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Abstract The mitochondrial respiratory uncoupling protein 1
(UCP1) partially uncouples substrate oxidation and oxidative
phosphorylation to promote the dissipation of cellular biochemi-
cal energy as heat in brown adipose tissue. We have recently
shown that expression of UCP1 in 3T3-L1 white adipocytes re-
duces the accumulation of triglycerides. Here, we investigated
the molecular basis underlying UCP1 expression in 3T3-L1 adi-
pocytes. Gene expression data showed that forced UCP1 expres-
sion down-regulated several energy metabolism pathways; but
ATP levels were constant. A metabolic flux analysis model was
used to reflect the gene expression changes onto metabolic pro-
cesses and concordance was observed in the down-regulation of
energy consuming pathways. Our data suggest that adipocytes
respond to long-term mitochondrial uncoupling by minimizing
ATP utilization.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Obesity is a chronic condition that develops due to excess

accumulation of fats in adipose tissue and skeletal muscle,

and increases the risk of many diseases including type 2 diabe-

tes [1]. Hypertrophic expansion of white adipose tissue (WAT)

results from the progressive accumulation of intracellular lip-

ids (triglyceride, TG) [2]. Brown adipose tissue (BAT),

although sharing many features with WAT, is not present in

adult humans, and is specialized for adaptive thermogenesis

[3] through expression of high levels of fatty acid oxidation en-

zymes and mitochondrial respiratory chain components. Of

these, the mitochondrial respiratory uncoupling protein 1

(UCP1) is specifically enriched in BAT, while only minimally

expressed in WAT [4]. In BAT, UCP1 dissipates the mitochon-

drial membrane potential by partially uncoupling substrate

oxidation and oxidative phosphorylation, and promotes the

dissipation of biochemical energy as heat [5]. Recent work
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from our laboratory [6] has demonstrated that forced expres-

sion of UCP1 in 3T3-L1 adipocytes reduces accumulation of

TG, which is consistent with the energy dissipative function

of UCP1 reported by others [5,7]. Our data also suggested that

the reduction in TG was due to down-regulation of fat synthe-

sis, rather than an up-regulation of fatty acid oxidation.

In this study, we investigated the molecular basis of forced

UCP1 expression in 3T3-L1 adipocytes. Microarrays were

used to profile changes in gene expression and identify signifi-

cantly altered metabolic genes/processes. A metabolic flux

model was also used to determine fluxes through the energy

metabolism pathways. Our data suggest that adipocytes re-

spond to constitutive UCP1 expression by increasing protein

stability and decreasing expression of genes encoding for en-

ergy-intensive processes, thereby minimizing energy utilization

and maintaining constant ATP levels.
2. Materials and methods

2.1. Reagents and cell culture
3T3-L1 preadipocyte cells were obtained from ATCC (Manassas,

VA). All tissue culture reagents including Dulbecco�s modified Eagle�s
Medium (DMEM, 4.5 g/L glucose), calf serum (CS), fetal bovine ser-
um (FBS) were purchased from Hyclone (Logan, UT). Human insulin
and penicillin/streptomycin were purchased from Sigma (St. Louis,
MO). Null-plasmid transfected 3T3-L1 preadipocytes (referred to as
control adipocytes in this paper) and UCP1 expressing preadipocytes
were cultured and differentiated into mature adipocytes as previously
described [6]. Growth medium was replenished every other day
through day 10 post-differentiation until cells were harvested for
RNA isolation and/or mitochondrial isolation.
2.2. RNA extraction
Three independent cultures were used for extracting RNA from con-

trol and UCP1 expressing adipocytes. Total RNA was isolated from
approximately 1 · 106 adipocytes at day 10 post-differentiation using
the Nucleospin II RNA isolation kit from Clontech (Palo Alto, CA).
RNA quality was determined on an Agilent 2100 Bioanalyzer (Agilent,
CA), aliquoted, and stored at �80 �C until further use.

