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Abstract

We determine the value of the quark condensate from quenched QCD simulations on the lattice in two ways: (i) by usi
the Gell-Mann–Oakes–Renner (GMOR) formula; (ii) by comparing the OPE prediction for the Goldstone pole cont
to the pseudoscalar vertex, at moderately large momenta. In theMS scheme atµ = 2 GeV, from the GMOR formula we
obtain〈q̄q〉 = −(273± 19 MeV)3. We show that the value extracted from the pseudoscalar vertex,〈q̄q〉 = −(312± 24 MeV)3,
although larger, is consistent with the result obtained from the first (standard) method.
 2004 Published by Elsevier B.V.Open access under CC BY license. 
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1. Motivation

The value of the quark condensate was, and
is, a subject of some controversies. It has been
perimentally established that in the theory with t
spontaneous symmetry breaking patternSU(2)L ⊗
SU(2)R → SU(2)V , the quark condensate is inde
the order parameter[1]. The extension to the thre
flavour case still needs to be clarified (for a recent c
ical discussion see Ref.[2]). Lattice QCD provides
in principle, the method for determining the value
the quark condensate and for studying its dependenc
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on the number of dynamical quark flavours. Up
now, the determination of the quark condensate on
lattice was limited to the quenched QCD (i.e., w
nF = 0).2 Before tackling the theory withnF = 2 and
nF = 3 flavors, one would like to learn as much
possible from the quenched theory. For example,
would like to understand if the values of the chi
condensate obtained by using different methods
consistent among themselves.

The standard method relies on the use of
GMOR formula, i.e., on the same set of the ba
ground gauge field configurations one computes b
the quark masses (mq ) and the corresponding pseud

2 See Ref.[3] for recent results and the exhaustive list of ref
ences.
se. 
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scalar meson masses (mP ), and from the slope

(1)m2
P = 2B0mq,

one gets an estimate of the quark condensate as

(2)B0 = − 2

f 2 〈q̄q〉,
wheref is the pion decay constant in the chiral lim
The renormalization scale and scheme dependen
the chiral condensate is just the inverse of the one
the quark mass which was discussed in great deta
Ref. [4].

An alternative way for extracting the value of th
quark condensate is from the study of the amputa
pseudoscalar vertex function, where theq̄γ5q opera-
tor is inserted at momentum zero. At moderately la
p2 (p being the momentum flowing through the legs
the vertex function), one can compare the shape of
function with the corresponding expression derived
means of the operator product expansion (OPE)
which the quark condensate appears in the coeffic
of the leading power correction. The lattice estim
based on this strategy, which is the purpose of
Letter, has not been presented so far. We show
its value in the continuum limit is fully consistent wit
the standard value, obtained by using the GMOR
mula, whose value we updated here as well.

2. Pseudoscalar vertex

In this section we discuss the relation betwe
the pseudoscalar vertex and the quark propagator
study the dependence of these functions on the c
quark condensate, which enters their OPE as a lea
power correction.

The starting point is to define the quark propa
tor and the Green function of the pseudoscalar den
with zero momentum insertion,

S(p) =
∫

dx e−ipx
〈
q(x)q̄(0)

〉
,

(3)

GP (p) =
∫

dx dy e−ip(x−y)
〈
q(x)q̄(0)γ5q(0)q̄(y)

〉
.

The amputated vertex function,

(4)ΛP (p) = S−1(p)GP (p)S−1(p),
f

is then conveniently projected onto its tree level va

(5)ΓP (p) = 1

12
Tr

[
γ5ΛP (p)

]
,

where the trace goes over Dirac and color indices
that the factor 1/12 simply provides the normalizat
to unity.

If we write the bare (lattice regularized) inver
quark propagator as

(6)S−1(p) = Σ1
(
p2)/p + Σ2

(
p2),

then the basic RI/MOM renormalization condition f
the quark propagator in the chiral limit can be writt
as3 [6]

1

Zq(µ2)

[
1

12

Tr(/pS−1(p2))

p2

]
p2=µ2

(7)≡ Σ1(p
2)

Zq(µ2)

∣∣∣∣
p2=µ2

= 1,

where Zq(µ) is the quark field renormalizatio
(Ŝ(p,µ) = Zq(µ)S(p)).

