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Abstract

We examined the roles of two determinants of spatial attention in governing the spread of perceptual learning, namely, stimulus
location distribution and task difficulty. Subjects were trained on detection of a target element with an odd orientation imbedded
in an array of light bars with otherwise uniform orientation. To assess the effects of target distribution on attention and learning,
target positions were distributed so that attention was allocated not only to the target positions themselves, but also to
intermediate positions where the target was not presented. Target detection performance substantially improved and improvement
spread to match the induced window of spatial attention rather than only the actual target locations. To assess the effect of task
difficulty on the spread of attention and learning, the target-distractor orientation difference and the time interval available for
processing were manipulated. In addition, we compared performance of subjects with more versus with less detection difficulty.
A consistent pattern emerged: When the task becomes more difficult, the window of attention shrinks, and learning becomes more
localized. We conclude that task-specific spatial attention is both necessary and sufficient to induce learning. The spread of spatial
attention, and thus of learning, is determined by the integrated effects of target distribution and task difficulty. We propose a
theoretical framework whereby these factors combine to determine the cortical level of the focus of attention, which in turn
enables learning modifications. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent studies found that practice dramatically im-
proves perceptual task performance of adult observers.
Learning characteristics appear to result from an inter-
action between top-down attention-driven processes
and bottom-up stimulus-dictated effects. On the one
hand, learning of even the simplest skills requires task-
selective attention, so that when subjects attend the
stimuli but not their appropriate aspect, task perfor-
mance does not improve (Shiu & Pashler, 1992; Ahissar
& Hochstein, 1993; Harris & Fahle 1998). On the other
hand, improvement is often substantially specific to the
trained spatial conditions. When tested with a novel
retinal position, size, spatial frequency or orientation,
performance may be severely hampered with respect to

the attained asymptote (Ramachandran & Braddick,
1973; Fiorentini & Berardi, 1980; Ball & Sekuler, 1987;
Karni & Sagi, 1991; Poggio, Fahle & Edelman, 1992a;
Poggio, Edelman & Fahle, 1992b; Shiu & Pashler, 1992;
Ahissar & Hochstein, 1993, 1996a,b,c, 1997a, 1998;
Polat & Sagi, 1994; Beard, Levi & Reich, 1995; Schoups
& Orban, 1995; Schoups, Vogels & Orban, 1995; Ru-
bin, Nakayama & Shapley, 1997; Ahissar, Laiwand &
Hochstein, 1998a; Ahissar, Laiwand, Kozminski &
Hochstein, 1998b). These specificities indicate that
learning in these cases involves levels of processing
which retain separation along basic spatial dimensions.
The interpretation of these combined effects in terms of
the underlying neuronal site(s) is a puzzle. The cortical
sites at which neuronal receptive fields are spatially
selective are relatively low in the visual-system hier-
archy (Desimone & Ungerleider, 1989; but, see Mollon
& Danilova, 1996). Yet the cortical sites at which
greater top-down effects were found are higher along
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these pathways (Desimone & Ungerleider, 1989, but see
Motter, 1993; Rosenthal, 1995).

Another perplexing, though repeatedly found aspect
of perceptual learning is that the degree of specificity to
training spatial parameters, though sometimes com-
plete, is rather variable, and changes substantially be-
tween tasks, subjects, or training conditions (Ahissar &
Hochstein, 1996a,b,c, 1997a and references cited there).
We previously studied this variability systematically
and found a consistent pattern: Training under easy
conditions leads to generalized learning, while difficult
condition training leads to more specific learning
(Ahissar & Hochstein, 1999). An additional observation
concerning the characteristics of learning under inter-
mixed easy and difficult training conditions was that
improvement follows an easy-to-difficult condition cas-
cade, reminiscent of the well known ‘learning along a
continuum’ phenomenon (Pavlov, 1927; Lawrence,
1952; Sutherland, Mackintosh & Mackintosh, 1963).

We proposed the Reverse Hierarchy Theory to ac-
count for these perceptual learning phenomena (Ahissar
& Hochstein, 1997a,b, 1999). According to the Reverse
Hierarchy Theory, illustrated schematically in Fig. 1,
the role of attention in directing perceptual learning is

in its determination of the cortical level where learning
modification will take place. Selection of an appropriate
neural population follows a top-down search tree, seek-
ing a population whose output is discriminative with
respect to the task at hand. For most perceptual tasks,
several alternative cortical representations along this
hierarchy may be employed to reach the correct
solution.

The top-down search tree begins at high cortical
levels. Consequently early learning results from modifi-
cations at high cortical levels where the visual represen-
tation is generalized with regard to spatial parameters
such as retinal position, while later learning modifies
low-level, spatially specific mechanisms. On the other
hand, only easy spatial discriminations can be resolved
at high levels. When more difficult spatial discrimina-
tions are required, the continued search for increased
signal-to-noise ratio leads to lower areas with finer
spatial representations and yet inducing more spatially
restricted learning.

The theory predicts that manipulations affecting the
spatial distribution of attention will have the same
effect on the spatial distribution of learning. In particu-
lar, the following two characteristics are expected:

