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Abstract

We give the first example of a quartically hyponormal unilateral weighted shift which is not
3-hyponormal.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let H and K be complex Hilbert spaces, l€i(H, K) be the set of bounded linear
operators fromH to K and writeL(H) := L(H, H). An operatorT € L(H) is said to be
normal if 7*T = TT*, hyponormal if T*T > TT*, andsubnormal if 7 = N|4, whereN
is normal on some Hilbert spadé > H. If T is subnormal, therT" is also hyponormal.
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The Bram—Halmos criterion for subnormality states that an opefatsssubnormal if and
only if

Z(Tix]', zji) >0

iJ
for all finite collectionsxg, x1, ..., xx € H ([2], [3, 1.1.9]). It is easy to see that this is
equivalent to the following positivity test:

T T*T .- T*T
T T 20 @ik, (1)

Condition (1) provides a measure of the gap between hyponormality and subnormality. In
fact, the positivity of (1) fork = 1 is equivalent to the hyponormality @f, while subnor-
mality requires the validity of (1) for akt.

Let[A, B] := AB — BA denote the commutator of two operatersand B, and define
T to bek-hyponormal whenever thé x k operator matrix

M(T) = ([T, 7)),y 2)
is positive. An application of the Choleski algorithm for operator matrices shows that the
positivity of (2) is equivalent to the positivity of thé& + 1) x (k + 1) operator matrix
in (1); the Bram—Halmos criterion can then be rephrased as saying tissgubnormal if
and only if T is k-hyponormal for every > 1 [11].
Recall [1,4,11] thaf" € L(H) is said to bewveakly k-hyponormal if

k
LS(T.T%...,T") = {ZajT-/: a1, ..., o e(C}
j=1

consists entirely of hyponormal operators, or equivaledtly(T') is weakly positive (cf.
[11]),i.e.,

A1x A1x
<Mk(T)( : )( : )>>0 forallx e HandAq, ..., A; € C. 3)
AkX A X

The operatorT is said to begquadratically hyponormal when (3) holds fork = 2, and
cubically hyponormal (respectivelyquartically hyponormal) when (3) holds fok = 3 (re-
spectivelyk = 4). Similarly, T € L(H) is said to bepolynomially hyponormal if p(T)

is hyponormal for every polynomigp € C[z]. It is straightforward to verify thak-
hyponormality implies weak-hyponormality, but the converse is not true in general. For
unilateral weighted shifts, quadratic hyponormality is detected through the analysis of an
associated tridiagonal matrix, while cubic hyponormality requires a pentadiagonal ma-
trix [6,16]. The associated nested determinants satisfy either a two-step recurring relation
(in the tridiagonal case) or a six-step recurring relation (in the pentadiagonal case). The
concrete calculation of the above mentioned nested determinants has helped shed light
on quadratic and cubic hyponormality. On the other hand, quartic hyponormality requires
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heptadiagonal matrices, and a similar multi-step recurring relation for the nested deter-
minants is not known. As a result, there is very little information available about quartic
hyponormality, and the notion has remained highly inscrutable.

In this paper, we present the first concrete example of a quartically hyponormal operator
which is not 3-hyponormal. Although the result is somewhat expected, and consistent with
previous results in this area (e.qg., for general operators polynomial hyponormality does not
imply 2-hyponormality [12], and for weighted shifts cubic hyponormality does not imply
2-hyponormality [16]), the techniques needed to prove it are new. For instance, the proof
of Theorem 4(i) includes a new trick to compute a key determinant, while the proof of
Theorem 4(ii) is based on a special rearrangement of the terms in the quadratia form
whose positivity ensures that the weighted shift is quartically hyponormal.

Recall that given a bounded sequence of positive numbersqg, «1,... (called
weights), the @nilateral) weighted shiftw,, associated withy is the operator o2(Z.,)
defined byWye, := ane,+1 for all n > 0, where{e,};2 , is the canonical orthonormal
basis for¢2. It is straightforward to check tha¥,, can never be normal, and th@, is
hyponormal if and only itv, < o, 1 for all n > 0. The moments ok are given as

1 if k=0,
Ve = vi(e) = {ocg-uozlf_l if k>0.

