one which is “biggest” with respect to
the order ≺ and call leading coefficient its coefficient c(μ). That is, the leading monomial of
a polynomial μ is one of its non-zero monomials with lowest total degree. Among them one
chooses the one with lowest power of εn. If there are several such monomials one makes the
choice by looking at the power of εn−1, etc. Hence μ = c(μ)L(μ) + smaller terms with respect
to ≺.
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We consider the reduced standard basis G = {μ0(ε), . . . ,μ�(ε)} of the Bautin ideal (see Def-
inition 1). Reduced standard bases always exist in the ring of formal power series C[[ε]] and
are unique [7]. They exist in the polynomial ring if the localization of the quotient of C[ε]/B is
finite dimensional. Computer packages like Singular are usually efficient in calculating the re-
duced standard bases G of polynomial ideals B . Even if the standard basis exists only in the ring
of formal series, we will need only the beginning of this series which can be calculated. Note that
� does not necessarily coincides with k in (1.3). The displacement function � can be written:

�(t, ε) =
�∑

i=0

μi(ε)ψi(t, ε), (2.7)

with ψi analytic functions. This follows from (1.3).

Theorem 2.2. The principal term ψi(t,0), i = 0, . . . , �, in the above decomposition of the dis-
placement function with respect to a reduced standard basis G of the Bautin ideal are linear
combinations of iterated integrals of length bounded by the degree of the leading monomial
L(μi), μi ∈ G.

Remark 2.3. The proofs of Theorems 2.1 and 2.2 provide an algorithm for calculating principal
terms ψi(t,0) in the division of the displacement function �(t, ε) in a reduced standard basis of
the Bautin ideal.

The interest in expressing principal parts ψi(t,0) in the displacement function resides in the
fact that the function

M(t, ε) =
�∑

i=0

μi(ε)ψi(t,0) (2.8)

(obtained by replacing ψi(t, ε) by ψi(t,0) in �(t, ε)) is simpler than �(t, ε), but nevertheless
often it has the same qualitative properties as the displacement function �(t, ε). The strongest
sense of same qualitative properties is that the families �(t, ε) and M(t, ε) have homeomorphic
bifurcation diagram of their zeros.

This is true in particular if the functions ψi(t,0) form a Chebyshev system and the family
is linear in ε (i.e. μi(ε) = εi ). Some other cases when this is true are pinched family stud-
ied in [14] and the families appearing in [13]. It seems an interesting open problem to find
conditions on μi and ψi(t,0) under which the Chebyshev property of the system of functions
(ψ0(t,0), . . . ,ψ�(t,0)) implies that the families �(t, ε) and M(t, ε) have homeomorphic bifur-
cation diagrams.

Note that in any case Chebyshev property of the functions (ψ0, . . . ,ψ�), if true, implies that
the function �(t, ε) has at most � zeros.

3. Study of some examples

Before proving Theorem 2.1, we study some examples.

Example 3.1. Consider a linear family dF + ε0ω0 + ε1ω1 = 0 and assume that the Bautin ideal
is given by B = (ε2

0, ε0ε1, ε
2
1). The absence of linear terms in the displacement function implies

that there exist analytic functions g0,1, f0,1, g1,0, f1,0 such that
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ω0 = g1,0 dF + df1,0, ω1 = g0,1 dF + df0,1, (3.9)

and the coefficients Mα(t) of order two in (1.2) are calculated by

M2,0(t) =
∫

γ(t,0)

g1,0ω0, M0,2(t) =
∫

γ (t,0)

g0,1ω1,

M1,1(t) =
∫

γ (t,0)

g0,1ω0 + g1,0ω1.

Moreover, these functions are univalued along the loop we consider.
We claim

�(t, ε) = ε2
0

( ∫
γ (t,0)

g1,0ω0 + · · ·
)

+ ε0ε1

( ∫
γ (t,0)

(g1,0ω1 + g0,1ω0) + · · ·
)

+ ε2
1

( ∫
γ (t,0)

g0,1ω1 + · · ·
)

. (3.10)

Here and in the sequel three points · · · denote higher order terms.
Indeed, consider the expression

(1 − ε0g1,0 − ε1g0,1)(dF + ε0ω0 + ε1ω1)

= d(F + ε0f1,0 + ε1f0,1) − ε2
0g1,0ω0 − ε0ε1(g1,0ω1 + g0,1ω0) − ε2

1g0,1ω1.