Fig. 1. Reverse hierarchy theory of attention and learning. In this schematic illustration, each circle denotes a neuronal group (e.g. cortical
column) and the line(s) inside it the orientation preference. Enhanced lines mark bottom-up stimulus-activated neuron groups and paths
interconnecting them. Stimulus is initially encoded by orientation selective neurons, at the lowest level. For example, one group is shown encoding
the target element bar. At subsequent levels, there is substantial convergence across position (second level) and orientation (top level; inset depicts
ventral and dorsal hierarchies, adapted from Posner and Raichle (1997)). Thus, the actual orientation of the original target signal is gradually less
discriminated, and its salience diminished when neurons integrate over many orientations. Instead, convergence refines more abstract features such
as orientation difference and spatial organization. Spatial attention and learning are initially directed at the highest, spatially generalizing levels.
For easy conditions (e.g. large orientation gradient and long SOA) high levels suffice: even diminished salience leaves some distinction between
target presence/absence. In this case, learning occurs at a high level (e.g. by selecting its most informative inputs). If the high level signal is
insufficient, high level mechanisms must direct attention and learning to lower levels (downward arrows) to pin-point appropriate mechanisms
here, within the sub-domain of their inputs. At lower levels, learning is restricted to trained orientations and positions, reflecting the increased
spatial selectivity at this level. For new stimulus parameters, the counter-stream paths from the common top-level mechanism need to be used
again to direct learning to different low level sites.
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1. Stimulus spatial distribution should determine spa-
tial learning distribution indirectly — via attention
and its determination of level of learning. The spa-
tial extent of perceptual learning should depend on
the nature of the representation at the level chosen
for learning. Thus, when spatial attention is broad,
it reflects choice of a high-level site where receptive
fields are large. Consequently it may not be neces-
sary to stimulate each location in the field for
learning to be effective.

2. Task difficulty (in terms of spatial parameters)
should be another determinant of the attended corti-
cal level and hence of the spread of learning effect.
The greater the spatial refinement needed, the lower
the level of the site chosen for focused attention and
learning.

Thus, these two parameters — stimulus distribution
and task difficulty, should interact to determine, via
attention, the level of learning and the extent of transfer
to new locations. These predictions are tested in the
present paper.

1.1. Experimental plan

From the perspective of the Reverse Hierarchy The-
ory, spatial specificity of learning is not the direct result
of stimulating only at given positions within the visual
field. Rather stimulus-specificity is a top-down deter-
mined effect dictated by both the global distribution of
the task-relevant stimulus and the difficulty of the task.
These factors determine the site chosen for attention
and the representation at this site determines the spatial
spread of learning effect.

Previous studies did not distinguish between bottom-
up and top-down dictated spatial selectivity. Indeed it
was found that learning under difficult spatial condi-
tions is confined to the vicinity of the trained retinal
area (Eriksen & Eriksen, 1974; LaBerge & Brown,
1986; Berardi & Fiorentini, 1987; Ahissar & Hochstein,
1996a). In the context of the pop-out task (Treisman &
Gelade, 1980), learning is restricted to the vicinity of
the trained position of the target element (Ahissar &
Hochstein, 1996a). However, in previous studies target
position and spatial attention overlapped. Thus, these
two explanations — direct effect and effect via atten-
tional window, remained as open possibilities. In partic-
ular, the effect of shifting target position was studied
only in one direction, moving the relevant stimulus
away from fixation. If specificity results from the atten-
tion-attracting aspect of the target distribution, then no
transfer of learning effects will be found in the near-to-
far direction when attention is focussed only to loca-
tions proximal to fixation. However, it may be difficult
not to attend positions between target and fixation.
Furthermore, if the relevant attention-directing mecha-
nism is determination of cortical processing level, as

suggested by the Reverse Hierarchy Theory, then
spread attention may be equivalent to employment of
larger receptive fields at higher cortical levels, which
generally include central vision. Thus, following prac-
tice with distal targets, we may expect transfer to
intermediate positions between fixation and the trained
locations, or in the area joining a number of eccentric
training positions. The alternative bottom-up target-lo-
cation explanation of specificity would predict that
there should not be transfer in either the proximal-to-
distal or the distal-to-proximal direction.

We used several alternative target distributions under
different degrees of task difficulty during the training
period. We then tested detection when target was
evenly distributed at all array positions. The spatial
distribution of detection performance during this test
session forms a two-dimensional performance map. We
found that this map matches the one expected if learn-
ing follows the spread of attention, rather than affect-
ing only stimulated positions. In addition, the spread of
attention and learning depends on task difficulty so that
training easier tasks transferred more to new spatial
conditions. Task difficulty was increased in several
ways including decreased target-distractor orientation
difference, shorter processing intervals and, a posteri-
ori, by comparing observers who had an easier (more
successful) versus more difficult experience with pop-
out training (though given the same physical training
conditions). All these tests showed that more difficult
conditions induce more focused attention and learning.
These findings are consistent with the Reverse Hier-
archy Theory whereby attention determines hierarchical
level, rather than learning depending on the local phys-
ical characteristics of the trained stimulus.

2. Methods

2.1. Stimuli and procedure

Stimuli were arrays of light bar elements (147 cd/m2)
on a dark background (0.2 cd/m2). The array consisted
of 7×7 elements (subtending 4.6×4.6°) centered at
fixation, as illustrated schematically in Fig. 2, top. Each
stimulus element subtended 22%×1%. The distance be-
tween element centers was 42.6% (94% jitter, randomly
chosen with uniform probability). In half of the stimu-
lus presentations, all elements had the same orientation
(30° or 60° counter-clockwise from horizontal; Fig. 2,
top, center). In the other half, one of the elements was
a target at a fixed orientation, deviating by 30° from
that of the distractor elements (60° or 30°, respectively;
Fig. 2, top, left).