2.3. Microarray analysis
RNA extracted from control and UCP1 expressing adipocytes were

labeled and hybridized to Codelink� mouse whole genome bioarrays
(GE Healthcare Sciences, NJ) with �36000 mouse gene targets. Label-
ing and hybridization experiments were performed at the Genomics
core facility, Center for Environmental and Rural Health, Texas
A&M University. Briefly, cDNA was synthesized from 2 lg of total
RNA, purified, transcribed in vitro to yield biotin-labeled cRNA,
blished by Elsevier B.V. All rights reserved.
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purified, and fragmented prior to hybridization using protocols
provided by the manufacturer. Arrays were hybridized for 24 h,
washed, and scanned on a Genepix 4000 microarray scanner (Mole-
cular Devices, CA). Labeled cRNA from each control or UCP1 adipo-
cyte sample was hybridized to a single microarray (total of six
microarrays). The expression data are available from the NCBI Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and
are accessible through GEO Series accession number GSE6643. The
data were filtered to include only genes that were fully annotated
and were present in all three replicate arrays. A one-way ANOVA filter
was used to test each gene independently for a statistical difference in
expression between the UCP1 and control cells with a cutoff P-value of
0.05. The expression of nine genes was determined using quantitative
RT. The mRNA sequence for each gene was retrieved from the Gen-
bank database and gene specific primers designed for each transcript
(Supplementary Table S3). RT-PCR was performed with �50 ng of
RNA using the Superscript II one-step RT-PCR kit (Invitrogen, CA)
on a icycler real-time PCR machine (Bio-Rad, Hercules, CA). The
cycle number at which the fluorescence in each amplification reaction
increased beyond a threshold (in the exponential phase of amplifica-
tion) was determined using the MyiQ software (Bio-Rad). Threshold
cycle numbers for each gene were normalized to that of 18S rRNA
(housekeeping gene) as described earlier [8]. All RT-PCR experiments
were done in triplicate and data reported are means ± S.D.

2.4. Metabolite assays
As inputs for the flux calculation, the rates of uptake, output, or

accumulation of 26 primary metabolites were measured by performing
assays on cell lysates and spent medium samples. Cellular ATP was
measured using a luminescence assay kit (Promega, Madison, WI)
based on the ATP-dependent activity of luciferase. TG, glycerol, and
free fatty acids (FFA) were measured using commercial assay kits as
described previously [9]. Glucose, lactate, acetoacetate, and b-hydroxy-
butyrate were measured using enzymatic assays [9]. Ammonia and
amino acids were quantified by HPLC [10]. All metabolite data were
normalized by the corresponding DNA content of the corresponding
cell sample.
2.5. Metabolic flux analysis
A stoichiometric model of adipocyte central carbon metabolism was

constructed as described previously [9]. The model consisted of the fol-
lowing pathways: glycolysis, glycerogenesis, ketone body synthesis,
lipogenesis, lipolysis, the malate cycle, the pentose phosphate pathway
(PPP), and the TCA cycle (Supplementary Table S1). The same model
was applied to both the control and UCP1 expressing cells. As before,
pathways were included (or omitted) based on physiological consider-
ations as well as direct observations on the net rates of uptake or out-
put of major metabolites. For example, fatty acid oxidation in UCP1
expressing cells was assumed to be negligible (compared to lipogenesis
and lipolysis) based on the observation that the oxygen utilization rate
remained unchanged relative to control cells [6]. Intracellular fluxes
were estimated by solving a constrained quadratic programming prob-
lem [11]:

Minimize :
X

k
ðvk � vobs

k Þ 8k 2 fexternal fluxesg
Subject to : S � v ¼ 0 ð1Þ

G � v 6 0 ð2Þ

where the objective is to minimize the sum squared error between
experimentally observed and calculated exchange fluxes. Eq. (1) ex-
presses the balances around intracellular metabolites using an M � N
stoichiometric matrix S and an N � 1 steady-state flux distribution vec-
tor v. Inequality (2) expresses constraints derived from the Gibbs free
energy change form of the Second Law applied to pathways, as op-
posed to individual reactions.

2.6. Proteomic analysis
Protein expression levels in adipocytes expressing UCP1 were deter-

mined using quantitative iTRAQ mass spectrometry (Applied Biosys-
tems, CA). Adipocyte mitochondrial proteins were isolated using the
protocol described by Pallotti and Lenaz [12], except that the initial cell
lysis was performed in the tissue culture dish. Mitochondrial proteins
from control or UCP1 expressing adipocytes were digested with tryp-
sin and the peptides tagged with different isobaric mass tags. Equal
amounts of tagged peptides from each sample were mixed together
and separated on a strong cation exchange (SCX) column. Peptides
from six SCX fractions were further separated using reverse phase
chromatography on a 150 lm · 10 cm column (Vydac) using an
LC-Packings autosampler and pumps (LC Packings, Sunnyvale,
CA). A gradient of 2–40% acetonitrile was used to elute the peptides
from the column at a flow rate of 1 lL/min. MALDI matrix (5 mg/
mL a-cyano-4-hydroxycinnamic acid) was mixed with the column
eluant through a ‘‘T’’ junction at 1.4 ll/min and spotted directly onto
a MALDI sample plate using an LC-Packings Probot.