Its integral along the deformed cycle γ (t, ε) is zero. Hence∫
γ (t,ε)

d(F + ε0f1,0 + ε1f0,1)

= ε2
0

∫
γ (t,ε)

g1,0ω0 + ε0ε1

∫
γ (t,ε)

(g1,0ω1 + g0,1ω0) + ε2
1

∫
γ (t,ε)

g0,1ω1.

The left-hand side gives �(t, ε) + o(|ε|2). Indeed, the contribution after integration of each term
fi,j above is o(|ε|), as we calculate the difference of the value of fi,j at two points distant
by o(|ε|). We use here that �(t, ε) = o(|ε|). Multiplying by an extra εi gives the result. The
quadratic terms of � are hence obtained by integration of the right-hand side for ε = 0.

Example 3.2. We consider the same linear family, but assume now that the Bautin ideal is given
by B = (ε3

0, ε1ε
2
0, ε

2
1ε0, ε

3
1).

The Bautin ideal has no linear monomials so (3.9) is verified. Moreover, the absence
of quadratic monomials implies that

∫
γ (t,0)

g1,0ω0 = 0,
∫
γ (t,0)

(g1,0ω1 + g0,1ω0) = 0 and∫
γ (t,0)

g0,1ω1 = 0. Then there exist analytic functions g2,0, f2,0, g1,1, f1,1, g0,2, f0,2

g1,0ω0 = g2,0 dF + df2,0, g1,0ω1 + g0,1ω0 = g1,1 dF + df1,1,

g0,1ω1 = g0,2 dF + df0,2. (3.11)

We claim that the displacement function �(t, ε) is of the form
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�(t, ε) = ε3
0

(
−

∫
γ (t,0)

g2,0ω0 + · · ·
)

+ ε2
0ε1

(
−

∫
γ (t,0)

(g2,0ω1 + g1,1ω0) + · · ·
)

+ ε0ε
2
1

(
−

∫
γ (t,0)

(g1,1ω1 + g0,2ω0) + · · ·
)

+ ε3
1

(
−

∫
γ (t,0)

g0,2ω1 + · · ·
)

. (3.12)

To calculate the coefficients of ε3
0, ε2

0ε1, ε0ε
2
1, ε3

1, we consider(
1 − ε0g1,0 − ε1g0,1 + ε2

0g2,0 + ε0ε1g1,1 + ε2
1g0,2

)
(dF + ε0ω0 + ε1ω1).

Using (3.9) and (3.11), we simplify the expression and get

d
(
F + ε0f1,0 + ε1f0,1 − ε2

0f2,0 − ε0ε1f1,1 − ε2
1f0,2

)
+ ε3

0g2,0ω0 + ε2
0ε1(g2,0ω1 + g1,1ω0) + ε0ε

2
1(g1,1ω1 + g0,2ω0) + ε3

1g0,2ω1. (3.13)

We integrate the above expression along the trajectory γ (t, ε) of the deformed vector field. Ob-
serve that this integral is identically equal to zero. On the other hand the displacement function �

is by definition the integral of dF . The assumption that the displacement function has no linear or
quadratic monomials implies that by integrating the first line in (3.13), up to quartic monomials,
we also obtain the displacement function �(t, ε).

4. Proof of Theorem 2.1

Proof. Let Σ be a transversal to a period annulus parametrized by F . Let γε(t) be an orbit
of (1.1) starting at a point in Σ ∩ F−1(t). Observe that then the integral of the expression( ∑

0�|β|<|α|
(−1)|β|gβεβ

)(
dF +

n∑
i=0

εiωi

)
(4.14)

along γε(t) vanishes for all (t, ε).
We develop (4.14), recalling that g0,...,0 = 1:

dF +
n∑

i=0

εiωi +
∑

1�|β|<|α|
(−1)|β|εβgβ dF +

n∑
i=0

∑
1�|β|<|α|

(−1)|β|εβ+ei gβωi.