A mask followed each stimulus, as shown in Fig. 2,
top, right. The mask was composed of a 7×7 array of
asterisk-like elements, located at the grid points of the
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Fig. 2. Stimuli for odd orientation ‘pop-out’ detection task. Top row:
7×7 element stimulus array with (left) or without (middle) odd
element. Following array presentation, a mask stimulus (right) was
presented following a variable stimulus-to-mask-onset-asynchrony
(SOA). Average distance between array elements was 0.7°, but the
element positions were jittered to prevent responses on the basis of
unusual blank background areas. Middle row: Illustration of the
various target distributions used for this study. (1) Target appeared in
any of the 48 array positions (except in the central location where the
fixation cross appeared before stimulus presentation). (2) Target
appeared in one of two horizontal positions indicated by dashed
circles in left diagram. (3) Target appeared in one of two diagonal
positions, either two up or down and one left or right, or one up or
down and two left or right, as example indicated by circles in middle
diagram. (4) Target appeared in any of 20 central positions indicated
by dashed line in right illustration. (5) Target appeared always in the
same horizontal position indicated by one of the circles in left
diagram. We had to use different subject groups for each of these five
sets of training tests in order that they be naive at the onset of the
training. Dashed circles are shown here to indicate possible target
locations and did not appear in tests. Fixation cross appeared before
the stimulus array and was replaced by a distractor bar during
stimulation, as shown in the top row. Bottom row: Trial temporal
sequence. While looking at the fixation cross, subjects pressed the
ready key. Then, 133 ms later, the stimulus appeared, followed by the
masking stimulus after the variable SOA period. The duration of the
stimulus was just 16ms (one monitor frame time), that of the mask,
166 ms. We tested response accuracy (target present or absent) as a
function of processing time (SOA), not reaction time. See text and
Ahissar and Hochstein (1993, 1996a, 1997a) for more details.

target and distractor orientations, and these orienta-
tions plus 90° (e.g. 30, 60, 120 and 150°).

The temporal sequence of each trial is shown in Fig.
2, bottom: Each trial started with a fixation cross (a +
sign with 22×1% lines of intensity 147 cd/m2). When the
observer pressed the ready key, after 133 ms, the stimu-
lus appeared. The stimulus was on for 16 ms. Then,
following a variable stimulus onset asynchrony (SOA),
the mask was displayed for 166 ms. Finally, following a
233 ms dark period, the fixation point reappeared while
the subject pressed a response key. A computer tone
confirmed correct responses.

Stimuli were presented in blocks of 20 trials with the
same SOA. Each session comprised 70 blocks (1400
trials). Sessions began with a set of nine blocks starting
from the longest SOA (183 or 150 ms) and gradually
reaching the shortest SOA (16 ms) in an interleaved
manner (blocks with SOAs of 183, 133, 100, 66, 33 ms
followed by blocks of 150, 116, 83 and 50 ms. Based on
performance in these initial blocks, the range of SOAs
to be presented next was chosen. The choice was made
so that the shortest SOA would be the longest in which
the subject still performed near chance level (55% cor-
rect) and the longest SOA would be the shortest where
the subject already showed near perfect performance
(95% correct). Within that chosen range (constrained to
include at least three different SOAs), blocks were
presented in pseudo-random sequence. Following
blocks of presentations with these SOAs, the next range
of SOAs was chosen based on performance in these
blocks using the above criteria. This procedure was
continued until 1400 trials were completed. As a result
of this procedure, mean performance was kept around
75% correct, within and throughout sessions.

Stimuli were presented on an HG Trinitron multi-
scan monitor (Sony, Inc.) or a 5 A Micro-scan monitor
(A.D.I., Inc.) running at 60 Hz frame-rate and 1024×
1024 pixel resolution, driven by a c9-GXgraphics card
(c9 Computer Co., Inc.) in a 486 PC computer.
Response keys were ‘1’ (for present) and ‘0’ (for absent)
on the numeric keypad of the computer keyboard,
followed by the ready key, ‘enter’, to initiate the next
trial.

2.2. Target distribution

Several subject groups were trained with different
target distributions:
1. Control: Target presentation location was evenly

distributed within the array (data presented in
Ahissar & Hochstein, 1996a).

2. Target at one of two horizontal array positions.
These positions are circled in the array illustration
of Fig. 2, middle row, left. (This group was actually
composed of two sub-groups. The first was trained,
as were the other groups, with a 30° target-distrac-

7×7 stimulus lattice (94% jitter so that element posi-
tion exactly matched those of the stimulus). Each mask
element was a superposition of four lines: the trained



M. Ahissar, S. Hochstein / Vision Research 40 (2000) 1349–1364 1353

tor orientation difference, while the second was
trained with a smaller, 16° difference. This latter
sub-group was also subsequently tested only with
the two-target positions paradigm).

3. Target at one of two diagonal locations, encircled in
the array illustration of Fig. 2, middle row, middle.
(Thinking of the array as a chess board, target
positions are a ‘knight’s move’ from fixation). Sub-
jects were trained either with this pair of opposite
locations, or the left-right mirror image pair.

4. Target at one of 20 central positions denoted by the
dashed line in Fig. 2, middle row, right.

Following training, all groups were tested on the
control paradigm (c1 above), that is, with target
presentation location evenly distributed within the ar-
ray. This served as the crucial test of the effect of
training and its spatial spread. For this test session, we
present 2-dimensional plots of target detection perfor-
mance within this map of target locations. On this map
we superimpose an outline indication of the limited
area of target distribution during the preceding training
sessions.

We preferred training with more than one target
position because it was very difficult for most subjects
to maintain fixation when targets were consistently
presented at one side of the fixation point (Ahissar &
Hochstein, 1996a). In a pilot study a group of subjects
was trained with a single horizontal position, and then
tested with all positions. Although learning was not
transferred to more distal positions, results were vari-
able across subjects, perhaps due to their different
qualities of fixation. This procedure was therefore re-
placed with two positions symmetrically located with
respect to the fixation point.

2.3. Subjects

Fifty-two subjects participated in these experiments.
They were 20–27 years old, with normal or corrected-
to-normal eyesight. All were naive as to the purposes of
the experiment and were reimbursed for participation.
Twenty-two subjects learned pop-out with target at all
positions; fourteen with target at two horizontal posi-
tions (ten with 30° difference; four with 16° difference);
six with target at two diagonal positions; ten with target
at 20 central locations.

2.4. Analysis

The average session threshold was evaluated by com-
puting the best fit psychometric function of the form:
f(t)=1−0.5 exp (− (t/t)st) where f(t) is the propor-
tion of correct responses; t, the trial SOA; and s and t

are free parameters: t, the threshold SOA at 81.6%
correct, and s, the slope at threshold multiplied by 2e
(Quick, 1974). The method for determination of the

threshold is described elsewhere (Ahissar & Hochstein,
1993, 1996b).

