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Abstract

We determine the value of the quark condensate from quen@@D simulations on the lattice in two ways: (i) by using
the Gell-Mann—Oakes—Renner (GMOR) formula; (ii) by comparing the OPE prediction for the Goldstone pole contribution
to the pseudoscalar vertex, at moderately large momenta. IM8scheme ap = 2 GeV, from the GMOR formula we
obtain{gq) = —(273£ 19 MeV)3. We show that the value extracted from the pseudoscalar véqigx= —(312+ 24 MeV)3,
although larger, is consistent with the result obtained from the first (standard) method.
0 2004 Published by Elsevier B.@pen access under CC BY license.

1. Motivation on the number of dynamical quark flavours. Up to
now, the determination of the quark condensate on the

The value of the quark condensate was, and still lattice was limited to the quenched QCD (i.e., with

—0\2 - N

is, a subject of some controversies. It has been ex-F = 0).” Before tackling the theory withg = 2 and
perimentally established that in the theory with the 7F =3 flavors, one would like to learn as much as
spontaneous symmetry breaking patt&d(2); ® possible from the quenched theory. For example, one

V@) — VQ)v, the quark condensate is indeed would like to understand if _the v_alues of the chiral
the order parametdt]. The extension to the three cond_ensate obtained by using different methods are
flavour case still needs to be clarified (for a recent crit- consistentamong themselves.

ical discussion see Ref?]). Lattice QCD provides, The standard.method relies on the use of the
in principle, the method for determining the value of GMOR formula, i.e., on the same set of the back-

the quark condensate and fudying its dependence ground gauge field configurations one computes both
the quark massess(;) and the corresponding pseudo-
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scalar meson masses ), and from the slope is then conveniently projected onto its tree level value
2
m% = 2Bom,, (1) 1
, Ie(p) = —TrlysApr(p)], (5)
one gets an estimate of the quark condensate as 12
2 where the trace goes over Dirac and color indices so
Bo= — 2 (Gq) (2) that the factor 1/12 simply provides the normalization
to unity.

where f is the pion decay constant in the chiral limit. If we write the bare (lattice regularized) inverse
The renormalization scale and scheme dependence quuark propagator as

the chiral condensate is just the inverse of the one for

the quark mass which was discussed in great detail in ¢—1 51 ( p2 (2 6

Ref. 4] (p) = Z1(p?)p + Z2(p°). (6)
An alternative way for extracting the value of the then the basic RI/MOM renormalization condition for

quark condensate is from the study of the amputated the quark propagator in the chiral limit can be written
pseudoscalar vertex function, where g opera- as [6]

tor is inserted at momentum zero. At moderately large
p2 (p being the momentum flowing through the legs of 1 [ 1 Tr(pS™ 1(pz))]
p2=p?

the vertex function), one can compare the shape of this ,(u?) 12 P2
function with the corresponding expression derived by

means of the operator product expansion (OPE), in  _ Z1(p?)
which the quark condensate appears in the coefficient — Z,(u?) P2
of the leading power correction. The lattice estimate

based on this strategy, which is the purpose of this Where Z,(u) is the quark field renormalization
Letter, has not been presented so far. We show that(S(p, 1) = Z, (1) S(p)).

=1, (7

its value in the continuum limit is fully consistent with By studying the quark propagator at large mo-
the standard value, obtained by using the GMOR for- menta, one can get an estimate of the quark mass
mula, whose value we updated here as well. value, in the RI/MOM scheme, as

1 A
m;I/MOM (MZ) = Tr[Sfl(P, M)]p2=u2

2. Pseudoscalar vertex 12
_ _ _ _ _ 22(p?) ®)
In this section we discuss the relation between 2107 | oy’

the pseudoscalar vertex and the quark propagator and

study the dependence of these functions on the chiral This estimate has been already discussed in [Bgf.

quark condensate, which enters their OPE as a leadingAt lower momenta, however, this definition of the

power correction. guark mass suffers from the presence of the long dis-
The starting point is to define the quark propaga- tance contributions due to the coupling to the Gold-

tor and the Green function of the pseudoscalar density stone bosons.