We simplify it using the two relations of (2.4). Then after renaming the variable β + ei by β in
the last sum we get

dF +
∑

1�|β|<|α|
(−1)|β|εβdfβ − (−1)|α| ∑

|β|=|α|
εβ

∑
δ+ei=β

gδωi. (4.15)

Recalling that the integral of the above expression along γε(t) vanishes, we get

�ε(t) = (−1)|α| ∑
|β|=|α|

εβ
∑

δ+ei=β

∫
γε(t)

gδωi −
∑

1�|β|<|α|
(−1)|β|εβfβ

(
Pε(t)

)
. (4.16)

Here

Pε(t) = t + �ε(t) = t +
∑

εβMβ(t) (4.17)
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is the first return map. As fβ is multivalued, in (4.16) and in the sequel, by fβ(Pε(t)) we mean
the value that fβ takes when continuing it analytically along γε(t) starting with fβ(t) = 0.

Recall that we assume in the construction (2.4) that fβ(t) = 0. It follows that

Mα(t) = (−1)|α| ∑
δ+ei=α

∫
γ0(t)

gδωi −
∑

1�|β|<|α|

∑
δ+β=α

(−1)|β| 1

δ!
∂δ

∂εδ

∣∣∣∣
ε=0

fβ

(
Pε(t)

)
. (4.18)

It remains to show that the derivatives of fβ(Pε(t)), |β| < |α|, with respect to ε at 0 can be
replaced by linear combinations of some derivatives of the functions Mδ . For this we look again
at (4.16), truncating the development at orders higher than εβ , for |β| � |α|. This means that we
neglect the first sum in (4.16) and use (4.17). This gives

Mβ(t) =
∑

δ+γ=β

(−1)|γ | 1

δ!
∂δ

∂εδ

∣∣∣∣
ε=0

fγ

(
Pε(t)

)
,

which is a regular triangular system of equations expressing fβ through Mγ starting by fβ = Mβ ,
for |β| = 1. Solving recursively these equations one shows that for any β , fβ can be expressed
by a linear combination of products of derivatives of Mδ , for |δ| � |β|.

The claim of the theorem now follows from (4.18). Expression (2.5) is an iterated integral of
length at most |α|. The additional terms will be given by iterated integrals of lower orders. �
5. Standard bases

Let us consider the ring C[ε] of complex polynomials in ε = (ε0, . . . , εn) with the negative
degree reverse lexicographic order ≺ defined in (2.6). It corresponds to the order option ds in
the computer algebra system Singular.

Definition 1. Let G ⊂C[ε]. Let L(G) be the set of leading monomials {L(ν)|ν ∈ G \ {0}}.

(i) A finite set G = {μ0, . . . ,μ�} ⊂ I is a standard basis of an ideal I if the set L(G) generates
the ideal L(I).

(ii) A standard basis G is interreduced if 0 /∈ G and L(g) � |L(f ) for any two f �= g ∈ G.
(iii) An interreduced standard basis G is reduced if for any g ∈ G the leading coefficient is 1

and no monomial of the tail g − L(g) of g is in the ideal of leading monomials L(G).

Standard basis for any order can be calculated using computer packages such as Singular
(see Algorithm 1.7.8 in [7]). Given a standard basis G, an interreduced standard basis is ob-
tained by eliminating superfluous terms g ∈ G such that L(f )|L(g) for some f �= g ∈ G (see
Remark 1.6.3(2) in [7]).

Hence, interreduced standard basis always exists for any ordering. In order to obtain a re-
duced standard basis one has to reduce the tail of any term in an interreduced standard basis.
This is based on a division algorithm applied to the tail of g. Note the difficulty in local order-
ings (such as ds considered here). Consider the ideal I generated by x − x2 and the function
f = x. In order to prove that f belongs to the ideal I in the ring of formal power series C[[x]],
one can perform an infinite division f = (x − x2)

∑∞
i=0 xi . Of course from algorithmic point

of view this is not satisfactory. One prefers to work in the localization. Starting from a poly-
nomial ideal, denote Loc≺C[ε] the localization of C[ε] given by Loc≺C[ε] = S−1≺ C[ε], where
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S≺ = {1+ν |ν = 0 orν ∈C[ε] \ {0} and 1 
 L(ν)} is the set of unities. The above division is seen
as (1 − x)f = (x − x2), with (1 − x) a unity.