We now recall a well known characterization of subnormality for single-variable
weighted shifts, due to C. Berger (cf. [3, 111.8.16]), and independently established by
R. Gellar and L.J. Wallen [15]W, is subnormal if and only if there exists a proba-
bility measuret (called theBerger measure of W,,) supported in[0, | W, ||2] such that
ve(e) :=ad---a? ;= [t*d&(t) (k > 1). If W, is subnormal, and if for > 1 we let
M, :=\/{e,: n > h} denote the invariant subspace obtained by removing thé:first-
tors in the canonical orthonormal basist{Z..), then the Berger measure B0, S
Lihdggr).

g The classes of (weakly§-hyponormal operators have been studied in an attempt to
bridge the gap between subnormality and hyponormality [5-11,14,16,17]. The study of this
gap has been mostly successful at the leval-bfyponormality; for example, for Toeplitz
operators on the Hardy space of the unit circle, the gap is described in [10]. For weighted
shifts, on the other hand, positive results appear in [6] and [10], although no concrete
example of a weighted shift which is polynomially hyponormal and not subnormal has yet
been found (the existence of such weighted shifts was established in [12] and [13]). For
weak k-hyponormality there nevertheless exist some partial results. For example, in [6],
the gap between 2-hyponormality and quadratic hyponormality was established, and in
[16] weighted shifts which are cubically hyponormal and not 2-hyponormal were found.
In this paper, we give an example of a weighted shift which is weakly 4-hyponormal but
not 3-hyponormal.

2. Main results

We begin with an observation about quadratic hyponormality.
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Proposition 1. W, is quadratically hyponormal if and only if W, -+ s W2 is hyponormal
for all s > 0.

Proof. (=) This implication is trivial.

(<) Suppos&W,, +sW2 is hyponormal for alk > 0. We must show tha¥/,, 4+ cW?2 is
hyponormal for alk € C. Forc = se'? (s > 0), there exists a unitary operatbrsuch that
UTU*=¢7"T. Then

U(T +cT?U* =UTU* + cUT?U* =UTU* + c(UTU*)?
=e_i9T +S€i9 A 8—219T2 =e—i9 (T +ST2)
is hyponormal. Thereford; + ¢T? is hyponormal. O

Lemma 2. The following statements are equivalent:

(i) W, isquartically hyponormal; '
(ii) for eachx = {x,)°°, € €2, we have (([Wa’, Wilx, x));szl >0;
(iii) for eacha,b,c e C andx = {x,}°°, € (2,

- = axo axo
A= |c|%ro|x0l? + <(~)1 (’fx°> , (’fx°>> + <(~)2 (15x1> , (Bx1>>
cx1 cx1 ~ z
Cx2 Cx2

o0 Xi Xi
+Z Y axi4+1 axi4+1 >0
1 1) =
= bxjy2 bxii2
CXi+3 CXi+3

Here
@1:=<po ﬂ), By =
Ve

wi o Nwio s Jdi
A VWi vyl Vv Jfin (i >0)
' VSi Jtivi pive J8it2 -
Vai Vfivn g2 ries

Vo p1 g1

(vo «/5\/%)
Vo st Vz,

where
2 2
Uj ' =0o; —o;_q,

2
i =22, — o? )"

2.2 2 2
Vi =00, — 0 %G o,

2.2 2 2 \2
Si =0 “i+1(0‘i+2 —“i—l) ’

202 2 2 2 32
ti= o (a0 — @ qaf 5)
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pi= “izai2+1“i2+2 —af 0l puf s,
gi = aizai2+lai2+2(ai2+3 - O‘iz—l)z’
fi=afali(of 00l s — aiz—laiz—Z)z’
gi = af (el gof 0l g~ “371“372“?73)2’
fi= aizai2+lai2+2ai2+3 —af gof ol saf 4
(Asusual, weleta_1=a_2=a_3=a_4=0.)
Proof. This is a straightforward computation

Remark 3. Observe thaW, is 4-hyponormal if and only i, > 0 andA; > 0 for all
i>0.

We now give an example of a weighted shifts which is quartically hyponormal but not
3-hyponormal.