with zero momentum insertion, The effect of the Goldstone boson is more clearly
‘ seen by considering the quark Ward identity which re-
S(p) =/dx e (q(x)q(0)), lates the inverse quark propagator to the amputated

pseudoscalar Green function,
Gr(p)= [ dxdye P g 0y5007),

o ysS 1 (p?) + STH(p?) s =2Zap Ar(PP), ©

The amputated vertex function, -
1 . 3 In practice, we are away from the chiral limit, but the renor-
Ap(p)=S"(p)Gp(p)S—(p), 4) malization condition applies equally well fer2 / p? < 1[7].
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where Z4p is the quark mass obtained from the After inserting Eqg.(11) in (10), multiplying both

hadronic axial Ward identity on the latti¢efter mul- sides byzq—l(u), and accounting for the renormaliza-
tiplying Eq. (9) by y5 and by taking the trace of both  tion condition(12), we have
sides, we have
2(p?) _ Zap | BOY (13)
2y _ 2 ) 2 _ A 2 7 2\’
2(p?) = ZapTe (p?). (10) PP | pemye Zr(W?) T Zy(u?)
For light quark masses and moderately large momenta, mai o (1)

the vertex function'»(p?) is affected by the long  where contributions quadratic in the quark mass have
distance effects which are due to the presence of thebeen neglected. The first term on the right-hand side
Goldstone boson5], which by means of the LSZ is the usual short distance quark mass, renormalized
reduction formula generates the term proportional to in the RI/MOM scheme, derived from the axial Ward
the Goldstone boson propagatgf(d? + mjzr)- Since identity. Eq. (13) differs from Eq.(8) for the pres-

the operator is inserted at zero momentuyf= 0, ence of the second term on the r.h.s., which represents
the vertex function in the chiral limit develops a pole the power suppressed contribution coming from the
o 1/m2 ~ 1/p. To account for that effect, we expand  Goldstone boson. It has been shown long ago that,

the vertex function in powers of the quark mass, at the leading order in & OPE, this term has the
B form [10]
p 2
Le(p? 0) =R () + ——+C(PY)p.  (11)  p(p2 7

5102 lope P
where the first term is the subtracted pseudoscalar 1(P%) lope
vertex, from which the hadronic (Goldstone boson) From this relation we will derive our first estimate of
contributionec 1/m? o 1/p is subtracted away. The  the quark condensate.
third term is the linear quark mass correction while the ~ The Wilson coefficientc(p?, 1), has been com-
higher order terms in the expansion, as well as the log- Puted at the next-to-leading order (NLO) in QCD per-
arithmic quark mass dependence, are neglected sincdurbation theoryf11]. In theMS scheme, by choosing
we deal with ||ght quark masses Varying in a short in- the Landau gauge (In which the lattice calculations are

terval. most easily made), and after settip§= 112, one ha3
The renormalization constant of the pseudoscalar __

density, ZRMOM () is defined in terms of the sub-  ™3(p®) = —4—as(P)[1+ (%9 - %)n )az(p)}
tracted Green function of Eq11) through the RI/ i
MOM renormalization condition (16)

2 We notice that the radiative corrections are large so
Zp(p )Fsubtr( 2) —1 (12) that at moderately large? they must be included in
Z4(1?) i p2=p? the analysis when extracting the value of the conden-

sate from the lattice data. Besides, the inclusion of
the radiative corrections ialso necessary for speci-
fying the renormalization scheme (the leading order
anomalous dimension of the quark condensate is uni-
versal for all renormalizatio schemes). To eliminate

As we already discussed in Rd#], the value of
ZRIMOM ;1) obtained from Eq(12)is completely con-
sistent with the one obtained by applying the method
of Ref.[9], which allows one to circumvent the second
term on the r.h.s. of Eq11).

5 For completeness, we recall the expression for the 2-loop run-

4
Recall that ning coupling

~ 90(Xz Ao(x) P(0)) () 4r < a IOQlOQ(pZ/AéCD))
= xR T as(p) = - :
(X PP O) T Rolog(r? 4B\ AFl00r2/AGp)

with P = Gysq, Ao = qroysq, andZu = Z4(g) is the (known) fo=11— EnF, By = 102— %n’:' (s)
axial current renormalization constant. 3 3
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the scale dependence of the condensate one defines thd.1. (gq) from the pseudoscalar vertex
renormalization group invariant (RGI) quark conden-
sate, which at NLO in perturbation theory is related to In order to determine the chiral condensate from