By studying the quark propagator at large m
menta, one can get an estimate of the quark m
value, in the RI/MOM scheme, as

mRI/MOM
q

(
µ2) = 1

12
Tr

[
Ŝ−1(p,µ)

]
p2=µ2

(8)= Σ2(p
2)

Σ1(p2)

∣∣∣∣
p2=µ2

.

This estimate has been already discussed in Ref.[8].
At lower momenta, however, this definition of th
quark mass suffers from the presence of the long
tance contributions due to the coupling to the Go
stone bosons.

The effect of the Goldstone boson is more clea
seen by considering the quark Ward identity which
lates the inverse quark propagator to the amput
pseudoscalar Green function,

(9)γ5S
−1(p2) + S−1(p2)γ5 = 2ZAρΛP

(
p2),

3 In practice, we are away from the chiral limit, but the ren

malization condition applies equally well form2
q/p2 � 1 [7].
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where ZAρ is the quark mass obtained from t
hadronic axial Ward identity on the lattice.4 After mul-
tiplying Eq. (9) by γ5 and by taking the trace of bot
sides, we have

(10)Σ2
(
p2) = ZAρΓP

(
p2).

For light quark masses and moderately large mome
the vertex functionΓP (p2) is affected by the long
distance effects which are due to the presence of
Goldstone boson[5], which by means of the LSZ
reduction formula generates the term proportiona
the Goldstone boson propagator 1/(q2 + m2

π). Since
the operator is inserted at zero momentum,q2 = 0,
the vertex function in the chiral limit develops a po
∝ 1/m2

π ∼ 1/ρ. To account for that effect, we expan
the vertex function in powers of the quark mass,

(11)ΓP

(
p2, ρ

) = Γ subtr.
P

(
p2) + B(p2)

ZAρ
+ C

(
p2)ρ,

where the first term is the subtracted pseudosc
vertex, from which the hadronic (Goldstone boso
contribution∝ 1/m2

P ∝ 1/ρ is subtracted away. Th
third term is the linear quark mass correction while
higher order terms in the expansion, as well as the
arithmic quark mass dependence, are neglected s
we deal with light quark masses varying in a short
terval.

The renormalization constant of the pseudosc
density,ZRI/MOM

P (µ), is defined in terms of the sub
tracted Green function of Eq.(11) through the RI/
MOM renormalization condition

(12)
ZP (µ2)

Zq(µ2)
Γ subtr.

P

(
p2)∣∣∣∣

p2=µ2
= 1.

As we already discussed in Ref.[4], the value of
ZRI/MOM

P (µ) obtained from Eq.(12)is completely con-
sistent with the one obtained by applying the meth
of Ref.[9], which allows one to circumvent the seco
term on the r.h.s. of Eq.(11).

4 Recall that

2ρ = ∂0
〈∑

	x A0(x)P (0)
〉

〈∑
	x P (x)P (0)

〉 ,

with P = q̄γ5q, A0 = q̄γ0γ5q, andZA ≡ ZA(g2
0) is the (known)

axial current renormalization constant.
After inserting Eq.(11) in (10), multiplying both
sides byZ−1

q (µ), and accounting for the renormaliz
tion condition(12), we have

(13)
Σ2(p

2)

Σ1(p2)

∣∣∣∣
p2=µ2

= ZAρ

ZP (µ2)︸ ︷︷ ︸
mRI/MOM

AWI (µ)

+ B(p2)

Zq(µ2)
,

where contributions quadratic in the quark mass h
been neglected. The first term on the right-hand s
is the usual short distance quark mass, renormal
in the RI/MOM scheme, derived from the axial Wa
identity. Eq. (13) differs from Eq.(8) for the pres-
ence of the second term on the r.h.s., which repres
the power suppressed contribution coming from
Goldstone boson. It has been shown long ago t
at the leading order in the OPE, this term has th
form [10]

(14)
B(p2)

Σ1(p2)

∣∣∣∣
OPE

= c
(
p2,µ

) 〈q̄q〉(µ)

p2
+O

(
1/p4).