The two-dimensional spatial distribution of the aver-
age fraction of correct detection was computed by
summing (across subjects), separately for each position,
the number of target-present answers among target-
present trials, i.e. the fraction of hits (there was no way,
of course, of attributing the responses in the target-ab-
sent trials to a specific location, so this half of the data
had to be discounted). The summation was performed
separately for each SOA and the average was then
obtained by simple averaging across a group of SOAs
(generally 33, 50 and 66 ms). Thus, performance at each
SOA was given the same weight, although the number
of presentations was typically not precisely equal (see
Section 2.1, above and in Ahissar & Hochstein, 1996a).
We used at least an entire session to compute this
2-dimensional distribution to reduce variability despite
dividing (half) the data among the 48 possible target
locations (�14 trials/point/subject). To assess the 1-di-
mensional dependence on eccentricity, data were
summed from all array positions with the same eccen-
tricity, regardless of their azimuth.

3. Results

3.1. Spatial distribution of detection: initially and
following general training

We first present the detection distribution of a con-
trol group trained with target location evenly dis-
tributed at all array positions. This detection
distribution will serve as a baseline for comparison with
detection distributions following training with various
target distributions. Threshold was reduced gradually
as a function of training experience (session number),
as demonstrated in the learning curve of Fig. 3A. Note
that inter-subject variability is greater for naive sub-
jects, and is diminished as subjects approach a more
common asymptote.

The initial and final 2-dimensional distributions are
plotted in Fig. 3B (left and right, respectively). The
distributions are for the entire first session and entire
last two sessions, while the dynamics curve of Fig. 3A
is by thirds of a session. Both distributions show a large
anisotropy: Detection drops off much more steeply
vertically compared with horizontally (see also Krose &
Julesz, 1989), and more in the lower than the upper
hemifield. Training raised detection for all positions
(brightening of entire right hand graph compared with
the left graph). There was also some expansion of the
central region, mainly along the vertical meridian so
that asymptotic performance is somewhat less an-
isotropic. Thus, when trained with target appearing
everywhere, learning occurred everywhere. We now ask
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what will happen when training includes a limited set of
target locations. In particular, we ask whether improve-
ment will transfer to all locations, will be limited to
trained locations, or will affect some intermediate
positions.

3.2. Spatial distribution following training with two
horizontal positions

A second group of subjects practiced with target
equally likely to be at each of two horizontal positions

Fig. 3. Effect of training with odd-element appearing at all array positions. (A) Threshold (SOA for achieving 81.6% correct responses; see text)
as a function of training session for the group which trained with target appearing in all array positions, by thirds of a session. Twenty one
subjects participated in this part of the experiment, and the error bars indicate between-subject standard errors of the mean. Note that in general
this variance is greater for the subjects when naive than when they are trained, suggesting that much of the difference between them may be a
matter of prior experience or natural training. With substantial training, threshold SOA is reduced by about a factor 3! (B) Two dimensional
detection distribution before training (1st session — left diagram) and following substantial training (final two sessions of each subject — right
diagram) for the control group that practiced with target appearing at all array positions. Average detection of target when SOA was 33, 50 or
66 ms. Note that detection is better in the center than at the periphery, falling off faster vertically than horizontally. With training, the central
area of good performance is brightened (performance improves at the center) and enlarged (performance improves around the center).
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Fig. 4. Spread of effect when training is limited to two horizontal positions. (A) Threshold SOA as a function of training session for the group
of subjects who trained with the target appearing at one of two horizontal array positions, by thirds of a session. Note somewhat superior
performance (lower thresholds) at start and at asymptote, for this easier task, with less stimulus position uncertainty compared to the control
group of Fig. 3. Final three points are for a single final session with target appearing at all positions. Performance is degraded (threshold is raised),
but not to original naive level. (B) Two-dimensional detection distribution for subject group who trained with target appearing in one of two
horizontal positions. Data for this distribution and those of the following figure are from the final post-training session with target appearing at
all positions, averaging detection data for 33 and 50 ms SOA. Note considerable brightening for positions between and around trained locations
(indicated by crosses) compared to naive level (Fig. 3B, left), suggesting that subjects attended to this entire region and that attention suffices to
induce learning (note that this difference is seen even though the current figure illustrates the average of only two hard SOAs, while Fig. 3B
includes an easier SOA).

(91.4° from fixation) as illustrated in Fig. 2, middle-
left. The threshold reduction as a function of session
number for this group is shown in Fig. 4A. Initial
performance is somewhat better than that of the group
trained with all positions, and learning is quicker,
though learning rate varies among subjects. Better per-
formance might be expected for this easier task with
reduced target location uncertainty.

Following training with the two target positions,
these subjects were tested with target appearing in any
array location. Threshold performance for this session
is shown in the rightmost points of the learning dynam-
ics graph of Fig. 4A. There was incomplete transfer to
this new situation, reflected in a rise in threshold. The
spatial distribution of target detection for this group,
following training for two horizontal positions, is illus-
trated in Fig. 4B. It is evident that the entire central
elongated cone is brightened compared to not only the
initial but also the asymptotic distribution following
all-position training (Fig. 3B, left and right, respec-
tively). Detection at positions proximal to fixation is
better in this case than following training with all
positions, even though target was never presented here
during training. This difference was highly significant.
For instance, average detection for the eight positions
outlining the central square of array positions (at the

hardest super-threshold condition, 33 ms SOA) was
0.46 for the group trained with all positions compared
with 0.72 for the group trained at two horizontal
positions (PB0.001).

