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1. INTRODUCTION 

Several generalizations of the celebrated Ky Fan minimax inequality [9] 
make use of a structure of linear spaces [2, 1, 19, 12, 17, 10, 181. 

In the years 1983-1985 C. Horvath obtained minimax inequalities by 
replacing convexity assumptions with merely topological properties: 
pseudo-convexity in [13] and contractibility in [14, 151. 

In this paper, in the Horvath setting, we state generalized minimax 
inequality for functions taking values in ordered vector spaces. 

Let X be a topological space and (E, C) a topological Riesz space, where 
C is the positive cone. As in [14, 151, X is provided with a topological 
structure on which the contractible sets replace the convex hulls. 

Given two functions f, g defined on Xx X and taking values in (E, C), 
Theorems 3 and 4 give sufficient conditions to establish generalized 
minimax inequalities. We observe that the compactness assumption on X is 
also relaxed. 

So our minimax inequalities extend some of the more recent ones, e.g., 
[l, 19, 12, 10, 151. 

In order to prove Theorems 3 and 4 we use the Knaster-Kuratowski- 
Mazurkiewicz-type theorem approach. The KKM theorem [16], was first 
generalized to the infinite dimensional case by Fan [S], who gave 
numerous applications of this generalization [6-IO]. 

Taking into account our abstract setting, it was necessary to state a 
generalized reformulation of the KKM theorem. Theorems 1 and 2 are 
well-behaved tools for our purpose. Moreover, these theorems generalize 
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the recent results of M. Lassonde [ 17, Theorem I], Fan [ 10, Theorem 43, 
and Horvath [ 15, Corollary 1 and Theorem 21. 

We wish to thank Professor Ky Fan for his kind interest and useful 
suggestions and Professor C. Vinti for his helpful advice. 

2. GENERALIZED KNASTER~KURATOWSKI-MAZURKIEWICZ THEOREM 

The following definition is suggested by a recent generalization of the 
KKM theorem obtained by C. Horvath [15]. 

DEFINITION 1. By H-space we mean a pair (X, ( rA } ), where X is a 
topological space and (r,} is a given family of nonempty contractible 
subsets of X, indexed by the finite subsets of X, such that A c B implies 
rA c i-B. 

Let (X, { TA}) be an H-space. A subset D c X is called H-conuex if, for 
every finite subset A c D, it follows that fA c D. 

A subset D c X is called weakly H-convex if, for every finite subset 
A c D, it results that fA n D is nonempty and contractible. This is 
equivalent to saying that the pair (D, { Ta n D}) is an H-space. 

Finally, a subset Kc X is called H-compact if, for every finite subset 
A c X, there exists a compact, weakly H-convex set DC X such that 
KvAcD. 

Remarks. (1) Any Hausdorff topological vector space is an H-space: 
for every finite subset A = {x1, . . . . x,} c X, we can set r, = 
conv(x, , . . . . xn}; moreover, any convex subset of X is H-convex and any 
nonempty compact convex subset is H-compact. 

(12) Every contractible space X is an H-space: at first we may put 
f ,,, = .X for every finite subset A c X. With this structure, the only H-convex 
subset of X is X itself. 

(3) The definition of H-space generalizes Horvath pseudo-convexity 
[ 131 and the concept of convex space due to Lassonde [17]. 

(4) As Horvath remarked in [13], every contractible space is a 
pseudo-convex space. This enables us to endow a contractible space X with 
an H-space structure: for every finite subset A c X we put rA = C,(A), 
where C,{ A} is the h-convex hull of A (see [ 131). In this setting every 
h-corrvex subset of X (see [ 131) is H-convex. 

(5) The definition of H-compactness generalizes Lassonde’s c-com- 
pactness ( [ 171). 

The following, used by Horvath in [ 151, is a generalization of the 
definition of the h-KKM function given in [13]. 

409’132.2 I2 
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DEFINITION 2. In a given H-space (X, { r,4 )), a multifunction F: X + X 
is called H-KKM if I‘, c u Tc ,4 F(x), for each finite subset A c X. 

We now prove the following. 

