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Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons
will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago,
there is now concern for non-target effects on soil microbial communities that has potential to negatively affect
soil functions, plant health, and crop productivity. Although extensive research has been done on short-term re-
sponse to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objec-
tive was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate
application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from
rhizoboxes following 4 growth periods, and bacterial community composition was compared between glypho-
sate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence
of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria,
Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abun-
dance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in re-
sponse to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical
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processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere.
Our results also highlight the need for applying culture-independent approaches in studying the effects of pesti-
cides on the soil and rhizosphere microbial community.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pesticides are substances or mixtures of substances intended for
preventing, destroying, repelling or mitigating pests, and the major
groups of pesticides are fungicides, herbicides, and insecticides (Grube
etal,2011). Arecent comprehensive study by BCC Research of the glob-
al biopesticide and synthetic pesticide market estimated the global mar-
ket of pesticides in 2014 at $61.8 billion, with a projected increase to
$83.7 billion by 2019 (Lehr, 2014). Pesticides are typically used in the
agricultural industry for improving crop yield and quality while also
maximizing economic returns. Herbicides are the most widely used
class of pesticides in agriculture (Grube et al., 2011), and of all herbi-
cides, glyphosate has the highest use world-wide with the global
market projected to reach 1.35 million metric tons by 2017 (Global
Industry Analysts, 2011).

Examining the effects of pesticides, such as glyphosate, on soil and
rhizosphere microbial communities is important due to the critical
role of microorganisms in driving biogeochemical processes, controlling
pathogens, and ultimately enabling ecosystems to function and provide
services to humanity. The soil microbial community, especially the
rhizosphere microbial community, impacts soil quality through its in-
volvement in biogeochemical and nutrient cycling, long-term soil sus-
tainability, and resistance to perturbations (Prashar et al., 2014; Topp,
2003). Within the rhizosphere, microorganisms positively affect plant
health through a variety of mechanisms, including mineralization of
nutrients, suppression of disease, improving plant stress tolerance,
and production of phytohormones (Berendsen et al., 2012; Figueiredo
et al., 2011; Gupta et al., 2000). In agricultural systems, these effects
on plant health have a major impact on crop production.

Numerous studies have investigated the impacts of glyphosate
on soil microbial properties using broad-scale or integrative
methods such as microbial biomass, enzyme activity, and respira-
tion. Biinemann et al. (2006) and Johnsen et al. (2001) provide ex-
ceptional reviews of this literature. Typically the results of these
studies have shown no or transitory effects of glyphosate on the
above mentioned microbial properties. However, the effects of
glyphosate may be masked by “functional redundancy” where overall
soil functions are unaffected while microbial community composition
is altered and key functions mediated by specific microbial populations
are affected (Imfeld and Vuilleumier, 2012). Alterations to soil microbial
community composition and subsequent changes in microbial diversity
could potentially have pronounced long-term effects on soil quality as
well as impact plant health and therefore crop production (Bending
et al., 2007; Lynch et al., 2004).

Many studies examining the effects of glyphosate on the microbial
community have used culture-based methods to target specific bacteri-
al populations of functional significance in the soil environment. For ex-
ample, a study by Zobiole et al. (2011) targeted populations of Fusarium,
fluorescent pseudomonads, Mn-transforming bacteria, and indoleacetic
acid-producing bacteria in rhizosphere soils of soybean receiving
glyphosate treatment and found that glyphosate treatment nega-
tively impacted the interactions of these microbial groups, leading
to increased Fusarium spp. abundance and reduced abundances of
fluorescent pseudomonads, Mn-reducing bacteria and indole acetic
acid-producing rhizobacteria. Johnsen et al. (2001) suggests, however,
that by targeting specific rhizosphere bacterial populations, little infor-
mation is gained regarding effects on rhizosphere bacterial community

composition as a whole. Such approaches may actually cause the effects
on lesser-abundant, yet still significant, taxa to be overlooked (Johnsen
et al., 2001).

