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Abstract

We give the first example of a quartically hyponormal unilateral weighted shift which is
3-hyponormal.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let H andK be complex Hilbert spaces, letL(H,K) be the set of bounded line
operators fromH to K and writeL(H) := L(H,H). An operatorT ∈ L(H) is said to be
normal if T ∗T = T T ∗, hyponormal if T ∗T � T T ∗, andsubnormal if T = N |H, whereN

is normal on some Hilbert spaceK ⊇ H. If T is subnormal, thenT is also hyponormal
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The Bram–Halmos criterion for subnormality states that an operatorT is subnormal if and
only if∑

i,j

(
T ixj , T

j xi

)
� 0

for all finite collectionsx0, x1, . . . , xk ∈ H ([2], [3, II.1.9]). It is easy to see that this
equivalent to the following positivity test:


I T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
. . .

...

T k T ∗T k · · · T ∗kT k


 � 0 (all k � 1). (1)

Condition (1) provides a measure of the gap between hyponormality and subnorma
fact, the positivity of (1) fork = 1 is equivalent to the hyponormality ofT , while subnor-
mality requires the validity of (1) for allk.

Let [A,B] := AB − BA denote the commutator of two operatorsA andB, and define
T to bek-hyponormal whenever thek × k operator matrix

Mk(T ) := ([
T ∗j , T i

])k

i,j=1 (2)

is positive. An application of the Choleski algorithm for operator matrices shows tha
positivity of (2) is equivalent to the positivity of the(k + 1) × (k + 1) operator matrix
in (1); the Bram–Halmos criterion can then be rephrased as saying thatT is subnormal if
and only ifT is k-hyponormal for everyk � 1 [11].

Recall [1,4,11] thatT ∈ L(H) is said to beweakly k-hyponormal if

LS
(
T ,T 2, . . . , T k

) :=
{

k∑
j=1

αjT
j : α1, . . . , αk ∈ C

}

consists entirely of hyponormal operators, or equivalently,Mk(T ) is weakly positive (cf.
[11]), i.e.,〈

Mk(T )


 λ1x

...

λkx


 ,


 λ1x

...

λkx


〉

� 0 for all x ∈ H andλ1, . . . , λk ∈ C. (3)

The operatorT is said to bequadratically hyponormal when (3) holds fork = 2, and
cubically hyponormal (respectivelyquartically hyponormal) when (3) holds fork = 3 (re-
spectivelyk = 4). Similarly, T ∈ L(H) is said to bepolynomially hyponormal if p(T )

is hyponormal for every polynomialp ∈ C[z]. It is straightforward to verify thatk-
hyponormality implies weakk-hyponormality, but the converse is not true in general.
unilateral weighted shifts, quadratic hyponormality is detected through the analysis
associated tridiagonal matrix, while cubic hyponormality requires a pentadiagona
trix [6,16]. The associated nested determinants satisfy either a two-step recurring r
(in the tridiagonal case) or a six-step recurring relation (in the pentadiagonal case
concrete calculation of the above mentioned nested determinants has helped sh
on quadratic and cubic hyponormality. On the other hand, quartic hyponormality re



R.E. Curto, S.H. Lee / J. Math. Anal. Appl. 314 (2006) 455–463 457

deter-
artic

erator
nt with
es not
ply
proof

of of
orm

l

able
d by
a-

pt to
of this
z
ighted
ncrete
s yet
]). For
in [6],
and in
und.
l but
heptadiagonal matrices, and a similar multi-step recurring relation for the nested
minants is not known. As a result, there is very little information available about qu
hyponormality, and the notion has remained highly inscrutable.

In this paper, we present the first concrete example of a quartically hyponormal op
which is not 3-hyponormal. Although the result is somewhat expected, and consiste
previous results in this area (e.g., for general operators polynomial hyponormality do
imply 2-hyponormality [12], and for weighted shifts cubic hyponormality does not im
2-hyponormality [16]), the techniques needed to prove it are new. For instance, the
of Theorem 4(i) includes a new trick to compute a key determinant, while the pro
Theorem 4(ii) is based on a special rearrangement of the terms in the quadratic f∆

whose positivity ensures that the weighted shift is quartically hyponormal.
Recall that given a bounded sequence of positive numbersα: α0, α1, . . . (called

weights), the (unilateral) weighted shiftWα associated withα is the operator on�2(Z+)

defined byWαen := αnen+1 for all n � 0, where{en}∞n=0 is the canonical orthonorma
basis for�2. It is straightforward to check thatWα can never be normal, and thatWα is
hyponormal if and only ifαn � αn+1 for all n � 0. The moments ofα are given as

γk ≡ γk(α) :=
{

1 if k = 0,
α2

0 · · ·α2
k−1 if k > 0.