All MALDI-MS experiments were performed using a 4800 Proteo-
mics Analyzer (Applied Biosystems, Foster City, CA). Data were ac-
quired with the reflectron detector in positive mode (700–4500 Da,
1900 Da focus mass) using 800 laser shots (40 shots per sub-spectrum)
with internal calibration. Collision induced dissociation tandem MS
spectra were acquired using air at the medium pressure setting as the
collision gas with 1 kV of collision energy. All MS and MS/MS data
were searched against the Swiss-Prot protein sequence database using
the GPS Explorer (Applied Biosystems) software.
3. Results

3.1. Changes in adipocyte gene expression upon UCP1

expression

Approximately, 10% (3764 genes) of the �36000 mouse

genes represented on the Codelink whole genome bioarray

passed the annotation, replicate, and ANOVA filters and were

designated as significantly expressed in UCP1 adipocytes rela-

tive to control adipocytes. The significantly activated or re-

pressed genes were organized into 12 functional categories

based on the gene ontology annotations provided along with

the Codelink array. Fig. 1 shows the distribution of 1231

categorized genes over the different ontology categories. Four

ontology categories – metabolism, signaling, transport, and

transcriptional regulation – accounted for 60% of all signifi-

cantly altered genes. Not surprisingly, metabolism genes were

the single largest ontology category (239 genes or 19% of to-

tal). Genes involved in signaling, transport, and transcriptional

regulation accounted for 16%, 14%, and 10%, respectively.

Interestingly, apoptosis genes were also significantly expressed

in UCP1 expressing adipocytes. This included both pro- (e.g.,

caspase-1, Bcl associated death promoter) and anti- (e.g., B-

cell leukemia/lymphoma 2, HSP40) apoptotic genes. Presum-

ably, the forced UCP1 expression resulted in an increase in

apoptosis that was countered by the change in the expression

of anti-apoptotic genes. However, the sequence of these events

remains to be confirmed with further time-course experiments.

Given the known role of UCP1 in energy metabolism, we limit

our discussion to describing alterations in the expression of

metabolic genes.

3.2. Alterations in the expression of genes involved in metabolic

processes upon UCP1 expression

A majority of the metabolic genes demonstrating a signifi-

cant change in expression upon UCP1 expression were

down-regulated (200 out of 239). This included genes involved

in glycolysis (e.g., hexokinase, HK; phosphofructokinase,

PFK; glyceraldehyde-3-phosphate dehydrogenase, GAPDH;

aldolase), pentose phosphate pathway (hexose-6-phosphate

dehydrogenase), glycogen metabolism (e.g., glycogen phos-

phorylase, glycogen synthase), citric acid cycle (e.g., citrate

synthase, succinate dehydrogenase, fumarase, pyruvate dehy-

drogenase), oxidative phosphorylation (e.g., ATP synthases,

http://www.ncbi.nlm.nih.gov/geo/
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Fig. 1. Functional classification of statistically significant genes. Fully annotated genes which were determined to exhibit a statistically significant
change in expression between control and UCP1 adipocytes were classified based on their biological function using definitions in the Codelink array
(GE Healthcare).

Table 1
Metabolic processes altered upon UCP1 expression in 3T3-L1 adipo-
cytes

Pathway or process Number of genes

Glycolysis and related enzymes 15
Glycerolneogenesis and pentose
phosphate pathway

3

Glycogen metabolism 4
Citric acid cycle 6
Oxidative phosphorylation 17
Amino acid, aromatic compound
and purine metabolism

11

Lipid catabolism 17
Lipid biosynthesis 5
Uncoupling proteins 2
Cytochrome P450 enzymes 9
Apolipoproteins 6
Miscellaneous 24
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NADH dehydrogenases, cytochrome c oxidases), lipid catabo-

lism (e.g., carnitine acyltransferase, acyl coA dehydrogenase),

and lipid synthesis (e.g., fatty acid synthase, butyryl coA syn-

thetase). A summary of changes in expression is shown in Ta-

ble 1 and a complete list is included in Supplementary Table

S2. For several of these processes (e.g., citric acid cycle), all sig-

nificantly expressed genes were down-regulated. Pyruvate ki-

nase (PK) was the only gene encoding for a glycolysis

enzyme that was up-regulated. Interestingly, PK activity re-

sults in the net formation of ATP, while HK, PFK, and GAP-

DH all result in the phosphorylation of the substrate with

either ATP (HK and PFK) or inorganic phosphate (GAPDH)

as donors. UCP1 expression in 3T3-L1 adipocytes up-regu-

lated the expression of genes involved in glycerogenesis (e.g.,

phosphoenol pyruvate carboxykinase, glucose-6-phosphatase),

detoxification (e.g., cytochrome P450 2E1, 4B1), and apolipo-

proteins (e.g., apolipoprotein D, apolipoprotein E receptor).