Mijangos et al. (2009) used DGGE in combination with Biolog
Ecoplates™ and microbial biomass to assess the effects of glyphosate
on rhizosphere soil microbial properties and observed a glyphosate-
induced stimulation of microbial activity and functional diversity
15 days after glyphosate treatment in the culturable portion of the soil
microbial community. But, this response was inconsistent when exam-
ining the microbial community 30 days after glyphosate addition. Using
PLFA and bacterial 16S rRNA genotyping via T-RFLP, Widenfalk et al.
(2008) showed that the herbicide glyphosate increased the abundance
of branched, saturated fatty acids typical of Gram-positive bacteria in
freshwater sediment. Nearly all of the research reported above on
glyphosate was done under short-term conditions where a single or
one season application of glyphosate was applied, and as mentioned
above, often with integrative methods that might have missed subtle
effects on the soil microbial community. This misses the actual field con-
ditions in the U.S. where glyphosate tolerant (GT) cropping has now
been extensively used in the major agricultural regions for 10-15
years. In addition, common agricultural practices apply commercial for-
mulations containing glyphosate, rather than the active ingredient
alone. Given that the toxicity of commercial formulations may differ
from that of pure glyphosate (Sihtmade et al., 2013; Tsui and Chu,
2003), it is important to use commercial formulations in studies inves-
tigating the effects of glyphosate-based pesticides.

Recently, Nye et al. (2014) found on the same soil type that more
than 10 years of GT cropping shifted the microbial PLFA diversity com-
pared to soil that had no history of glyphosate exposure. Although ef-
fects on overall microbial community composition and associated
bacterial subgroups were noted as a result of glyphosate exposure,
specific bacterial taxa affected were not identified. To fill this gap, a
greenhouse study was conducted subjecting soil that had no history of
glyphosate applications to GT cropping over 8 growing periods, simulat-
ing long-term field conditions. In this study, we examined the bacterial
community composition from rhizosphere soil samples collected from
the fourth growth period of this larger greenhouse study. And more spe-
cifically, we used next-generation barcoded sequencing, which permits
detailed phylogenetic diversity analysis (Imfeld and Vuilleumier, 2012).
Therefore, the objective of this particular study was to use next-
generation barcoded sequencing to identify specific bacterial taxa shifts
in the rhizosphere bacterial community in response to repeated glyph-
osate exposure on corn and soybeans.

2. Materials and methods
2.1. Greenhouse study

The soil used for the study was a Blount silt loam (fine, illitic mesic
Aeric Epiaqualf). Soil pH was 6.95, and soil total C was 1.47%. Soil texture
was 11% sand, 48% silt, and 41% clay. Typical Blount soil clay mineralogy
is characterized by illite, hydroxyl-interlayered vermiculite, kaolinite,
and quartz (Dontsova and Norton, 2002). Soil was collected in 2-cm in-
crements to a depth of 39 cm, with 37 cm from the A horizon and the
remaining 2 cm from the O horizon, from soil pits at a farm undergoing
organic management in Delaware County, OH. This field site was previ-
ously under rotation of alfalfa-orchard grass-corn, oats—alfalfa-orchard
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grass, spelt-timothy-clover, and timothy-clover. The soil had never
been exposed to glyphosate. Once collected, soil was stored in sealed
plastic bags returned to the lab on ice and placed in rhizoboxes starting
with the 38-39-cm increment, using ~62 g of soil per cm fill height. The
soil was evenly distributed in the rhizobox and compacted to a bulk
density of 1.3 g cm™3 and a total fresh soil weight within the rhizobox
of 2500 g. A total of eight rhizoboxes were constructed as described by
Bott et al. (2008). Four rhizoboxes were planted for each of two crops,
corn and soybean. Two rhizoboxes per crop were treated with glypho-
sate (Roundup PowerMax, Monsanto Company, MO, USA; active ingre-
dient: glyphosate, N-(phosphonomethyl) glycine, in the form of its
potassium salt), and two rhizoboxes served as untreated plant controls.
These eight rhizoboxes were part of a larger ongoing research project
that utilized all available rhizoboxes, leading to two rhizoboxes per
treatment combination in this study.