THEOREM 1. Let (A’, { r-( 1) he an H-space and F: X -+ X an H--KKM 
multifunction such that: 

(a) For each XE X, F(x) is compactly closed, that is, Bn F(x) is 
closed in B, ,for every compact B c X. 

(b) There is a compact set L c X and an H-compact KC X, such 
that, ,for each weakly H-convex set D with Kc D c X, we have 

fl7..o(F(x)nD)cL. 

Proof: It suffices to show that fi.YE,.JF(x) n L) # 0. By (a), F(x) n L is 
closed in the compact set L; thus we have only to prove that 
fi it A (F(x) n L) # 0, for every finite subset A c X. 

Let A c X be a finite set and let X,, c X be a compact, weakly H-convex 
set such that KuA c X0. By (b), n..,(F(x)nX,)c L and thus 
Ld’(x) n L) 1 fLxo(F(x) n &A. H ence, it is sufficient to show that 
fL,(Fb) n x0) is nonempty. 

Let us consider now the multifunction G: X,-+X, defined by 
G(x) = F(x) n X0. The H-KKM property on F easily implies the same 
property on G with respect to the H-space (X0, {r, n xOn X0}). 

By the closedness of G(x) in the compact set X,, and using Corollary 1 in 
[15], we deduce: nI-ExOG(x)=n ~ l x0 (F(x) n X0) # 0, which completes 
the proof of the theorem. 

Remark. The property: 
(I) There is an H-compact set Kc X such that n:, K F(x) is com- 

pact, implies (b). Hence, if (X, { Ta }) is an H-space and X is compact, 
property (I), and so (b), are immediately fulfilled. Thus Theorem 1 is an 
extension of Corollary 1 in [ 153, to the noncompact case. On the other 
hand, Theorem 1 represents an extension to the nonconvex case of Fan’s 
KKM theorem [ 10, Theorem 41. 

The following theorem, which is a consequence of Theorem 1, serves as 
the key tool in the proof of generalized minimax inequalities of Section 2. 

We premise some notations: given a multifunction F: X-+ X, we put: 

F l(y)= {xEX:~EF(X)} and F*(y)=X-F--‘(y). 

THEOREM 2. Let (X, { Ta }) be an H-space, G, F: X -+ X two multi- 
functions such that: 
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(a) for every x E X, G(x) is compactly closed and F(x) c G(x); 

(b) xEP’(x),for eoery XEX; 

(c) for every x E X, F*(x) is H-convex; 

(d) the multijiinction G verifies property (b) of Theorem 1. 

Then n,,x G(x) Z Izr. 

Proof By virtue of Theorem 1, it sullices to show that the multi- 
function G is H-KKM; that is, for every finite subset A cX, 
r/i = U rrz/, G(x). 

Suppose that Ta ti U\-, A G(x), for some finite subset A c X; then there 
exists y E rA and y$ G(x), for every x E A and so A c G*(y). Since 
F(y)f= G(y), it follows G*(y)cF*(y) and by (c), TacF*(y). Hence 
y E r,4 implies y E F*(y) which is equivalent to y 4 F(y) and this contradicts 
(b). 

Theorem 2 extends a result of Horvath’s [15, Theorem 21 to the case of 
noncompact topological space X. 

3. SOME GENERALIZATIONS OF FAN'S MINIMAX INEQUALITY 

Our aim is to establish minimax inequalities without compactness and 
convexity hypotheses on X for functions taking values in ordered 
topological vector spaces. 

Let (E, C) be a Riesz space, where C is the positive cone, provided with 
a linear, order compatible topology. This means that C is closed (see, e.g., 
[ 111). It will be assumed that the interior of the cone C, denoted by C, is 
nonempty. 

We remark that, in the case E = Iw, Theorems 3, 4 below generalize to 
nonconvex case previous theorems of G. Allen [l] (see also Fan 
[ 10, Theorem 63) and A. Granas [12]; on the other hand, they extend 
Theorem 5.1 in [ 131 to neither the compact nor the pseudo-convex case. 

From Theorem 2 we deduce the following. 

THEOREMS. Let (X, {rA}) b e an H-space, f, g: Xx X + (E, C) two 
.functions with the following properties. 