Quantitative RT-PCR was used to corroborate the changes

in the expression of several genes, including UCP1, fatty acid

synthase, pyruvate kinase, and cytochrome P450 2E1 (Supple-

mentary Table S3).

3.3. Estimation of metabolic flux in UCP1 expressing adipocytes

Regulation of biochemical activity occurs at multiple levels,

including by post-translational modification of enzymes and

substrate availability. Therefore, we determined the flux

through the different energy metabolism pathways at day 10

post-differentiation using a metabolic flux model and com-

pared the changes in reaction fluxes with the corresponding

gene expression data (Fig. 2). Significant changes were esti-

mated for 12 of the 66 reactions included in the model. These

were the reactions of glycolysis (Nos. 4 and 7, see Supplemen-

tary Table S1), lipid metabolism (Nos. 25–27), amino acid

metabolism (Nos. 31, 35, and 48) and plasma exchange

(Nos. 53, 55, and 66). These changes reflected an increase in

the conversion of glycerone-phosphate into glyceraldehyde 3-

phosphate (by 81%) and an increase in lactate output (by

168%). As a result, the net influx of pyruvate into the TCA cy-

cle remained unchanged, but the supply of glycerone-phos-

phate for fatty acid esterification, and thus net TG synthesis,

was significantly reduced (by 36%).
Changes at the level of metabolite fluxes should lag tran-

scriptional events, because of the many intervening layers of

biochemical regulation. Therefore, we also obtained a second

snapshot of the metabolic state at a later time point. On day

14, significant changes were estimated for 11 of the 60 reac-

tions. These were the reactions of the PPP (Nos. 8 and 9), gly-

colysis (Nos. 2 and 7), lipid metabolism (Nos. 24–27), and

alanine production (Nos. 35 and 53). The flux changes clus-

tered essentially around two branch points: pyruvate and free

fatty acid. Forced expression of UCP1 decreased the PPP flux

by 67%, while increasing lactate output by 410%. The net in-

flux of pyruvate into the TCA cycle was unchanged, as were

the TCA cycle fluxes. The PPP is a major producer of NADPH

for de novo fatty acid synthesis. As expected, its down-regula-

tion correlated with a 47% attenuation of acetyl-CoA export

from the TCA cycle (via the citrate pool). A similar reduction

(45%) was also estimated for FFA esterification into TG and

the liberation of free glycerol by way of lipolysis.

Together, the metabolic flux data show that the PPP, fatty

acid biosynthesis, and glyceroneogenesis were all significantly

decreased whereas fermentation of pyruvate was increased by

UCP1 expression. Changes in PPP, fatty acid biosynthesis,

and glyceroneogenesis were observed at the transcriptional le-

vel as well.
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3.4. Lipid and ATP levels in UCP1 expressing adipocytes

Microscopy images indicated that UCP1 expressing adipo-

cytes exhibited a characteristic morphology (round shape and
A B

C D

100 μm

Fig. 3. Phase contrast (A and B) and Oil-Red O stained (C and D) images of
Scale bar length is 100 lm.
visible lipid droplets) (Fig. 3A and B) consistent with the

known phenotype of differentiated 3T3-L1 adipocytes [13].

However, Oil-Red O staining showed that at day 10 post-induc-
UCP1 expressing and control adipocytes at day 10 post-differentiation.
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tion, a noticeably smaller fraction of the culture contained vis-