Plants were grown in eight growth periods over three years, with
each growth period lasting 58 days. Plants were fertilized twice per
growth period by applying 25 mL of fertilizer solution per rhizobox.
Fertilizer solution was prepared by dissolving 3.745 g of Peters®
20/20/20 Professional fertilizer per liter, equaling 0.749 mg N,
0.749 mg P, and 0.749 mg K mL™" of fertilizer solution. Fertilizer trace
element concentrations were magnesium (0.019 mg mL™"'), boron
(0.749 pug mL™ 1), copper (0.002 mg mL™ "), iron (0.004 mg mL™"),
manganese (0.002 mg mL™'), molybdenum (0.019 ug mL™ '), and
zinc (0.002 mg mL™!). The fertilizer was applied on days 30 and 50.
The schedule for each period is outlined in Table 1.

On day 1, before planting, all rhizoboxes were sprayed with glypho-
sate except for the controls. Glyphosate was applied at the recommend-
ed field rate (300.79 mL ha~1!). Corn and soybean seedlings germinated
on cotton tissue were transplanted into rhizoboxes (2 plants/box) on
day 10. Roundup Ready corn (Zea mays; DeKalb hybrid seed brand
DKC62-54 (VT3)) and soybean (Glycine max; OX 20-8 RR) were used.
Growth stages were estimated using the shortest periods given in the
Ontario Agronomy Guide (Baute et al., 2002) for corn and soybean. On
days 30 and 51 (when plants reached the V-5 and V-7 growth stages,
respectively), glyphosate was applied on plant leaves using a cell
spreader. Soil rhizosphere samples were collected on days 31, 37, 52,
and 58. This schedule was then repeated for a total of eight growth pe-
riods. The rhizosphere soil samples used in this study were collected on
day 58 of the fourth growth period.

2.2. Sample collection and DNA extraction

Samples for this study were collected in the fourth growth period for
corn and soybean. For the collection of rhizosphere soil samples,
rhizoboxes were placed horizontally on the lab bench and clamps and
the top acrylic plate were removed. Three 5-g subsamples of soil were
collected using a spatula to recover soil within a 1-mm vicinity of the
primary and lateral roots, avoiding the areas around the root tips and
stored at — 80 °C until further processing. These subsamples were proc-
essed separately, and the resulting sequence data was combined to
account for variability in bacterial community composition within the

Table 1

Schedule of events per growth period.
Day Event
1 Glyphosate burn down spray
10 Corn and soybean planted
30 Glyphosate spray®
31 Collection of rhizosphere soil samples
37 Collection of rhizosphere soil samples
51 Glyphosate spray®
52 Collection of rhizosphere soil samples
58 Collection of rhizosphere soil samples

¢ Exact application at V3-V5 growth stages.
b Exact application at V6-V7 growth stages.

rhizosphere. DNA was extracted from 500 mg of each soil rhizosphere
sample using the UltraClean Microbial DNA Isolation Kit (MoBio Labora-
tories, CA, USA) and eluted in 50 pl. DNA extracts were quantified using
a Qubit Fluorometer and the dsDNA HS Assay kit (Life Technologies, CA,
USA).

2.3. Sequencing library construction

PCR primers (515F/806R) designed by Caporaso et al. (Caporaso
et al., 2012) were used to amplify the bacterial V4 hypervariable region
of the 16S rRNA gene. Each primer contained the sequence adapter re-
gions used by Caporaso et al. (Caporaso et al., 2012), and the reverse
PCR primers contain a 12-base Golay barcode. Three sequencing
primers were designed based on those of Caporaso et al. (Caporaso
et al.,, 2012) to yield the 5’ read, the 3’ read, and the index read. See
Table 2 for a description of the primers used.

PCR reagent mixes contained 12.5 pl KAPA HiFi HotStart Ready Mix
(2x%),0.75 pl each of the forward and reverse primers (10 uM final con-
centration), 10 ng genomic DNA, and PCR water for a total reaction vol-
ume of 25 pl. The following touchdown PCR conditions were used:
initial denaturation at 95 °C for 2 min followed by 32 cycles of denatur-
ation at 98 °C for 20 s, annealing beginning at 61 °C and ending at 50 °C
for 30 s, and extension at 72 °C for 30 s. The annealing temperature was
lowered 1 °C every cycle until reaching 50 °C, which was used for the re-
maining cycles. Following this, a final extension of 72 °C for 10 min was
used. PCR products were purified by ethanol precipitation and verified
on a 1% agarose gel. Positive amplicons were quantified using a Qubit
Fluorometer and the dsDNA HS Assay kit (Life Technologies, CA, USA).