Theorem 4. For x > 0, let Wy, be the unilateral weighted shift with weight sequence
given by arg := /x, & := /25 (n > 1). Then

. —— . . 20k+D2(k+22 . 4y .
(1) Wa(x) isk-hyponormal if and only if 0 < x < R13 2 30d Hy;

(i) if 0 <x < §55, then Wy is quartically hyponormal.

Proof. (i) By [6, Theorem 4(d)], we know thaV,.) is k-hyponormal if and only if

Yn Yn+1 cee Vn+k
Vntl Vo420 Vntk+l
Ak = | " " . " >0 (alln>=0).
Yn+k  Vnt+k+1 0 Vn+2k
SinceW,(x) has a Bergman tail, it is enough to checleat 0. In this caseA(0; k) > 0 is
equivalent to
1 1 1 1
3x 3 4 k2
1 1 1 1
det|f 3 7 F ©3 150
11 1 1
k2 k43  k+4 2k+2
Let
1 1 1 1
3x 3 7 k+2
1 1 1 1
A 3 4.1 5 k-‘r-3 ’

bl

T
Nl

b
+‘H
wl

e
+[~
N
i
Nl
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1 1 1 1
2 3 2 k42
1 1 1 1
g—| 3 i 5 k+3
11 1 1
42 k+3 k4 2%k+2
and
1 1 1
3 5 k43
1 1 1
5 6 k+4
c=| 7 T
111
43 k+4 2%+2
Expanding the determinants afand B by the first row, we have

1 1
detA = — detC + Q, detB = - detC + Q,
3x 2

so that

2_3
" detC + detB.
6x

1 1
detA = — detC + detB — = detC =
3x 2

Now, for H := (hij)} _q. hij = (p+i+j - 1)~1andp >0, recall that

r'p+HIr'(p+2)---I'(p+n)
Fn+p+HIn+p+2)---I'2n+p)’

detH = (112!--- (n — 1)!)°

Thus,

@2 (k— N2 W) ---T'(k+2)
F'k+dHrk+5)---I'Ck+3)

2—3x (k)2 (2 ()

detA =

i ; 2(k+1)?(k+2)2 i
Therefore, deft > 0 ifand only if 0< x < Fh P 3%ia 3OS desired.

(ii) By a direct computation, we have

3 3 \/?
3, 3 /x x
3. X BVx ;
_ (5 2 |3 1 2.3
@l—(ﬁ 3 )7 @2— Eﬁ 5 v s
3 T 2
3 2 Az 1 /5
X Z\/; 5 3.X' 5 :T;)C
3 3 1 V15
Ao — avr g 73 7
I ) 1 4 V5 ’
sV = 7 T
1 /5, 415 NG 5
2V 3 7 4 9
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3
P — X
3.4
BE-x
A= 5
\/;(g —X)
1.6 _
ﬁ(7 x)
11
20 65
1 4
Ay = 6v/5 35
\/E \/E
vz  y10
14 1
_8
47  9V35
and
1 _1
42 442
_1 4
63
Ay = 4\/14_2 A
12/3  10/14
Vi s
15 33,7

Note thatA,, > 0 for all n >

461
1,6
Bi-n Jig-» H¢-»
Z 3 5-3 V3 1
3~ 3% f( ) 2@(1 x)
2,5_3 3 52 3 ’
EG-30 g \/g(é_ﬁx)
3
Za-n JiG-in i3
2 2
B PR ST
12 1.7 30 7 8/ 9
2 2
V/%% 8 V15 1 Va1 1
4 7 12 3 5.3
QJ? ’ A3_ 2 3\/; ’
1 \@ 3 vz 9 7
6 5 8,35 3 70 11
6 2 2
AT VB3t
5 [ 9 5/3 11 6
2
a3
123 15
_3 _8_
1051_4 331ﬁ
8  6/2
1 16
62 117

5, and that all above matrices are positive except possibly

for A1. For the positivity ofA, we minimize the positivity 0f1, @2, Ag, Az, Az, Ag, that
is, we replacedy, @z, Ao, Az, Az, Ag by OF, O, Ay, A, AL, Ay, with rank@} = j for
j=12,and ranm’j =3forj =0,2, 3,4, respectively, where

(91:(

/
A= 2%52
1411
42336
, .