From this relation we will derive our first estimate
the quark condensate.

The Wilson coefficient,c(p2,µ), has been com
puted at the next-to-leading order (NLO) in QCD p
turbation theory[11]. In theMS scheme, by choosin
the Landau gauge (in which the lattice calculations
most easily made), and after settingp2 = µ2, one has5

(16)

cMS(
p2) = −4π

3
αS(p)

[
1+

(
99

4
− 10

9
nF

)
αS(p)

4π

]
.

We notice that the radiative corrections are large
that at moderately largep2 they must be included in
the analysis when extracting the value of the cond
sate from the lattice data. Besides, the inclusion
the radiative corrections isalso necessary for spec
fying the renormalization scheme (the leading or
anomalous dimension of the quark condensate is
versal for all renormalization schemes). To eliminat

5 For completeness, we recall the expression for the 2-loop
ning coupling

αS(p) = 4π

β0 log(p2/Λ2
QCD)

(
1−

β1 log log(p2/Λ2
QCD)

β2
0 log(p2/Λ2

QCD)

)
;

(15)β0 = 11− 2

3
nF, β1 = 102− 38

3
nF.
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the scale dependence of the condensate one define
renormalization group invariant (RGI) quark conde
sate, which at NLO in perturbation theory is related
theMS one through

〈q̄q〉MS(p) = (
αS(p)

)− γ0
2β0

×
[
1− γ1β0 − γ0β1

2β2
0

αS(p)

4π

]
〈q̄q〉RGI,

(17)γ0 = 8, γ MS
1 = 4

3

(
101− 10

3
nF

)
,

and thus atnF = 0, Eq.(14)becomes

B(p2)

Σ1(p2)

∣∣∣∣
OPE

= −4π

3

(
αS(p)

)7/11
[
1+ 31945

1452

αS(p)

4π

]
︸ ︷︷ ︸

cRGI(p)

(18)× 〈q̄q〉RGI

p2 +O
(
1/p4).

3. Lattice data and extraction of the quark
condensate

We work with theO(a) improved Wilson quark
action and use the data-sets consisting ofO(1000)in-
dependent gauge field configurations, obtained at fou
different lattice spacings, corresponding toβ = 6.0,
6.2, 6.4, and 6.45. More complete information abou
the data-sets, as well as the improvement coeffici
with the appropriate list of references can be found
Refs. [4,12]. Since we work at four different lattic
spacings, we are able to extrapolate to the continu
limit. To eliminate the lattice spacing from the resu
obtained at each lattice coupling, we use the ratioa/r0
computed in Ref.[13],(

a

r0

)
β

= {0.18636.0, 0.13546.2, 0.10276.4,

(19)0.09626.45},
so that all our results will be expressed in units
the scaler0. To convert into physical units we wi
user0 = 0.530(25)fm, which corresponds toa−1

β=6.0 =
2.0(1) GeV. We will also need the quenched value
ΛQCD, for which we taker0Λ

nF=0
MS

= 0.602(48)[14].6

6 In physical units,ΛnF=0 = 0.225(20) MeV.

MS
e3.1. 〈q̄q〉 from the pseudoscalar vertex

In order to determine the chiral condensate fr
the long distance behavior of the pseudoscalar
tex, we first need to extract the functionB(p2). That
is made by using 10 different vertex functions, 4
which are computed with the external legs degenera
in the quark mass, and 6 nondegenerate. With thes
points, for eachp2, we fit the data to the form(11),
which we rewrite as

ΓP

(
p2, ρi, ρj

) = Γ subtr.
P

(
p2) + 2B(p2)

ZA(ρi + ρj )

(20)+ C
(
p2)(ρi + ρj ).

The illustration of this fit is provided inFig. 1for four
values ofp2. We see that the presence of the Goldst
pole is indeed pronounced at moderately large va
of p2.