Amplicons were pooled at equimolar concentrations, and the
resulting pooled library was size-selected to remove smaller primer
dimers. Since the 16S rRNA gene amplicon was approximately 420 bp,
the E.Z.N.A. Size Select-IT Kit (Omega Bio-Tek, GA, USA) was used on
the pooled bacterial 16S rRNA gene library, targeting 150-500 bp frag-
ments. The library was quantified using a Qubit Fluorometer and
dsDNA HS Assay kit (Life Technologies, CA, USA). The library was
denatured with 0.2 N NaOH and diluted with pre-chilled HT1 buffer
(Illumina, CA, USA) to a final concentration of 8 pM. The denatured
and diluted library was spiked with 40% denatured PhiX and sequenced
separately on an Illumina MiSeq (Illumina, CA, USA) using the sequenc-
ing primers mentioned above and a 300-cycle (2 x 150) MiSeq Reagent
Kit v2 (Illumina, CA, USA).

24. Data analysis

Paired-end reads were assembled using PANDAseq (Bartram et al.,
2011; Masella et al., 2012), and all downstream processing of sequences
was completed using the QIIME pipeline v1.5.0 (Caporaso et al., 2010b).
Assembled sequences were quality filtered using USEARCH v7 (Edgar,
2010), retaining only sequences >75 bases in length with expected

Table 2
Primers used for amplification of bacterial 16S rRNA gene V4 hypervariable region.

Primers Sequence (5’ to 3')?

Forward  aatgatacggcgaccaccgagatctacacTATGGTAATTgtGTGCCAGCMGCCGCGGTAA
(515F)

Reverse caagcagaagacggcatacgagatNNNNNNNNNNNNPAGTCAGTCAGeecGGAC
(806R) TACHVGGGTWTCTAAT

Sequencing

Read 1 TATGGTAATTgtGTGCCAGCMGCCGCGGTAA

Read 2 AGTCAGTCAGecGGACTACHVGGGTWTCTAAT

Index ATTAGAWACCCBDGTAGTCCggCTGACTGACT

2 Lowercase letters denote adapter sequences, underlined letters are pad regions, low-
ercase bold letters are linker regions, and uppercase letters are primer sequences specific
to the V4/ITS1 regions.

b N's represent location of 12-base Golay barcode; see Caporaso et al. (2012) for a listing
of the barcodes used.
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errors >1.0. Chimeric sequences were identified and removed using
USEARCH v6.1 (Edgar, 2010). Sequences were assigned to operational
taxonomic units (OTUs) using open reference OTU picking in
USEARCH v6.1 at a 97% similarity threshold. Reads were first clustered
against the Greengenes 16S rRNA gene database (Aug 2013 release)
(DeSantis et al., 2006), and then all remaining reads that did not cluster
were clustered de novo. A representative sequence was chosen for each
OTU based on which sequence was the most abundant for that given
OTU. Taxonomy was assigned to the representative sequence of each
OTU using uclust with the Greengenes 16S rRNA gene database (Aug
2013 release) (DeSantis et al., 2006). In addition, sequences identified
as chloroplast following taxonomic assignment were removed. Reads
were aligned using PyNAST (Caporaso et al., 2010a) against a reference
alignment of the Greengenes core set (McDonald et al., 2011).