the MS one through the long distance behavior of the pseudoscalar ver-
_ n tex, we first need to extract the functidtp?). That
(G (p) = (as(p)) o is made by using 10 different vertex functions, 4 of
v1B0 — yoB1 as(p) RI which are computed with thexgernal legs degenerate
[1 - 282 A }< ) in the quark mass, and 6 nondegenerate. With these 10
. 010 points, for eachp?, we fit the data to the fornil1),
=8 yMS= (101_ —nF) (17) which we rewrite as
> X 2B(p?)
. r 2, i =1—~subtr 2 +
and thus atg = 0, Eq.(14) becomes P(P Pi 01) P (P ) Zalpi +p))
B(p?) 4 711, | 31945as(p) C(p?)(pi + p)). 20
B o= 3 s 1 T el 2
18P%) lopE The illustration of this fit is provided ifrig. 1for four
¢RCGI(p) values ofp?. We see that the presence of the Goldstone
(Gq)RC! pole is indeed pronounced at moderately large values
X — + O(l/p4). (18) of p2.
Once we identify the Goldstone contribution to the
pseudoscalar vertex, we perform a number of fits to
3. Lattice data and extraction of the quark the form
condensate B(p? RGI
B _ e 49 1 8% (21)

Z1(pd
where the first term on the r.h.s. is the one that we
are interested in (the coefficienR®! is defined in

Eqg. (18)), the second term is the subleading power
correction, while the last two terms take into account
possible contributions of lattice artifacts. To make use

We work with the O(a) improved Wilson quark
action and use the data-sets consistin@6£000)in-
dependent gauge field configtions, obtained at four
different lattice spacings, correspondinggo= 6.0,

6.2, 6.4, and 645. More complete information about

the data-sets, as well as the improvement coefficients
with the appropriate list of references can be found in T —
Refs.[4,12]. Since we work at four different lattice I
spacings, we are able to extrapolate to the continuum

limit. To eliminate the lattice spacing from the results N/;:
obtained at each lattice coupling, we use the rafia —
computed in Ref[13], E'.‘];\
a Q
(—) ={0.186%, 0.135% 2, 0.1027% 4,
/g B i
0.0962 45}, (19) &
—~

so that all our results will be expressed in units of
the scalerg. To convert into physical units we will
userg = 0.530(25)fm, which corresponds W’ie.o =
2.0(1) GeV. We will also need the quenched value of
Aqcp, for which we takero 420 = 0.602(48)[14].°

Fig. 1. lllustration of the fit to the forni20) at 8 = 6.2, from which
_ we could extract the functioW(pz), needed for the determination
6 In physical unitsA’,ZAiS:O =0.225@0) MeV. of the chiral condensate.
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Fig. 2. Fit of the lattice data to the fori{21) for all four lattice
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spacings considered in this Letter.

of the OPE formula we should aim at working at suf-
ficiently large p? so that higher powers in/p? are
sufficiently suppressed. To do so, we fit the lattice
data starting fronpcyt =~ 2 GeV, which corresponds

to (ropeut)? ~ 25, for which the radiative correction
term incRC!(p) is below 35%. lfwe sef =5 =1 =0

in (21), then for all our lattices we havg?/d.o.f.> 2.
Therefore, one has to let free at least one more parame-
ter. The result of such a fit withr # 0 is presented in
Table 1and denoted as fit | (see alB@. 2for illustra-
tion). At fixed lattice spacing, however, the lattice ar-
tifacts may be significant. To examine their impact on
the value of the quark condensate, we repeat the fits by
including either the term witlp? (o 1) or the constant
one (x §). Both sets of results are reportedTiable 1,
labelled as fit Il and fit 1ll, respectively. Finally, if we
set pcut 2 3 GeV, the fit withy = 3§ = 1 = 0 gives

a satisfactoryy?/d.o.f. The corresponding results are
denoted as fit IV inTable 1 We also tried to fit with

all the parameters in EqR21)free (fit VV in Table J).

The remaining step towards the determination of
the quark condensate is the extrapolation to the con-
tinuum limit. Since our action and the renormalization
constants aré(a)-improved, we may attempt extrap-