We did not monitor eye position so we can not
directly refute the interpretation of this result as deriv-
ing from subjects’ occasionally fixating the expected
target positions during training rather than the required
fixation position. However, if this were the case and
subjects alternated fixation between the right and left
target locations, then the target would have occasion-
ally appeared at fixation and occasionally four element
positions (2.8°) away, but it never would have been one
array position from fixation. Thus, we would have
expected more transfer to distal rather than to interme-
diate horizontal positions. Therefore, this interpretation
does not account for the measured spatial distribution
of detection.

The advantage of training only two horizontal posi-
tions in detecting targets proximal to fixation is most
evident for short difficult SOAs. In Fig. 5 we plot
detection as a function of eccentricity following two-po-
sition and all-position training when testing at all posi-
tions. Data are plotted for 33 and 50 ms SOA averaged
(Fig. 5A) or separately (Fig. 5B). Note that the slopes
for all-position training are shallower. Performance for
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central positions is consistently better and for periph-
eral positions consistently worse for two-position train-
ing than for all-position training, so that the graphs
cross.

We conclude that subjects trained with two positions
allocated spatial attention to a continuous central re-
gion that extends between the target positions and that
this sufficed to induce improvement at the intermediate
(interpolated) positions, where the target did not ap-
pear. The better performance for these subjects at these
central locations must derive from their being trained
with an easier task, namely with less target location
uncertainty (though tested finally with the same target
distribution) where attention could be confined to a
smaller area.

3.3. Training with other target distributions

Another group of subjects (n=6) practiced with
target equally likely to be at each of two diagonal
positions, as illustrated in Fig. 2, middle, middle. Their
threshold reduction as a function of session number is
shown in Fig. 6A, left. Initial threshold is higher than
for the horizontal positions, as expected from the

greater detection difficulty for the diagonal positions
since they are both more eccentric and lie along the
diagonal rather than along the horizontal axis. As
shown in Fig. 3, detection decreases more steeply along
diagonal and vertical directions than along the horizon-
tal meridian. Still, following practice, a similar asymp-
totic threshold is achieved.

Fig. 6A, right, illustrates the spatial distribution of
detection for this group in the test session (with target
appearing at all array locations), following training
with target at diagonal locations. The whole central
cone is somewhat brightened, with detection at the
distal positions, where the targets were actually present,
being somewhat better than positions near fixation. The
central cone is elongated along the diagonal where
targets were trained. The two brightened spots around
the trained diagonal target positions show that maximal
improvement was attained at the actual distal target
positions. However, again, improvement included inter-
mediate positions. Note that in this case, as well, cen-
tral detection equals or exceeds that attained following
general practice (Fig. 3).

Note the large difference between the extent of spa-
tial transfer from the two trained locations to more
central positions, seen for two horizontal locations
(more transfer) compared to two diagonal locations
(less transfer). This difference may be related to the
principle stated above that the easier and more spatially
confined the task, the more the transfer to new stimulus
conditions (Ahissar & Hochstein, 1997a). We also
found that the improvement at the diagonal positions
did not transfer to new target and distractor orienta-
tions (swapping target and distractor orientations; see
Ahissar & Hochstein 1996a; Ahissar et al., 1998a).

Another group of subjects (n=10) practiced with
target equally likely to be at each of 20 central posi-
tions, as illustrated in Fig. 2, middle, right. Their
threshold reduction as a function of session number is
shown in Fig. 6B, left. Threshold is initially lower than
when all positions are equally likely and improvement
is quicker; yet asymptotic thresholds are similar.

Fig. 6B right, demonstrates the spatial distribution of
detection (as tested in the final session, with target at all
locations) for the group trained with target at 20 central
locations. The whole central cone is brighter. Yet the
outskirts are darker even compared with initial perfor-
mance of the control group (Fig. 3B, left). Thus, no
improvement was obtained beyond the induced central
cone of attention.

In summary, if we look at the four detection distribu-
tions during the test session with target at all locations
(Fig. 3B, right; Fig. 4B; Fig. 6A, right, and B, right)
following different training conditions (target appearing
at all element locations, at two horizontal locations, at
two diagonal locations, or at 20 central locations, re-

Fig. 5. Detection performance and learning transfer dependence on
task difficulty as determined by SOA, target eccentricity and target
location distribution. Detection hit rate is shown as a function of
eccentricity for two SOAs and two training conditions: target appear-
ing at all locations (‘all pos’; filled symbols and full lines; data for 11
better detecting subjects; see Fig. 7A) and for target appearing at two
horizontal locations (‘2 pos’; open symbols and dashed lines). (A)
average performance for 33 and 50 ms SOA. Note that curves cross
suggesting that the spread of easy two-position training towards the
center comes at the expense of improving performance at the periph-
ery. (B) Separate plots for each of these SOAs. Note that for the
easier SOA (50 ms), training everywhere led to better performance at
nearly all eccentricities. For the more difficult SOA (33 ms), the
performance curves cross: At positions central to the trained posi-
tions (where the target never appeared during training), focussed
training is better, while for more peripheral locations direct training is
required.
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Fig. 6. Effects of training with other target distributions. (A) Learning curve (threshold SOA versus session number-left) and 2-dimensional
detection distribution for post-training test (with target appearing at all positions – right) for group which trained with target appearing at one
of two diagonal positions (as indicated by crosses). Note training is not as effective for these more difficult positions, nor is the spread of learning
so great, as with the two horizontal positions of Fig. 4. Best performance is now near the trained positions, not in the central region between them.
Still, there is a spread of learning and performance is considerably better than for naive subjects (compare Fig. 3B, left). (B) Learning curve and
detection distribution following training with target appearing in any one of 20 central positions. Performance is enhanced for entire central
region, with a very sharp decay at the upper and lower peripheral positions.

spectively), we see four different performance distribu-
tions. These distributions reflect the different training
conditions, i.e. the different target location distributions
during training. However, as a rule, the performance
distributions following training demonstrate consider-
able improvement of performance not only at the loca-
tions that were actively trained but rather they always
include learning at much of the central region — where
attention was directed but target did not appear. Thus,

we conclude that attention suffices to improve perfor-
mance even at positions where the target never appears.