The generated OTU table was rarified to an even sampling depth
(29,205 sequences per sample) using the single_rarefaction.py script
in the QIIME pipeline, and this rarified OTU table was used to calculate
alpha diversity metrics, including OTU abundance, Chao1 (Chao, 1984),
Faith's phylogenetic diversity (Faith, 1992), and Shannon's index
(Shannon, 1948). Alpha diversity metrics were compared between
control and glyphosate-treated samples for each crop using the
compare_alpha_diversity.py script in the QIIME pipeline which imple-
ments a nonparametric two-sample t-test with 999 Monte Carlo
permutations. Beta diversity metrics were also estimated using the
rarified OTU table, including unweighted and weighted UniFrac dis-
tances (Lozupone and Knight, 2005). Weighted UniFrac distances
were compared using a multiple response permutation procedure
(MRPP) with 999 permutations. Principal coordinates analysis was per-
formed using the beta_diversity_through_plots.py script in the QIIME
pipeline which uses the weighted UniFrac distances to generate plots
and aid in visualization of the relationships among the various samples
and treatments. All sequences obtained in this study were submitted to
the NCBI Sequence Read Archive (SRA) and are available under the
study accession number PR]NA284763.

3. Results
3.1. Sequencing summary

Following assembly and quality filtering, a total of 505,391 bacterial
16S rRNA gene sequences were obtained with a range of 29,205 to
66,702 sequences per rhizobox and a mean of 49,249 sequences per
rhizobox. All rarefaction curves tended to approach a plateau, indicating
that the number of sequences obtained was sufficient to describe the
bacterial diversity within these samples (Supplemental Fig. S1).

3.2. Rhizosphere bacterial community diversity

Alpha diversity estimates were similar between corn and soybean
rhizospheres as well as among the control and glyphosate-treated sam-
ples (Table 3). Mean OTU abundance within corn and soybean control
rhizospheres was 3814 and 3849, respectively. This increased slightly
following glyphosate treatment to 4001 OTUs in corn and 3893 in

Table 3
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Fig. 1. PCoA plot based on weighted Unifrac distances generated for control (solid sym-
bols) and glyphosate-treated (hollow symbols) rhizosphere bacterial communities of
corn (squares) and soybean (circles) following four growth periods.

soybean. Chao1 richness estimates increased in corn following glypho-
sate treatment (e.g. 5872 to 6154) but decreased in soybean (e.g. 5946
to 5754). Phylogenetic diversity observed within the corn rhizosphere
was 182.29 in controls and 189.66 in glyphosate-treated samples, and
there was no increase in phylogenetic diversity for soybean rhizosphere
samples following glyphosate treatment. Shannon's diversity estimates
were similar between control and glyphosate-treated rhizosphere
samples with a mean Shannon's diversity estimate of 10.2. Weighted
UniFrac distances showed that rhizosphere beta diversity varied by
plant species (p = 0.029; a = 0.10) but was fairly similar overall be-
tween control and glyphosate-treated samples (p = 0.78; o = 0.10).
Fig. 1 contains a PCoA plot of these results.

3.3. Rhizosphere bacterial community composition

Control samples and those receiving long-term glyphosate ap-
plications showed similarities in bacterial community composition
at the phylum level. Control and treatment rhizosphere samples
for both corn and soybean were dominated by members of the
phyla Proteobacteria, Acidobacteria, and Actinobacteria (Fig. 2). The
abundance of Proteobacteria-affiliated sequences increased in re-
sponse to glyphosate treatment (p = 0.096). Corn rhizosphere
samples showed an increase from an average of 22.9 4+ 1.5%
Proteobacteria sequences to 25.9 + 0.9%. Soybean rhizosphere sam-
ple Proteobacteria sequences increased from an average of 25.4 +
1.2% to 27.2 4+ 0.2%. Within the sequences identified as belonging
to the phylum Proteobacteria, no one bacterial class dominated for ei-
ther corn or soybean. The alphaproteobacteria, betaproteobacteria, and
gammaproteobacteria classes were present in controls samples for
corn and soybean (ranging from approximately 5.2-8.3% relative

Alpha diversity metrics for rhizosphere samples collected from control and glyphosate-treated rhizospheres of corn and soybean. Values represent mean + 1SE.