(a) g(x, y) <f(x, y), for every (x, y) E Xx X; 
(b) for every y E X and any 2 E E the set {xe X:f(x, y) E I + C} is 

H-convex; 

(c) for every XEX and any IEE the set {yEX:g(x,y)EA+C> is 
compactly open; that is, for every compact B c X, B n ( y E X: g( x, y ) E A + C} 
is open in B; 
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(d ) there is nn H-compuct Xc, c X such thut ( y‘ E X:g( x, ~3) 4 E, + C, jor 
each x E X0) is a compact set, ,for every A E E. 

Then, ,for every i. E E, the JollowYng ulternutire ho&: 

(1) there exists yO such that, for every x E X, g(x, yo) $ i. + C, or 

(2) there exists x0 E X such thut f(x,, x0) E A + C. 

Proof: For a fixed i E E, we define: F(x) = (.r E X: f(x, y) 4 j. + e} and 
G(x) = {y E X: g(x, 4’) 4 1. + C?,. By (c) G(x) is compactly closed for every 
SEX. By (a) it follows that F(x) c G(x); indeed if y$ G(x), then 
g(x, Y)E~ + (? and there is a neighborhood V of OE E such that 
g(x,y)+ vc;l+e But g(x, y) <f(x, y) implies 1, < g( x, y) + 2: < 
f(x, y) + v, for every v E V and thus .f‘(x, .r) + Vc i. + e, that is y 4 F(x). 

If there exists .x0 E X with x, $ F(x,), then f(x,, x0) E e and so we have 
(2). Otherwise, x E F(x) for each x E X. 

Let A c F*(y) = {x E X: .f’(x, ~7) E /1+ C} be a finite set. By (b) 
rA c F*(y); moreover condition (d) implies the existence of an H-compact 
set X,, such that n YEXO G(x) is compact. So, all of the assumptions of 
Theorem 2 are fulfilled and hence n ‘;t x G(x) # @. This implies part (1) of 
the alternative. 

In order to give a second generalization of minimax inequality, we prove 

THEOREM 4. Let (X, {rA}) h e an H-space, f g: Xx X + (E, C) two 
functions with the properties., 

(a) g(x,y) 6 f (x, y), .for every (x, y) E Xx X; 

(b) for every VEX and any J.EE the set {xEX:f(x,y) & A} is 
H-convex, 

(c) for every x E X und any I E E the set {y E X: g(x, y) <A} is com- 
pactly closed; 

(d) there is an H-compact subset X0 c X such that { y E X: g(x, y) < 2, 
for each x E X0} is compact, ,for every I. E E. 

Then, for every /1 E E, the following alternative holds. 

(1) There exists y, E X such that for every x E X, g(x, yO) < I, or 

(2) There exists x0 E X, such that f (x,, x0) & A. 

Proof For fixed 1.~ E, we define F(x)= { y~X:f(x, y)<,I}, and 
G(x) = { y E X: g(x, y) 6 A}. Condition (a) implies F(x) c G(x) for every 
x E X and (c) ensures that G(x) is compactly closed for each x E X. 

If there exists x0 E X with x0 $ F(x,), thenf(x,, x0) < 2 and so we obtain 
(2). If x E F(x) for every x E X, the proof is carried out as in Theorem 3. 

As a consequence of Theorem 4, we state the following 
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COROLLARY 1. Let W, IL}) b e an H-space, (E, C) an order complete 
topological Riesz space. We assume that f: Xx X+ (E, C) is bounded above 
on the set A = {(x, x): x E X}. Under the assumptions of Theorem 4 we have 

inf wf(x,y)<supf(x,x), 
LlEX XEX 5 E x 

whenever the “inf” in the left-hand side exists. 

Prooj Put A = supxt x f (x, x) (which is well defined by order com- 
pleteness of E), by Theorem 4 there exists y,, E X such that: 

f(x~Yo)~ SUPf(X,X) for every x E X. 
TEX 

Since (E, C) is order-complete it follows that sup,, x f (x, yO) exists and 

and so the thesis. 
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