Let

;). @a:(-
12 .

612
125 )
627
12544
e ,
2057
86400
and Ay:=|

(In all of the above expressions, the symbdldenotes an entry that remains unchanged.)
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A~(a,b, c)
A B na NEIER), HG -0z
ﬁ’(g __x)a B «/—(_ — —X)ab ﬁ(l_x)aé

- f &b f(———x)ab (& — 2062 + prisg f (3 - &obe

L8 _x)e¢ 2\/2(1 x)ac \/;(g—gx)bc (§—§)|C|2+mo

whereA := 3 —x + {48+ PE L1 andB = (2 — 3x)|al2 + by If Ala,b,c) >

for all a, b, c € C, thenA >0 and hence, by Lemma Wa(x) is quartically hyponormal.
Note that in each nested determinant&fs, b, ¢) the parameters, b, ¢ occur in mod-
ulus square form. So, using the Nested Determinants Test, we can easily seectiat if

22380899 & then every coefficient in det(a, b c) is positive. ThereforeA(a, b, ¢) >0

foralla, b, c € C. Note thatH, = 35 andH3 = 2 0 Observe thatlz < & < Hy. Moreover,

we can show thati(a, b, ¢) > 0 for x = &8 > &, again using the Nested Determinants

Test. O

~lo

&I

Corollary 5.

(i) 1f 330 < x < 887 then W) is quartically hyponormal but not 3-hyponormal.
(i) 1f W) is3-hyponormal then it is also quartically hyponormal.

Acknowledgment

The authors are indebted to the referee for some helpful suggestions. Many of the examples in this paper were
obtained using calculations with the software thtathematica [18].

References

[1] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988) 417-423.

[2] J. Bram, Subnormal operators, Duke Math. J. 22 (1955) 75-94.

[3] J. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr., vol. 36, Amer. Math. Soc., Provi-
dence, RI, 1991.

[4] J.B. Conway, W. Szymanski, Linear combinations of hyponormal operators, Rocky Mountain J. Math. 18
(1988) 695-705.

[5] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Sympos. Pure
Math. 51 (1990) 69-91.

[6] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990) 49—-66.

[7] R. Curto, An operator-theoretic approach to truncated moment problems, in: Linear Operators, Banach Cen-
ter Publ. 38 (1997) 75-104.

[8] R. Curto, W.Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. (2001).

[9] R. Curto, W.Y. Lee, Towards a model theory for 2-hyponormal operators, Integral Equations Operator The-
ory 44 (2002) 290-315.

[10] R. Curto, S.H. Lee, W.Y. Lee, A new criterion farhyponormality via weak subnormality, Proc. Amer.

Math. Soc. 133 (2005) 1805-1816.



R.E. Curto, SH. Lee/ J. Math. Anal. Appl. 314 (2006) 455463 463

[11] R. Curto, P. Muhly, J. Xia, Hyponormal pairs of commuting operators, Oper. Theory Adv. Appl. 35 (1988)
1-22.

[12] R. Curto, M. Putinar, Existence of non-subnormal polynomially hyponormal operators, Bull. Amer. Math.
Soc. (N.S.) 25 (1991) 373-378.

[13] R. Curto, M. Putinar, Nearly subnormal operators and moments problems, J. Funct. Anal. 115 (1993) 480—
497.

[14] R.G. Douglas, V.I. Paulsen, K. Yan, Operator theory and algebraic geometry, Bull. Amer. Math. Soc.
(N.S.) 20 (1989) 67-71.

[15] R. Gellar, L.J. Wallen, Subnormal weighted shifts and the Halmos—Bram criterion, Proc. Japan Acad. 46
(1970) 375-378.

[16] I.B. Jung, S.S. Park, Cubicaly hyponormal weighted shifts and their examples, J. Math. Anal. Appl. 247
(2000) 557-569.

[17] S. McCullough, V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989) 187-195.

[18] Wolfram Research, Inc., Mathematica, Version 4.2, Wolfram Research, Inc., Champaign, IL, 2002.