Observed OTUs

Chaol richness estimate

Faith's phylogenetic diversity Shannon's index

Corn

Control 3814 £ 60 5872 £ 233
Glyphosate 4001 + 86 6154 + 111
Soybean

Control 3849 + 2 5946 + 49
Glyphosate 3893 + 101 5754 + 210
Crop Effect? 0.656 0.428
Treatment Effect® 0.201 0.928

1823 £ 3.1 10.2 + 0.03
189.7 + 4.3 10.3 &+ 0.05
1842 £ 0.2 10.2 + 0.04
184.2 + 4.0 10.2 + 0.08
0.604 0.91

0.318 0.241

2 Values represent p-values calculated using a nonparametric two-sample t-test with 999 Monte Carlo permutations.
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Fig. 2. Relative abundance of bacterial phyla present in control and glyphosate-treated rhi-
zosphere bacterial communities of corn and soybean following four growth periods.

abundance for each), as well as to a lesser extent the deltaproteobacteria
(3.2% corn, 4.1% soybean).

Following glyphosate treatment, all classes of Proteobacteria in-
creased in relative abundance. Gammaproteobacteria sequences in-
creased the most for both crops with an increase of 1.5% in corn and
0.7% in soybean. The majority of gammaproteobacteria sequences in con-
trol samples (2.6% corn, 3.2% soybean) were identified as belonging to
the order Xanthomonadales, mainly from the families Sinobacteraceae
and Xanthomonadaceae. Within the families Sinobacteraceae and
Xanthomonadaceae, the majority of sequences matched reference
sequences from unidentified genera. Other lower abundance genera
present from these families included Steroidobacter within the
family Sinobacteraceae and Arenimonas, Dokdonella, Luteibacter,
Lysobacter, Pseudoxanthomonas, and Thermomonas within the family
Xanthomonadaceae. The relative abundance of Xanthomonadaceae
sequences increased for both crops following glyphosate treatment
(p = 0.081). The response of Sinobacteraceae to glyphosate treatment
varied with crop (p = 0.003). In corn, Sinobacteraceae relative abun-
dance decreased (2.2% to 1.5%) following glyphosate treatment, but in
soybean relative abundance of Sinobacteraceae increased (1.5% to 2.1%).

In contrast, the relative abundance of members of the phylum
Acidobacteria showed a decrease in response to glyphosate treatment
(p = 0.083). In corn, the average relative abundance of Acidobacteria
sequences decreased from 21.5 + 1.1% in the control samples to
18.7 & 0.8% in glyphosate-treated samples. For soybean there was also
a decrease in the average relative abundance of Acidobacteria se-
quences from 22.3 + 0.6% in control samples to 21.5 4+ 0.3% in
glyphosate-treated samples. The Acidobacteria subgroup 6, a domi-
nant Acidobacteria subgroup in soils with few cultured representa-
tives, made up the majority of Acidobacteria sequences for both
corn (45.9%) and soybean (49.1%) and decreased in abundance follow-
ing glyphosate treatment for corn, and to a lesser extent soybean. The
average relative abundance of Actinobacteria also decreased following
glyphosate treatment from 16.45% to 14.95% in corn and 14.35% to
12.6% in soybean (p = 0.445).

4. Discussion

Analysis of the corn and soybean rhizosphere microbiota indicated
dominance by the members of the bacterial phyla Proteobacteria,
Acidobacteria, and Actinobacteria. All of these phyla contain taxa com-
monly found within soil rhizospheres that are capable of having various
effects on plant health including beneficial and pathogenic interactions
(Berendsen et al., 2012; Lee et al., 2008; Philippot et al., 2013). For

example, many Gram-negative fluorescent Pseudomonas species fall
within the phylum Proteobacteria and have been reported to benefit
plants by stimulating plant growth and exhibiting traits involved in bi-
ological control of plant diseases (Lugtenberg and Kamilova, 2009).

The results of this study showed subtle alterations to rhizosphere
bacterial community composition following the application of the her-
bicide glyphosate. The largest shifts in relative abundance were
observed for Proteobacteria (specifically gammaproteobacteria) and
Acidobacteria. The increase in y-Proteobacteria relative abundance for
both corn and soybean rhizosphere samples was driven by increases
in bacteria from the family Xanthomonadaceae following glyphosate
treatment, suggesting that Xanthomonadaceae are adapted to and/
or enriched by environments containing glyphosate. Previous stud-
ies also noted an increased abundance of bacteria from the family
Xanthomonadaceae in response to long-term fertilization and have
cited a potential importance of Xanthomonadales in the bacterial
population dynamics of altered soils (Campbell et al., 2010). Inter-
estingly, members of the novel family Sinobacteraceae (Order
Xanthamonadales) have been isolated from a soil that was adjacent
to and contaminated by a chemical factory that produced herbicides,
including glyphosate (personal communication Zhou et al., 2008),
suggesting that the members of this family are increased in their
abundance and metabolic activity in response to herbicide contami-
nation of soils.