We now recall a well known characterization of subnormality for single-vari
weighted shifts, due to C. Berger (cf. [3, III.8.16]), and independently establishe
R. Gellar and L.J. Wallen [15]:Wα is subnormal if and only if there exists a prob
bility measureξ (called theBerger measure of Wα) supported in[0,‖Wα‖2] such that
γk(α) := α2

0 · · ·α2
k−1 = ∫

tk dξ(t) (k � 1). If Wα is subnormal, and if forh � 1 we let
Mh := ∨{en: n � h} denote the invariant subspace obtained by removing the firsth vec-
tors in the canonical orthonormal basis of�2(Z+), then the Berger measure ofWα|Mh

is
1
γh

th dξ(t).
The classes of (weakly)k-hyponormal operators have been studied in an attem

bridge the gap between subnormality and hyponormality [5–11,14,16,17]. The study
gap has been mostly successful at the level ofk-hyponormality; for example, for Toeplit
operators on the Hardy space of the unit circle, the gap is described in [10]. For we
shifts, on the other hand, positive results appear in [6] and [10], although no co
example of a weighted shift which is polynomially hyponormal and not subnormal ha
been found (the existence of such weighted shifts was established in [12] and [13
weakk-hyponormality there nevertheless exist some partial results. For example,
the gap between 2-hyponormality and quadratic hyponormality was established,
[16] weighted shifts which are cubically hyponormal and not 2-hyponormal were fo
In this paper, we give an example of a weighted shift which is weakly 4-hyponorma
not 3-hyponormal.

2. Main results

We begin with an observation about quadratic hyponormality.
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Proposition 1. Wα is quadratically hyponormal if and only if Wα + sW2
α is hyponormal

for all s � 0.

Proof. (⇒) This implication is trivial.
(⇐) SupposeWα + sW2

α is hyponormal for alls � 0. We must show thatWα + cW2
α is

hyponormal for allc ∈ C. For c ≡ seiθ (s > 0), there exists a unitary operatorU such that
UT U∗ = e−iθ T . Then

U
(
T + cT 2)U∗ = UT U∗ + cUT 2U∗ = UT U∗ + c(UT U∗)2

= e−iθ T + seiθ · e−2iθ T 2 = e−iθ
(
T + sT 2)

is hyponormal. Therefore,T + cT 2 is hyponormal. �
Lemma 2. The following statements are equivalent:

(i) Wα is quartically hyponormal;
(ii) for each x ≡ {xn}∞n=0 ∈ �2, we have (〈[W ∗j

α ,Wi
α]x, x〉)4

i,j=1 � 0;

(iii) for each a, b, c ∈ C and x ≡ {xn}∞n=0 ∈ �2,

∆ := |c|2r0|x0|2 +
〈
Θ1

(
bx0
cx1

)
,

(
bx0
cx1

)〉
+

〈
Θ2

(
ax0
bx1
cx2

)
,

(
ax0
bx1
cx2

)〉

+
∞∑
i=0

〈
∆i




xi

axi+1
bxi+2
cxi+3


 ,




xi

axi+1
bxi+2
cxi+3




〉
� 0.

Here

Θ1 :=
(

p0
√

g0√
g0 r1

)
, Θ2 :=

(
v0

√
t0

√
f0√

t0 p1
√

g1√
f0

√
g1 r2

)
,

∆i :=



ui
√

wi
√

si
√

qi√
wi vi+1

√
ti+1

√
fi+1√

si
√

ti+1 pi+2
√

gi+2√
qi

√
fi+1

√
gi+2 ri+3


 (i � 0),

where

ui := α2
i − α2

i−1,

wi := α2
i

(
α2

i+1 − α2
i−1

)2
,

vi := α2
i α

2
i+1 − α2

i−1α
2
i−2,

si := α2
i α

2
i+1

(
α2

i+2 − α2
i−1

)2
,

ti := α2(α2 α2 − α2 α2 )2
,
i i+1 i+2 i−1 i−2
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t not
pi := α2
i α

2
i+1α

2
i+2 − α2

i−1α
2
i−2α

2
i−3,

qi := α2
i α

2
i+1α

2
i+2

(
α2

i+3 − α2
i−1

)2
,

fi := α2
i α

2
i+1

(
α2

i+2α
2
i+3 − α2

i−1α
2
i−2

)2
,

gi := α2
i

(
α2

i+1α
2
i+2α

2
i+3 − α2

i−1α
2
i−2α

2
i−3

)2
,

ri := α2
i α

2
i+1α

2
i+2α

2
i+3 − α2

i−1α
2
i−2α

2
i−3α

2
i−4.