The difference between the degrees of spread for two
horizontal and two diagonal locations, together with
the different degrees of specificity previously found for
training under easier and more difficult conditions
(Ahissar & Hochstein, 1997a) suggests that spatial
spread may be linked to task difficulty. This conjecture
is tested in the following section.
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3.4. Interaction between spatial distribution and
difficulty

We asked whether the difficulty of the task, in terms
of available processing time (SOA) and individual sub-
ject skill would affect learning distribution. In particu-
lar, whether the diameter of learning will decrease with
decreasing SOA, and whether there will be a different
spread of training effect for subjects who demonstrate
more compared with less skill for the feature search
task.

To separate subjects who are better or worse at
odd-element detection, we looked at the threshold of
detection during the first training session for all subjects
trained with target at all locations (the control group).
There was a natural division between the 11 better-de-
tecting subjects (with starting thresholds below 115 ms)
and ten worse-detecting subjects (with thresholds above
125 ms; the threshold for one subject never declined to
below 100 ms so his data were dropped from the
averages and figures). The learning curves for these two
groups are shown in Fig. 7A. Performances of the two
groups remain different throughout the eight session
training period and they appear to approach different
asymptotes. Note that, as we reported previously, there
is generally much greater individual variation before
training than after (Fig. 3, above; see also review by
Ahissar et al., 1998b).

The dependences of the training effect on target
eccentricity, SOA and subject skill are shown in Figs.
7 and 8. In Fig. 8 we present the 2-dimensional
target-location contour-plot of performance for the
1st, 2nd and (averaged) final two sessions for the two
groups of subjects. These are displayed for two
SOAs, chosen to show the greatest degree of learning
effect for each group, respectively. In Fig. 7 the
learning effect (change in hit rate), is plotted as a
function of eccentricity, averaging over azimuth.
Analysis of these plots reveals a number of important
trends.

There is indeed a difference between the subject
groups at all target locations. Comparing the 2-D plots
of performance at 50 ms SOA, we see that the more
skilled subjects perform better than the less skilled
subjects from the first to the last session, and for all
eccentricities and target locations. In fact, performance
is consistently about one 16 ms step faster in all cases.
Performance for the better subjects at 50 ms SOA is
about the same as performance for the less skilled
subjects for an SOA of 66 ms, for each of the training
sessions. This similarity is also found by comparing
performance of the more skilled subjects at 33 ms with
that of the less skilled at 50 ms.

Learning spread depends on task difficulty. For each
set of subjects, the curves plotting learning versus ec-
centricity (Fig. 7B) are rotated clockwise with decreas-

Fig. 7. Learning dependence on eccentricity, SOA and subject detecting ability. We divided the subjects of the control group of Fig. 3 into two
sub-groups on the basis of their performance on the first training session (‘better’ and ‘worse’ detectors) and compare their further performance
in a number of ways: (A) Learning dynamics. Threshold as a function of training session for the two sub-groups (by thirds of a session). Subjects
who are better detectors begin and remain better throughout the training. This performance threshold was used to divide the subjects into two
groups for the other analyses of this and the following figures. (B) Learning effects. The change in hit rate from first to last sessions is shown as
a function of eccentricity for each subject group (left and right graphs) and for two SOAs. Note that the more difficult the detection (in terms
of SOA or subject group) the more the learning effect is concentrated at the central part of the visual field.
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Fig. 8. Detection distributions for better and worse detecting subjects. Detection distributions are presented for the 1st session (left), 2nd session
(middle) and last two sessions (right) separately for the 11 better detecting subjects (A) and the ten worse detecting subjects (B). Subject
classification for this and the following figure was done on the basis of threshold performance (Fig. 7A). Detection distributions are separated also
by SOA, with data for two SOAs (indicated on the left) shown for each subject group. The distributions show gradual learning (brightening) with
improvement first at the center and for longer SOAs and then also at the periphery and for shorter SOAs. Note that the better detecting subjects
are about 16ms faster than the other subjects.

ing SOA. This means that for more difficult task condi-
tions, learning is concentrated at (easier) more central
locations.

In parallel, better detecting subjects seem more able
to spread their attentional window. This is evident in
the slopes of the curves of Fig. 7 and also in the 2-D
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detection plots of Fig. 8. The plots for better detectors
have much less steep gradients than do those of the
poorer detectors. For example, compare the detection
distributions for the final sessions of the better subjects
at 33 ms SOA with those of the worse detecting subjects
at 50 ms SOA (Fig. 8 right column, 3rd and top plots,
respectively). Detection falls off much more steeply for
the poorer detectors, even for the longer SOA. Thus,
the trade-off between personal ability and available
processing time may not be complete.

3.5. Spatial distribution with horizontal positions using
a smaller orientation gradient

We asked whether the transfer dependence on task
difficulty extends to detection difficulty determined by

the target/distractor orientation difference. In particu-
lar, we wished to know if under more difficult condi-
tions it would be the intermediate positions or the
actual positions where target was presented that would
be more affected by the extra difficulty introduced. We
reduced the target/distractor difference from 30° to 16°
for another group of subjects, using the same two-posi-
tion horizontal distribution studied above. As demon-
strated in Fig. 9, we found that even for the more
difficult condition there was still nearly complete trans-
fer to central locations (except at the briefest SOA).
There was substantial transfer even to more distal
locations for long SOAs, while, for brief and intermedi-
ate SOAs there was less and less transfer in this
direction.

Thus, performance increase is not uniform and
across the board. For all tested parameters, the easier
the task, i.e. the longer the SOA, the greater the orien-
tation difference, or the more central the target loca-
tion, the greater is the transfer of learning effects. The
level of difficulty or ease that dictates the spread learn-
ing is subject to individual differences.