Table 1
Details of the fit of the lattice data to the forf21). Various fit forms (labelled as I, II, Ill, IV and V) are discussed in the text
Fit B —rol(gq)RCNY3 Sy —rod x 103 —rgta x 168
I 6.0 0.71+0.01 23+3 - -
6.2 0.72+0.01 18+1 - -
6.4 0.70+ 0.02 22+3 - -
6.45 0.75+0.04 31+9 - -
I 6.0 0.82+0.03 11+5 - 0+6
6.2 0.744+0.02 17+ 2 - 34437
6.4 0.73+0.02 20+3 - 442
6.45 0.73£0.04 34+12 - —4+4
1 6.0 0.90+0.04 5+6 5+1 -
6.2 0.754+0.03 16+ 3 1+1 -
6.4 0.75+0.02 18+3 1+1 -
6.45 0.71+0.05 35+14 -1+1 -
v 6.0 0.80+ 0.02 - - -
6.2 0.80+0.01 - - -
6.4 0.79+0.02 - - -
6.45 0.85+ 0.06 - - -
\Y 6.0 1144+0.10 —224+15 27+11 1124+ 73
6.2 090+ 0.07 5+6 9+4 53+ 27
6.4 0.85+0.07 10+ 4 6+4 24+18
6.45 0.87+0.06 24+11 5+4 27+19
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olating quadratically in the lattice spacing, i.e., Eq.(21). To account for the systematics induced by the
- RGIL/3 ) omission of higher order correctionsdg (p), we will
ro[(qq) ],3 = Co+ Cala/ro)g. (22) add=+10% of uncertainty (which represents the square

uum limit, for all four fit forms discussed above, are 7 =3 GeV). Finally we havé

ro[(@a)R®T3, (Gq)R® = —(269+ 9799+ 12 MeV)® + 10%
= {-0.721(23), —0.681(28),, —0.672(34), & (Gq)RC' = —(260+£ 9+ 9+ 12 MeV)® + 10%
—0.792(24)y, —0.54(15)/}. (23) = (G9)V52 GeV)
One may argue that terms ©f(a) may still be present, =—(312+11+ 11+ 15+ 10 MeV)®,  (24)

since the functiorB(p?) is obtained from the off-shell
vertex functiond» (p2, pi, p;), forwhich the on-shell
O(a) improvement does not apply. However, the func-
tion B(pz) refers to the chiral limit, and terms in
I'p(p?, p) proportional to the quark mass are already
taken care of in the fit to the forifl1). In addition, it
has been shown in appendix of Ref] that, for these
correlation functions, th&(a) contribution of oper-
ators which are either non gauge-invariant or vanish
on-shell by the equation of motion vanish in the chi-
ral limit. Therefore, while th&)(a) effects may affect
the functionsl"SUP(»2) and C(p?) in Eq. (20)when
away from the chiral limit, the functio®(p?) is pol-
luted by the artefact®(a?) and higher. This brings us
back to the continuum extrapolation fol(22).

What do we learn from the resulf®3) in the con-
tinuum limit? As it can be seen fromable 1 the
correctionsx 1/ p* are large and positive for evepy
Their neglect in the fit IV then expectedly lead to an
overestimate of the value for the chiral condensate, as
confirmed by the last number in E(3). Fits 1l and
Il give quite consistent values for the condensate (in
the a — O limit). In other words, the quark conden-
sate in the continuum limit is very weakly sensitive
to the form of the artifacts that we include in our fits
(constant orx p2). The tendency of the artifacts, upon
their inclusion in the fit, is to lower the value of the
condensate. The same tendency is observed also in th
fit form V, although with larger error bars.

where the errors are, respectively, statistical, system-
atics due to the continuum extrapolation, to the uncer-
tainty inrg and to the uncertainty due t?NO correc-
tions in the Wilson coefficientRC!(p) (see Eq(18)).
Notice that in the second line we symmetrised the sys-
tematic error bars.

Finally, we repeated the entire exercise by using the
alternative quark mass definition, namely the one de-
rived from the vector Ward identityy, = %(1/Kq -
1/kciit), instead of the quark mass, p, used above.
The value we obtain in this way is barely distinguish-
able from the one we quoted in E@4).8

3.2. {qq) fromthe GMOR formula

We now repeat the standard exercise of extracting
the value of the quark condensate by employing the
GMOR formula. The values of the pseudoscalar me-
son and the quark masses are all listed in Table 2 of
Ref.[12]. In Table 2of the present Letter, we give the
results obtained by using Eq4.) and (2) where we
use for the quark mass the one defined via the axial
Ward identity (). The needed renormalization con-
stants,Z, and ZR™°M(1/q), are given in Ref[4].

For completeness, we also present the values of the
(improved) pseudoscalar meson decay constant in the
&hiral limit, f, which is obtained by linearly extrap-
olating in the quark massesf{ = f + const- p).