(As usual, we let α−1 = α−2 = α−3 = α−4 = 0.)

Proof. This is a straightforward computation.�
Remark 3. Observe thatWα is 4-hyponormal if and only ifΘ2 � 0 and∆i � 0 for all
i � 0.

We now give an example of a weighted shifts which is quartically hyponormal bu
3-hyponormal.

Theorem 4. For x > 0, let Wα(x) be the unilateral weighted shift with weight sequence

given by α0 := √
x, αn :=

√
n+2
n+3 (n � 1). Then

(i) Wα(x) is k-hyponormal if and only if 0< x � 2(k+1)2(k+2)2

3k(k+3)(k2+3k+4)
=: Hk ;

(ii) if 0< x � 667
990, then Wα(x) is quartically hyponormal.

Proof. (i) By [6, Theorem 4(d)], we know thatWα(x) is k-hyponormal if and only if

A(n; k) :=




γn γn+1 · · · γn+k

γn+1 γn+2 · · · γn+k+1
...

...
. . .

...

γn+k γn+k+1 · · · γn+2k


 � 0 (all n � 0).

SinceWα(x) has a Bergman tail, it is enough to check atn = 0. In this case,A(0; k) � 0 is
equivalent to

det




1
3x

1
3

1
4 · · · 1

k+2
1
3

1
4

1
5 · · · 1

k+3
...

...
...

. . .
...

1
k+2

1
k+3

1
k+4 · · · 1

2k+2


 � 0.

Let

A :=




1
3x

1
3

1
4 · · · 1

k+2
1
3

1
4

1
5 · · · 1

k+3
...

...
...

. . .
...

1 1 1 1


 ,
k+2 k+3 k+4 · · · 2k+2
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B :=




1
2

1
3

1
4 · · · 1

k+2
1
3

1
4

1
5 · · · 1

k+3
...

...
...

. . .
...

1
k+2

1
k+3

1
k+4 · · · 1

2k+2




and

C :=




1
4

1
5 · · · 1

k+3
1
5

1
6 · · · 1

k+4
...

...
. . .

...
1

k+3
1

k+4 · · · 1
2k+2


 .

Expanding the determinants ofA andB by the first row, we have

detA = 1

3x
detC + Q, detB = 1

2
detC + Q,

so that

detA = 1

3x
detC + detB − 1

2
detC = 2− 3x

6x
detC + detB.

Now, for H := (hij )
n
i,j=1, hij := (p + i + j − 1)−1 andp � 0, recall that

detH = (
1!2! · · · (n − 1)!)2 Γ (p + 1)Γ (p + 2) · · ·Γ (p + n)

Γ (n + p + 1)Γ (n + p + 2) · · ·Γ (2n + p)
.

Thus,

detA = (1!2! · · · (k − 1)!)2Γ (4)Γ (5) · · ·Γ (k + 2)

Γ (k + 4)Γ (k + 5) · · ·Γ (2k + 3)

×
[(

2− 3x

6x

)
Γ (k + 3) + (k!)2Γ (2)Γ (3)

Γ (k + 3)

]
.

Therefore, detA � 0 if and only if 0< x � 2(k+1)2(k+2)2

3k(k+3)(k2+3k+4)
, as desired.

(ii) By a direct computation, we have

Θ1 =
( 3

5x
√

x
2√

x
2

3
7

)
, Θ2 =




3
4x 3

5

√
x

√
x
3

3
5

√
x 1

2
2
√

3
7√

x
3

2
√

3
7

1
2


 ,

∆0 =




x 3
4

√
x 2

5

√
3x 1

2

√
5
3x

3
4

√
x 3

5
1√
3

√
15
7

2
5

√
3x 1√

3
4
7

√
5

4

1
√

5x
√

15
√

5 5


 ,
2 3 7 4 9
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sibly

d.)
∆1 =




3
4 − x

√
3

2 (4
5 − x)