ible lipid droplets (Fig. 3C and D). Our data show that the

intracellular ATP levels at day 10 after differentiation are iden-

tical between the UCP1 expressing and control adipocytes (6.25

vs. 6.27 mMol-ATP/g-DNA). Together with the gene expres-

sion and metabolite flux data, these results indicate that while

the overall energy metabolism flux is decreased, the ATP levels

are maintained constant upon UCP1 expression.
4. Discussion

In this study, we used DNA microarrays and metabolic flux

analysis to investigate at the molecular level the effect of con-

stitutive UCP1 expression in 3T3-L1 adipocytes. UCP1 is a

brown adipocyte protein that participates in non-shivering

thermogenesis by lowering the mitochondrial membrane po-

tential and promoting energy dissipation. Since UCP1 is only

minimally expressed in white adipocytes, our interest was to

determine the effect of exogenous UCP1 expression in white

adipocyte gene expression and energy metabolism. We have

previously shown that constitutive expression of UCP1 in

3T3-L1 adipocytes decreased lipid levels by decreasing fat syn-

thesis rather than promoting fat oxidation. The gene expres-

sion data presented here indicate that UCP1 expression

down-regulates the expression of several genes involved in en-

ergy metabolism (Table 1), including PPP, TCA cycle, lipid

biosynthesis and catabolism. The observed changes in expres-

sion likely reflect cellular adaptation to long-term stress as the

expression of UCP1 was constitutive (so as to mirror the con-

ditions described in our prior work [6]), which can lead to de-

crease in the expression of genes involved in energy yielding

and consuming processes.

Even with continuous expression of UCP1, ATP levels were

similar between control and UCP1 adipocytes. This is surpris-

ing, as expression of UCP1 is expected to reduce the efficiency

of oxidative phosphorylation, and decrease ATP levels in adi-

pocytes. Although it is possible that compensatory mecha-

nisms are present to utilize other energy sources (e.g., fatty

acids) for maintaining ATP levels, our gene expression and

metabolic flux data instead suggest down-regulation of lipid
Table 2
Statistically significant changes in the expression of ubiquitin protease-relate

Gene

Ubiquitin-activating enzyme E1, Chr Y 1 (Ube1y1)
Proteasome (prosome, macropain) subunit, alpha type 1 (Psma1)
Ariadne ubiquitin-conjugating enzyme E2 binding protein
homolog 1 (Drosophila) (Arih1)
Ubiquitin specific protease 27, X chromosome (Usp27x)
F-box and leucine-rich repeat protein 12 (Fbxl12)
Proteasome (prosome, macropain) subunit, alpha type 7 (Psma7)
Ubiquitin specific protease 10 (Usp10)
Proteasome (prosome, macropain) subunit, beta type 1 (Psmb1)
Ubiquitin specific protease 39 (Usp39)
Ubiquitin-conjugating enzyme E2, J1 (Ube2j1)
Ubiquitin protein ligase E3A (Ube3a), transcript variant 2
Ubiquitin specific protease 3 (Usp3)
Ubiquitin specific protease 3 (Usp3)
General transcription factor III A (Gtf3a)
Ubiquitin protein ligase Nedd-4 mRNA
Adult male aorta and vein cDNA, RIKEN clone:
A530064N14 product:unknown EST, full insert sequence
catabolism pathways. The lack of direct correlation between

UCP1 expression and lipid catabolism is also consistent with

the observations of Enerbäck et al. [14] who showed that

UCP1 knockout mice are not obese (i.e., as would be expected

if UCP1 expression results in increased lipid catabolism).

Based on the gene expression and metabolic flux changes, we

hypothesize that the UCP1 expressing adipocytes maintained

their ATP levels by minimizing ATP utilization (i.e., through

the down-regulation of energy-dependent molecular pro-

cesses). This is supported by the gene expression data (accessi-

ble through the GEO accession number GSE6643) showing

that the expression of several signaling kinases that require

ATP for function are down-regulated with UCP1 expression.

The gene expression trends are also consistent with results at

the level of protein expression. Analysis of 100 mitochondrial

proteins, including those involved in electron transport chain

(n = 23), TCA cycle (n = 17) and glycolysis (n = 3), in control

and UCP1 expressing adipocytes by quantitative iTRAQ mass

spectrometry [15] shows that 90 mitochondrial proteins are

down-regulated in UCP1 adipocytes relative to control, with

an average fold-change of 0.77 ± 0.18.

The notion that adipocytes expressing UCP1 minimize en-

ergy expenditure can also be inferred from the changes in the

expression of genes encoding for glycolytic enzymes. Our data

(Table 1) show that pyruvate kinase, the only glycolytic en-

zyme that results in direct production of ATP (without the

additional steps of electron transfer and oxidative phosphory-

lation), is also the only glycolysis gene up-regulated in UCP1

expressing adipocytes (1.18-fold; P = 0.0015). However, eight

other glycolysis genes that either utilize ATP or do not pro-

duce ATP (e.g., hexokinase, aldolase) are down-regulated

upon UCP1 expression. Our data suggest a scenario where

UCP1 expression in 3T3-L1 adipocytes up-regulates reactions

that generate ATP directly, as opposed to those that generate

ATP by way of reducing potential for subsequent oxidative

phosphorylation.