As our final value we will quote the result of the To convert the quark condensate from the RI/MOM

fit I. The difference between the central value of that scheme to the RGI form, we use the anomalous di-
and the fits obtained by including the artifacts (Il and mension known up to 4-loofi$5]. These latter results
I1) is included in the systematic uncertainty. The re-

sult of the fit V has larger errors and is consistent 7 we remind the reader thag = 0.530@25) fm, is equivalent to
with the results obtainedybother fits. As we already  ry=2.6813)Gev 1.

pointed out, the radiative corrections are large and we & More specifically, with m, instead of p, we get
take them into account when fitting the lattice data to (5¢)MS(2 GeV) = — (3134 11+ 13+ 15+ 10 MeV)3.
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Table 2
Results of the pseudoscalar decay constant in the chiral lifjia(d the chiral condensate, obtaingy means of the GMOR formula (see
Egs.(1) and (2) for all four lattice spacings. We also present the results of the linear extrapolati&tc‘nrthe continuum limit¢ — 0)

B rof —rol(Gq)RMOM (11 = 1))1/3 —rol(Gq)RCY3
6.0 0.360(7) 0.709(10) 0.6110)

6.2 0.365@10) 0.72714) 0.612(12)

6.4 0.358(11) 0.730(16) 0.605(13)

6.45 0.365@39) 0.743(60) 0.613@1)

00 0.362(13) — 0.601@25)

are then extrapolated to the continuum limit linearly in  (2) We compute the quark condensate by using an al-

a® (see Eq(22)). In physical units, our results read ternative strategy, namely, by studying the long
_ Ral 3 distance (Goldstone) part of the pseudoscalar ver-
(qq)""" = —(224+£ 9+ 10 MeV) tex function. In terms of the OPE, the chiral con-
= (quTs(z GeV) = —(273+ 11+ 15 MeV)3. densate appears .in the coefficient of the Igading
(25) power correction in Ap2. From the calculations

at four lattice spacings and after extrapolating to

We checked that this value is completely consistent the continuum limit we obtain

with the alternative definition of the quark mass, .

namely, with my = 3(1/k; — 1/kcir), and with (Gq)95e(2 GeV) = —(312+ 24 MeV)®.  (27)
RI/MOM i i 9 i

Zs (1/a) also given in Ref[4].” Finally we ... (3) From the above results, it seems that the two com-

also note that the above result agrees very well with pletely different strategies lead to quite a consis-

tkle ,\%CD sum rule estimate of 3Re[16], where tent value of the quark condensate. To better ap-
(qq)™(2 GeV) = —(267=+ 16 MeV)” has been quot- preciate this point we rewrite the RGI results in

ed. units ofrg, i.e.,
- 1/3
—ro[(Gq)R®'Y
4. Summary and conclusion — {0-701(23)(20)(23@PE 0-601(25)3MOR}-
We now briefly summarize our findings and com- The method based on using OPE is less reliable
ment on some results reported in the literature. since radiative and further power corrections are
large. Even if we combine the errors in quadrature
(1) We update the value of the chiral condensate ob-  the agreementwould be at the Zevel, which is
tained from quenched QCD on the lattice, by us- far from what has been claimed in R8], where
ing the GMOR formula. After combining the er- the OPE and GMOR results were argued to differ
rors given in Eq(25)in the quadrature, we have by a factor of 3.
<6761)<'\4_|\S/|OR(2 GeV) = —(273+£ 19 MeV)3.  (26) Before closing this Letter, we should explain why

} ) . . ) our conclusion is qualitatively different from the one
This result is obtained from simulations per- yeported in Ref.[5]. The first difference is that in
formed at four lattice spacings, by employing gq (11), besides the Goldstone term {/p) we also

non-perturbative renormalization an@(a)-im- allow for the presence of the term linear in quark mass.
provement, followed by an extrapolation to the gych a term could not be studied in RE§] since
continuum limit. only three quark masses were considered. The net ef-

fect of this modification is that the functioB(p?)
9 When using the quark mass defined via the vector Ward iden- becomes smaller. Secondly, in the OPE, we allow for
tity instead of the axial one, we ge&fig)MS(2 GeV) = —(268+ the presence of the term 1/ p*, and we find that, for
13+ 15 MeV)3. moderately large momenta, this (subleading) power



90

correction is not negligible, while in Ref5] such a
term was not found. Finally, we also accounted for the
terms that are due to the lattice artifacts (see(ER)),
which further reduce the value of the condensate in
the continuum limit. Such effects were not studied in
Ref. [5] (where they only considered the data pro-
duced aig = 6.0). Notice also that the reference value
of the chiral condensate considered in R&l, was
20% smaller than the one we obtain here by using the
GMOR formula.
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