Concomitantly, upon treatment with glyphosate, in both corn
and soybean there were decreases in the relative abundance of
Acidobacteria, particularly the Acidobacteria subgroup 6. Acidobacteria
have been found to be dominant members of rhizosphere soil and are
believed to be highly involved in biogeochemical processes within
the rhizosphere particularly for cellulose degradation (Eichorst et al.,
2011; Lee et al., 2008; Stursova et al., 2012). Long-term decreases in
the abundance of these bacteria could impair the ability of soil to per-
form certain biogeochemical reactions performed by these organisms.
The decrease of Acidobacteria was more dramatic in corn, suggesting
that any subsequent effects on biogeochemical processes due to re-
duced Acidobacteria taxa abundance and/or activity would be more pro-
nounced in corn. This has implications for growing corn with GT
cropping which may exacerbate the reduction of Acidobacteria taxa
over a corn-soybean rotation. The abundance of this same subgroup
of Acidobacteria was previously shown to decrease in subsurface sedi-
ments contaminated with uranium (Barns et al., 2007), indicating that
these taxa are responsive and sensitive to environmental change and
may serve as useful bioindicators of environmental alteration.

Although effects of glyphosate on specific bacterial taxonomic
groups were observed, there was no overall effect of glyphosate on
bacterial community diversity. This highlights the need to examine
the microbial diversity response to herbicide application at a finer
level both taxonomically as well as functionally rather than solely
looking at net diversity responses. In addition, bacteria within the
phylum Acidobacteria are somewhat recalcitrant to cultivation, espe-
cially given their high abundance in soil (George et al., 2011; Janssen,
2006). The high relative abundance of Acidobacteria ribotypes observed
within the rhizosphere of this study and their reduced abundance in
glyphosate-treated rhizosphere soil would not have been observed
using culture-based methods but was made possible by employing
next-generation sequencing instrumentation.

The results of this study are specific to the soil used and alternative
results could have occurred on other soil types. This is because soil tex-
ture, mineralogy, pH, and organic matter have a major impact on the
microbial community structure and secondly, on the fate, decomposi-
tion, and sorption of glyphosate and its metabolites, most notably
aminomethylphosphonic acid (AMPA) as the major decomposition in-
termediate (Ascolani Yael et al., 2014; Franz et al., 1997). Thus, each
soil type would have a variable rate of decomposition and degree of
sorption and toxicity of glyphosate or AMPA for susceptible populations.
Less is known about AMPA sorption, but for glyphosate it is primarily
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sorbed on surfaces of variable-charge clay and inorganic precipitates.
Sorption increases as surface area of the minerals increases and pH de-
creases (Duke et al., 2012). Thus the amount of glyphosate (and pre-
sumably AMPA) (Rampazzo et al.,, 2013) sorption capacity would be
relatively high for our study because this soil has a high clay content
at 41% (and therefore high surface area), but from a pH perspective
this soil at 6.9 is less favorable for glyphosate sorption. However, rela-
tively little is known about rates of microbial toxicity for glyphosate or
AMPA in soil solution or in any sorbed fraction. In part this is due to in-
ability to accurately determine what is biologically available to microor-
ganisms (Duke et al., 2012). Furthermore in our case, we did not have
several soil types with variable levels of chemical and physical proper-
ties in order to draw inferences and indirectly determine toxicity effects
on microbial community members.

Given the wide-spread and increasing use of glyphosate, the results
of our study are important because they show that shifts in subpopula-
tions (particularly Xanthamonadales, Acidobacteria) are possible under
long-term GT cropping. However, this does not provide any information
on whether this shift affects functional capability of the soil under GT
cropping. Thus, our research provides justification for more detailed,
culture-independent investigations on function and delivery of ecosys-
tem services or negative impacts such as crop pathogens.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2015.11.008.
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