√
3
5(5

6 − x) 1√
2
(6

7 − x)
√

3
2 (4

5 − x) 2
3 − 3

4x 2√
5
(5

7 − 3
4x)

√
3

2
√

2
(1− x)√

3
5(5

6 − x) 2√
5
(5

7 − 3
4x) 5

8 − 3
5x

√
5
6(2

3 − 3
5x)

1√
2
(6

7 − x)
√

3
2
√

2
(1− x)

√
5
6(2

3 − 3
5x) 3

5 − x
2




,

∆2 =




1
20

1
6
√

5

√
3
2

14
1

4
√

7

1
6
√

5
4
35

√
3
10
4

8
9
√

35√
3
2

14

√
3
10
4

1
6

√
6
7

5

1
4
√

7
8

9
√

35

√
6
7

5
16
77




, ∆3 =




1
30

√
2
15
7

3
8
√

35

√
2
5

9√
2
15
7

1
12

√
2
21
3

1
5
√

3

3
8
√

35

√
2
21
3

9
70

3
√

2
7

11√
2
5

9
1

5
√

3

3
√

2
7

11
1
6




,

and

∆4 =




1
42

1
4
√

42
1

12
√

3

√
2
3

15
1

4
√

42
4
63

3
10

√
14

8
33

√
7

1
12

√
3

3
10

√
14

9
88

1
6
√

2√
2
3

15
8

33
√

7
1

6
√

2
16
117




.

Note that∆n � 0 for all n � 5, and that all above matrices are positive except pos
for ∆1. For the positivity of∆, we minimize the positivity ofΘ1,Θ2,∆0,∆2,∆3,∆4, that
is, we replaceΘ1,Θ2,∆0,∆2,∆3,∆4 by Θ ′

1,Θ
′
2,∆

′
0,∆

′
2, ∆′

3,∆
′
4, with rankΘ ′

j = j for
j = 1,2, and rank∆′

j = 3 for j = 0,2,3,4, respectively, where

Θ ′
1 :=

( · ·
· 5

12

)
, Θ ′

2 :=
( · · ·

· 612
1225 ·

· · ·

)
,

∆′
0 :=




· · · ·
· 1411

2352 · ·
· · · ·
· · · ·


 , ∆′

2 :=



627
12544 · · ·

· · · ·
· · · ·
· · · ·


 ,

∆′
3 :=




1411
42336 · · ·

· · · ·
· · · ·
· · · ·


 and ∆′

4 :=



2057
86400 · · ·

· · · ·
· · · ·
· · · ·


 .

(In all of the above expressions, the symbol “·” denotes an entry that remains unchange
Let
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∆̃(a, b, c)

:=




A
√

3
2 (4

5 − x)ā

√
3
5(5

6 − x)b̄ 1√
2
(6

7 − x)c̄
√

3
2 (4

5 − x)a B 2√
5
(5

7 − 3
4x)ab̄

√
3

2
√

2
(1− x)ac̄√

3
5(5

6 − x)b 2√
5
(5

7 − 3
4x)āb (5

8 − 3
5x)|b|2 + 1

211680

√
5
6(2

3 − 3
5x)bc̄

1√
2
(6

7 − x)c
√

3
2
√

2
(1− x)āc

√
5
6(2

3 − 3
5x)b̄c (3

5 − x
2)|c|2 + 1

604800




whereA := 3
4 − x + |a|2

11760+ |b|2
2450 + |c|2

84 andB := (2
3 − 3

4x)|a|2 + 1
62720. If ∆̃(a, b, c) � 0

for all a, b, c ∈ C, then∆ � 0 and hence, by Lemma 2,Wα(x) is quartically hyponormal
Note that in each nested determinant of∆̃(a, b, c) the parametersa, b, c occur in mod-
ulus square form. So, using the Nested Determinants Test, we can easily see thax �
22580899
33531912=: ξ then every coefficient in det̃∆(a,b, c) is positive. Therefore,̃∆(a,b, c) � 0
for all a, b, c ∈ C. Note thatH2 = 24

35 andH3 = 200
297. Observe thatH3 < ξ < H2. Moreover,

we can show that∆̃(a, b, c) � 0 for x = 667
990 > ξ , again using the Nested Determina

Test. �
Corollary 5.

(i) If 200
297 < x � 667

990, then Wα(x) is quartically hyponormal but not 3-hyponormal.

(ii) If Wα(x) is 3-hyponormal then it is also quartically hyponormal.
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