Starting with and interreduced standard basis G in C[ε] and reducing the tail of all terms
leads to a reduced standard basis. The reduction uses weak normal forms of functions in the
localization Loc≺C[ε] (see Definition 1.6.5 and Algorithm 1.7.6 in [7]).

The principal advantage of standard basis with respect to any basis is that the algorithm of
division of an element with respect to a standard basis works well contrary to the general multi-
variate case when using any bases.

6. Proof of Theorem 2.2

Put α! = α0! · · ·αn!. Denote ∂α� the partial derivative ∂ |α|�
∂ε

α0
0 ···∂ε

αn
n

and ∂α�(0) its value for

ε = 0. For � ∈C(t)[ε], the derivative ∂α�(0) belongs to C(t).
Note that

∂αεβ(0) = α! if α = β,

= 0 if α �= β. (6.19)

Let G be a reduced standard basis of B . This means in particular that all the leading monomi-
als are distinct. We can then suppose that the terms of G are ordered by decreasing order of the
leading monomials: G = (μ0, . . . ,μ�), with L(μi) 
 L(μj ), if i < j . Let αi = (αi

0, . . . , α
i
n)

be the multiexponent of the leading monomial of μi : L(μi) = εαi
. More generally for any

monomial T (μi) of μi the multiindex α(T (μi)) denotes the exponents of the monomial T (μi):
T (μi) = C(T (μi))ε

α(T (μi)), where C(T (μi)) denotes the coefficient of the term T (μi).
We calculate the derivatives:

∂αi

�(0) =
�∑

j=0

∂αi

(μjψj )(0), i = 0, . . . , �. (6.20)

Lemma 6.1.

(1) ∂αi
(μiψi)(0) = αi !ψi(0).

(2) For j > i, ∂αi
(μjψj )(0) = 0.

(3) For j < i, ∂αi
(μjψj )(0) = ∑∗∂αi−α(T (μj ))ψj . The sum is taken over all monomials T (μj )

of μj whose all components of αi − α(T (μj )) are non-negative and ∗ denotes a non-
specified constant.

(4) ∂αi
�(0) = (αi)!ψi(0) + ∑

j<i ∂
αi

(μjψj )(0).

Proof. The first claim is straightforward.
For the second claim note first that L(μi) 
 L(μj ) by the choice of order in the elements of

the reduced standard basis. But L(μj ) 
 any monomials of μj . Hence by transitivity L(μi) 

T (μj ), for any monomial T (μj ) of μj . The claim now follows from (6.19).

For the third expression, note first that the monomials T (μj ) which are not of the above form
will not contribute, because some powers will survive derivation and on substituting ε = 0 we
will get 0.

The last expression is straightforward. �
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Proposition 6.2. Let G be a reduced standard basis of the Bautin ideal of the displacement
function � with respect to the negative degree reverse lexicographic order ≺. Let � ∈ C(t)[ε]
belong to the ideal generated by G as in (2.7). The principal part ψi(t,0), of each of the functions
ψi , i = 0, . . . , � in (2.7) is a linear combination of derivatives of the function �. The order of the
derivative is bounded by the degrees of the leading monomials of the standard basis.

Proof. By Lemma 6.1, we get a lower triangular system of equations for ψi(t,0) with non-zero
diagonal terms. Next using (4) of Lemma 6.1, terms under the diagonal can be expressed as
derivatives of the function �. This is proved by induction as in (4) of Lemma 6.1. Hence they
are previously expressed with the help of the displacement function �. Their derivatives which
appear in (3) of Lemma 6.1 can hence also be expressed through derivatives of �. �
Proof of Theorem 2.2. The claim follows by putting together Proposition 6.2 and Theo-
rem 2.1. �
Remark 6.3. Note that Proposition 6.2 and Theorem 2.2 are not true without any condition on
the basis of the Bautin ideal. Here the hypothesis that we divide the displacement function in a
reduced standard basis can be seen as a kind of minimality condition assuring the independence
of the elements of the basis. As a trivial counter-example to generalizations assume that �(t, ε) =
εψ(t, ε), ε ∈C, with ψ(t,0) �= 0. The reduced standard basis is then G = {ε}. Of course we can
take a redundant basis B = (ε, ε2) and write �(t, ε) = εφ1(t, ε) + ε2φ2(t, ε). Then φ2(t,0) is
arbitrary, and cannot be expressed through derivatives of the displacement function �(t, ε).