4. Summary

In the first part of this study we found that spatial
attention is both necessary and sufficient for inducing
learning of odd element detection, in agreement with
the prediction of the reverse hierarchy theory. Several
target distributions were used for the feature search
task to dissociate spatial attention from target distribu-
tion. When targets were presented at two positions
around (but not adjacent to) fixation, detection im-
proved both at the target positions and at intermediate
positions within the region of focal attention — even
though the target was never presented at these posi-
tions. However, no improvement was found at posi-
tions farther from target positions, which were not
attended. From these findings we conclude that atten-
tion is not only necessary but also sufficient for percep-
tual learning. Note that in accord with previous results
attention must not only be spatially focused, but must
also by selectively tuned to the aspect of the stimulus
that is relevant for the trained task. Thus, training one
task did not affect a second task (which was not
performed), and which depended on a different at-
tribute of the same set of stimuli (Shiu & Pashler, 1992;
Ahissar & Hochstein, 1993; see also Treisman, 1992;
Harris & Fahle, 1998).

In the second part of the study we examined the
effect of task difficulty in determining the spread of
spatial attention and consequently, the spatial distribu-
tion of learning. Several manipulations were studied,
including the distribution of target positions, the target-
distractor orientation difference and the time interval

Fig. 9. Transfer with two easy positions and difficult 16° target-dis-
tractor orientation difference. Transfer of training effect to more
central (squares) and more peripheral (circles) locations for training
at two horizontal positions with a difficult discrimination task (target
to distractor orientation difference of 16°). Fractional transfer is
defined as the amount of training effect at the test positions (detection
at test–initial detection) compared to training effect at trained loca-
tions (final–initial detection). Initial detection is assumed same for all
three pairs of positions, since data are available only for the trained
positions; this may somewhat under (over)-estimate the specificity at
positions proximal (peripheral) to fixation. Note nearly complete
transfer to near locations at nearly all SOAs and decreasing transfer
to further locations with decreasing SOA.
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available for processing (determined by stimulus-to-
mask onset asynchrony, SOA). In addition, we com-
pared the performances of subjects who had greater or
lesser difficulty in detecting the odd element. These
various comparisons show a consistent pattern, namely,
when the task becomes more difficult, the window of
attention shrinks, and learning becomes more localized.

In terms of the reverse hierarchy theory presented in
the Introduction, these findings mean that attention
determines the cortical level of processing used for task
performance and learning. The level chosen is that
which satisfies the spatial selectivity requirements of the
target distribution and the difficulty of the task condi-
tions as determined by its various parameters. In turn,
the choice of cortical level determines the extent of
transfer of training effects.

5. Discussion

We can now predict the width of the attentional
window under given task conditions, for cases of brief
stimulus presentation. From the center of the stimulus,
the focus of attention spreads out to accommodate
potentially relevant stimuli (a process which is relevant
across a time constant of at least several trials). If the
task is too difficult to be performed with spread atten-
tion, the attentional focus is narrowed. Thus, these two
factors — target distribution and task difficulty, both
adapted to increase successful detection, may have op-
posing effects. Understanding the relative role of each
factor in determining the spread of spatial attention is
important not only from a theoretical perspective. It
also has direct implications to the design of optimal
training procedures that need to be custom-made to the
desired performance goals.

5.1. Assessing the width of the attentional window

Using performance as a measure of the spread of
attention is complicated for the following reason. Corti-
cal representation is affected by the cortical magnifica-
tion factor. Since the physical size of the array elements
in our display was fixed, the cortical size and conse-
quently salience, was larger for positions near fixation.
By using several target distributions we manipulated the
spread of attention without affecting (at least initially)
the cortical representation. Thus, the effect on detection
of these manipulations reflects the induced window of
spatial attention. Since attention spread determines
learning distribution, we were able to examine learning
and thereby assess the factors determining the spatial
extent of attention.

Several of our results show that, consistent with
previous reports (e.g. Eriksen & Yeh, 1985; Eriksen &
St. James, 1986), as difficulty increases, the width of

spatial attention decreases. First, we found that in
different subject groups and under different training
conditions, for shorter (more difficult) SOAs, subjects
show greater improvement near fixation than at larger
eccentricities. This negative correlation between the ex-
tent of learning and eccentricity can not be explained by
subjects’ inability to improve at the periphery. In fact,
previous studies indicate that once attended, the
prospects of improvement at larger eccentricities are
higher than near fixation (Johnson & Leibowitz, 1979;
see review by Ahissar & Hochstein, 1998). There is more
to improve at the periphery, perhaps because attentional
mechanisms have not been exploited there in past expe-
rience (Ahissar & Hochstein, 1997a).

Second, the detection decrease as a function of eccen-
tricity is steeper for poor detectors than for better
detecting subjects (and it is unlikely that they have
different cortical magnification factors). This difference
in distribution is evident following the same learning
procedure, and using the same uniform target distribu-
tion. Poorer detectors seem to focus attention more
steeply around fixation and thus are very poor at the
periphery even under conditions in which they manage
to detect better near fixation (Figs. 7 and 8).

These learning distributions arise from shrinking the
span of attention in those cases when a large window of
attention can not sustain successful task performance.
When target distribution is uniform across the entire
array, it is beneficial to narrow the window of attention
and focus on potentially detectable targets near fixation,
even at the cost of missing peripheral targets.