Our data show that the expression of 15 genes related to the

ubiquitin proteasome system and other proteases (Table 2)

were significantly down-regulated in UCP1 adipocytes. Since

these proteases are involved in protein degradation and turn-

over, their down-regulation is expected to increase the overall
d genes upon UCP1 expression in 3T3-L1 adipocytes

P-value Expression
ratio

0.046 �1.47
0.006 �1.74
0.012 �1.43

0.038 1.21
0.030 �1.23
0.029 �1.24
0.039 �1.32
0.023 �1.36
0.017 �1.36
0.011 �1.70
0.014 �1.41
0.026 �1.32
0.022 �1.34
0.046 �1.29
0.004 �1.35
0.035 �1.47



Mitochondria

UCP1
Protein
stability

Energy
metabolism

=

UBQ
+ -

Energy
dependent
processes

-

ATP

=
X X

-

Fig. 4. Proposed model for effects of constitutive long-term expression
of UCP1 in 3T3-L1 adipocytes.

5870 F.S. Senocak et al. / FEBS Letters 581 (2007) 5865–5871
protein half-life in adipocytes. Therefore, metabolic enzymes

which would normally be degraded at a certain rate will be

present and active for much longer in UCP1 expressing adipo-

cytes. The long half-life of metabolic enzymes, in turn, can

obviate the need for further de novo synthesis of these enzymes,

thereby minimizing the energy requirement of the cell. This

ATP utilization hypothesis is consistent with the earlier work

of Buttgereit and Brand [16] that showed the existence of a

distinct hierarchy of ATP consumption in concovalin A-

treated thymocytes, with protein synthesis and DNA/RNA

synthesis being most sensitive to ATP supply. Therefore, we

propose that UCP1 expressing adipocytes down-regulate gene

expression to maintain ATP levels constant. Interestingly, the

study by Buttgereit and Brand found that the mitochondrial

proton leak is among the least sensitive to ATP supply, which

is also consistent with our observations (Supplementary Table

S2).

The correspondence between changes in gene expression and

enzyme activity was mixed. While some processes such as PPP

and fat biosynthesis were decreased at both levels (as evi-

denced by decrease in the expression of multiple genes involved

in these processes), others such as lactate production and oxi-

dative phosphorylation were altered only at the metabolic flux

or gene expression level, respectively. Our data suggests that

multiple levels of regulation are utilized by 3T3-L1 adipocytes

in the response to continuous mitochondrial uncoupling. Cur-

rently, it is not clear why certain processes are down-regulated

at both the gene expression and metabolite levels while some

others appear to be controlled only at one of the levels. One

possibility is that only processes which directly yield ATP

(e.g., glycolysis) are regulated at both the gene expression

and metabolite flux levels (i.e., more tightly regulated).

Based on our data, we propose a model for changes in en-

ergy metabolism occurring upon forced expression of UCP1

in adipocytes (Fig. 4). In this model, the primary long-term re-

sponse of adipocytes to constitutive mitochondrial uncoupling

is to minimize ATP utilization through a combination of: (i)

down-regulation of ATP-dependent molecular processes such

as the expression of signaling kinases and (ii) increasing the

half-life of metabolic enzymes through down-regulation of

ubiquitin proteases, thereby minimizing the energy demands

arising from transcription and translation. Based on these re-

sults, we hypothesize that ATP conservation is a manifestation

of adaptation to long-term constitutive uncoupling. Current

work in our laboratory focuses on comparing alterations in en-

ergy metabolism at the gene expression and metabolite levels

by regulating UCP1 expression in adipocytes using doxycy-

cline and the Tet-Off expression system [6].

Increasing energy expenditure in white adipocytes has been

proposed as an alternative or complement to current obesity
therapies, which are generally aimed at reducing bodily nutri-

ent intake. A number of in vitro studies have explored the

induction of UCP1 through upstream activators as a means

to enhance oxidative metabolism in white adipocytes [17–19].

Our findings also suggest that long-term UCP1 expression

could attenuate adipocyte lipid accumulation, albeit through

a mechanism that does not involve increased substrate oxida-

tion. Prospectively, UCP1 and perhaps other mitochondrial

membrane proton carriers could be developed as targets

for pharmacological agents to treat obesity at the cellular

level.
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Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.2007.11.
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