7. Example to Proposition 6.2

Example 7.1. Consider the quadratic family unfolding the Hamiltonian triangle case

dF + ε0
(
y2 dx − x2 dy

) + ε1y
2 dy + ε2x

2 dx

+ ε3(−1 + x + y)y dx + ε4(1 − x − y)x dy = 0. (7.21)

This family appears as the versal unfolding of the Hamiltonian triangle center. It was studied
among other in [18,8,15]. Note that the family (7.21) can be written

dF +
4∑

i=0

εiωi = 0

with

F = xy(1 − x − y), ω0 = y2 dx − x2 dy, ω1 = y2 dy,

ω2 = x2 dx, ω3 = (−1 + x + y)y dx, ω4 = (1 − x − y)x dy. (7.22)

As proved in [18] (see also [15]) the Bautin ideal of the family (7.21) is

B = (
ε0, ε1ε3 + ε2ε4, (ε3 − ε4)(ε1ε3 − ε2ε4), (ε1 + ε2)(ε1ε3 − ε2ε4)

)
. (7.23)

In fact in [18] and [15], the displacement function is studied by parameterizing a transversal
by a first integral Fε3,ε4 and not with the initial F . Moreover, an integrating factor appears.
Multiplying by this integrating factor the family is no longer linear. We cannot hence apply the
algorithm of Theorems 2.1 and 2.2 as it stands. We believe that the algorithm can be adapted to
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include this case. Here this example serves only to illustrate the division in the reduced standard
basis.

Calculations using the command std with negative degree reverse lexicographic order in Sin-
gular (command ds) give

G = {
ε0, ε1ε3 + ε2ε4, ε1ε2ε4 + ε2

2ε4, ε2ε3ε4 − ε2ε
2
4

} = {μ0,μ1,μ2,μ3}. (7.24)

Note that reduced standard basis G is simpler than the initial basis of the Bautin ideal B (7.23).
We can hence decompose the displacement function

�(t, ε) =
3∑

i=0

μi(ε)ψi(t, ε).

We calculate ψi(t,0). Consider the leading monomial L(μi) of each μi with respect to the
negative degree reverse lexicographic order. We have:

L(μ0) = ε0, L(μ1) = ε1ε3, L(μ2) = ε1ε2ε4, L(μ3) = ε2ε3ε4. (7.25)

We claim that

ψ0(t,0) = ∂�(t, ε)

∂ε0

∣∣∣∣
ε=0

, ψ1(t,0) = ∂2�(t, ε)

∂ε1∂ε3

∣∣∣∣
ε=0

,

ψ2(t,0) = ∂3�(t, ε)

∂ε1ε2ε4

∣∣∣∣
ε=0

− 1

2

∂3�(t, ε)

∂ε2
1∂ε3

∣∣∣∣
ε=0

,

ψ3(t,0) = ∂3�(t, ε)

∂ε2∂ε3∂ε4

∣∣∣∣
ε=0

− 1

2

∂3�(t, ε)

∂ε1∂ε2
3

∣∣∣∣
ε=0

.
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[12] A. Jebrane, P. Mardešić, M. Pelletier, A note on a generalization of Françoise’s algorithm for calculating higher

order Melnikov functions, Bull. Sci. Math. 128 (9) (2004) 749–760.



762 P. Mardešić et al. / Bull. Sci. math. 136 (2012) 752–762
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[15] P. Mardešić, M. Saavedra, M. Uribe, M. Wallace, Unfolding of the Hamiltonian triangle vector field, J. Dyn. Control
Syst. 17 (2) (2011) 291–310.

[16] R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem, Progress in Mathematics,
vol. 164, Birkhäuser Verlag, Basel, 1998, xviii+204 pp.

[17] R. Roussarie, Melnikov functions and Bautin ideal, Qual. Theory Dyn. Syst. 2 (1) (2001) 67–78.
[18] H. Zoladek, Quadratic systems with center and their perturbations, J. Differential Equations 109 (1994) 223–273.


	Principal part of multi-parameter displacement functions
	1 Introduction
	2 Main results
	3 Study of some examples
	4 Proof of Theorem 2.1
	5 Standard bases
	6 Proof of Theorem 2.2
	7 Example to Proposition 6.2
	References