5.2. The site of learning easy, focused cases

The above discussion covers the cases when targets
are broadly distributed, yet the focus of attention is
narrowed due to difficulty. What will be the size of the
attentional window when targets are easy to detect and
are near fixation (e.g. one position, nearest to fixation)?
Being near fixation, they do not require a broad window
of attention, yet they are also easy, allowing a broad
window of attention from the perspective of signal-to-
noise ratio. According to the Reverse Hierarchy Theory,
high-level areas may be accessed first and should suffice,
even though a relatively narrow window of attention
matches the target distribution. One possible outcome of
such a scenario with opposing factors is that there will
be large inter-subject variability in the spatial width of
attention and learning, as subjects weight the factors
differently. An alternative is that a small attentional
window and large signal-to-noise ratio is implemented at
a higher area, and learning transfer will reflect high level
tuning properties. In the present study, we did not
attempt to determine experimentally whether a narrow
window of attention can be implemented at high levels
when spatial constraints are conflicting in this manner.
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5.3. The site of learning difficult targets at eccentric
positions

Another interesting condition is when a difficult
target can appear at one of a few distal positions but
never appears at fixation. In this case, shrinking the
attention window around fixation — the typical strat-
egy for hard conditions, would be the worst strategy. It
would be more useful to split the focus of attention to
two (or more) foci, or, if this is not possible, to focus
on one of the several plausible positions. Can subjects
adopt this useful strategy or are they automatically
forced into shrinking attention around the center?

To assess the effects of such a condition, we trained
subjects with a smaller target-distractor orientation dif-
ference. We reasoned that if subjects had to shrink their
window of attention, maximal learning would affect
positions near fixation, between targets. In this case,
testing with more proximal positions than those trained
would reveal full if not greater transfer of the learning
effects. Indeed some transfer towards the center was
evident (Fig. 9), suggesting that discarding the center
entirely was impossible. However, transfer was partial
and SOA dependent (with least transfer for briefest
SOAs). Thus, in this case, more difficult conditions do
not lead to shrinking around fixation.

Yet, previous studies indicate that for brief presenta-
tions in which target and distractors are displayed
simultaneously, splitting the focus of attention is impos-
sible. Kramer and Hahn (1995; see also Castiello &
Umilta, 1992) found that with prolonged viewing sub-
jects may indeed be able to split their attention to two
locations. However, when the presentation is brief and
has a sudden onset, then attention is automatically
directed to the salience centroid and encompasses the
entire region including the important items in the scene.
For our conditions of brief presentation and rapid
onset, we would expect attention to be centered and
spread out to the target presentation locations, but
perhaps not further. Thus, under difficult conditions,
subjects probably focus their attention on one of the
two alternative sites (even though they are still physi-
cally fixating). Since the detection at each of these two
positions was similar, their focus changes and does not
stay at one position. The time constant of this shift can
not be deduced from these results.

5.4. Relation to pre6ious mappings of attention to the
6isual hierarchy

Our view of the spatial cone of attention as a func-
tion of attended cortical level is novel in its current
formulation. However, previous studies introduced sim-
ilar views from other perspectives. Nakayama (1991),
taking the point of view of an ‘iconic bottle-neck’,
suggested the idea of a hierarchy in the form of a

pyramid. The basic assumption was that the visual
system has a limited capacity for iconic working mem-
ory, perhaps in the order of a thousand pixels. A scale
has to be chosen — either a low-resolution view where
few elements (top of the pyramid) ‘cover’ a large area
or high resolution where covering the same area re-
quires many elements (bottom of pyramid), each with a
small aperture. Attention chooses the level. We now
suggest that this level is related to cortical hierarchy.

Tsotsos (1995) also suggested a hierarchical view of
attention from the perspective of the computational
benefit of a search tree. Using a hierarchical search tree
minimizes the number of steps needed to search the
appropriate representation. Ullman (1995), also from a
computational point of view, stressed the benefits of
top-down computation reaching low-levels. Recently,
Treisman (1996, 1998) (see also Edelman & Duvdevani-
Bar, 1997) suggested that fine spatial selection is imple-
mented in the primary visual area.

The idea of attention as a mechanism to refine crude
pre-attentive spatial encoding has been suggested by
Cohen and Ivry (1989, 1991). Tsal, Meiran and Lamy
(1995) extended their view to other dimensions apart
from spatial position (e.g. color and shape) and showed
its consistency with many experimental results. Re-
cently, the effects of spatial attention in increasing
spatial resolution were directly demonstrated by Yeshu-
run and Carrasco (1998).

The view of these studies regarding the role of atten-
tion in fine selection is consistent with ours. We add
two new aspects: the dynamics and the implications for
learning. The level chosen is determined not by the
complexity of the task as verbally described by the
experimenter, but rather by the compatibility of the
internal representation to the task at hand. Thus, differ-
ent levels will be chosen for similar conditions depend-
ing on relative difficulty. We now further specify factors
that determine the extent of spatial attention, in partic-
ular target distribution and task difficulty. The first is
set by stimulus parameters, and as such may be related
to an automatic bottom-up attention mechanism. The
latter may only be computed with respect to an internal
goal, and as such is also related to top-down attentional
mechanisms. These two types of attention may be re-
lated to previously described automatic bottom-up
driven attention (e.g. Maljkovic & Nakayama, 1994,
1996) compared with top-down attentional control
(Mackeben & Nakayama, 1993).

5.5. Implications for practical applications

The results of this study have direct implications for
the design of training procedures. Three main func-
tional conclusions may be drawn:
1. When easy conditions need to be learned, a few

exemplars may suffice to induce interpolation and
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learning. Attention will immediately spread around
the stimulus center and encompass untargeted as
well as targeted positions. Under more difficult con-
ditions, reduced transfer is expected.

2. When very difficult conditions have to be learned,
training should contain only the easiest examples of
these conditions. For achieving best performance at
short SOAs it is better to train only with target
positions proximal to fixation, since otherwise, at-
tention is drawn out over too large an area, yielding
only crude resolution, which is not sufficient for
detecting anything with these brief SOAs.

Within any one block of trials, trainers should
present only test conditions for which the same atten-
tional spread is appropriate, since the attentional win-
dow is determined with respect to average block
success. This procedure therefore allows for more ap-
propriate attention and learning. For example, in our
case, learning for targets proximal to fixation was not
optimal for brief SOAs when these positions were
mixed with distal targets.
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