Once we identify the Goldstone contribution to t
pseudoscalar vertex, we perform a number of fits
the form

(21)
B(p2)

Σ1(p2)
= cRGI(p)

〈q̄q〉RGI

p2
+ γ

p4
+ δ + λp2,

where the first term on the r.h.s. is the one that
are interested in (the coefficientcRGI is defined in
Eq. (18)), the second term is the subleading pow
correction, while the last two terms take into acco
possible contributions of lattice artifacts. To make u

Fig. 1. Illustration of the fit to the form(20) atβ = 6.2, from which
we could extract the functionB(p2), needed for the determinatio
of the chiral condensate.
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Fig. 2. Fit of the lattice data to the form(21) for all four lattice
spacings considered in this Letter.

of the OPE formula we should aim at working at s
ficiently largep2 so that higher powers in 1/p2 are
sufficiently suppressed. To do so, we fit the latt
data starting frompcut ≈ 2 GeV, which correspond
to (r0pcut)

2 ≈ 25, for which the radiative correctio
term incRGI(p) is below 35%. If we setγ = δ = λ = 0
in (21), then for all our lattices we haveχ2/d.o.f.> 2.
Therefore, one has to let free at least one more para
ter. The result of such a fit withγ �= 0 is presented in
Table 1and denoted as fit I (see alsoFig. 2for illustra-
tion). At fixed lattice spacing, however, the lattice
tifacts may be significant. To examine their impact
the value of the quark condensate, we repeat the fit
including either the term withp2 (∝ λ) or the constan
one (∝ δ). Both sets of results are reported inTable 1,
labelled as fit II and fit III, respectively. Finally, if w
set pcut � 3 GeV, the fit withγ = δ = λ = 0 gives
a satisfactoryχ2/d.o.f. The corresponding results a
denoted as fit IV inTable 1. We also tried to fit with
all the parameters in Eq.(21) free (fit V in Table 1).

The remaining step towards the determination
the quark condensate is the extrapolation to the c
tinuum limit. Since our action and the renormalizati
constants areO(a)-improved, we may attempt extra
Table 1
Details of the fit of the lattice data to the form(21). Various fit forms (labelled as I, II, III, IV and V) are discussed in the text

Fit β −r0[〈q̄q〉RGI]1/3 r5
0γ −r0δ × 103 −r−1

0 λ × 106

I 6.0 0.71± 0.01 23± 3 – –
6.2 0.72± 0.01 18± 1 – –
6.4 0.70± 0.02 22± 3 – –
6.45 0.75± 0.04 31± 9 – –

II 6.0 0.82± 0.03 11± 5 – 29± 6
6.2 0.74± 0.02 17± 2 – 3.4±3.7
6.4 0.73± 0.02 20± 3 – 4± 2
6.45 0.73± 0.04 34±12 – −4± 4

III 6.0 0.90± 0.04 5± 6 5± 1 –
6.2 0.75± 0.03 16± 3 1± 1 –
6.4 0.75± 0.02 18± 3 1± 1 –
6.45 0.71± 0.05 35±14 −1± 1 –

IV 6.0 0.80± 0.02 – – –
6.2 0.80± 0.01 – – –
6.4 0.79± 0.02 – – –
6.45 0.85± 0.06 – – –

V 6.0 1.14± 0.10 −22±15 27±11 112± 73
6.2 0.90± 0.07 5± 6 9± 4 53± 27
6.4 0.85± 0.07 10± 4 6± 4 24± 18
6.45 0.87± 0.06 24±11 5± 4 27± 19
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olating quadratically in the lattice spacing, i.e.,

(22)r0
[〈q̄q〉RGI]1/3

β
= C0 + C1(a/r0)

2
β.

Our result forC0, the chiral condensate in the conti
uum limit, for all four fit forms discussed above, are

r0
[〈q̄q〉RGI]1/3

cont.

(23)

= {−0.721(23)I, −0.681(28)II, −0.672(34)III ,

−0.792(24)IV, −0.54(15)V
}
.

One may argue that terms ofO(a) may still be present
since the functionB(p2) is obtained from the off-she
vertex functionsΓP (p2, ρi , ρj ), for which the on-shel
O(a) improvement does not apply. However, the fun
tion B(p2) refers to the chiral limit, and terms i
ΓP (p2, ρ) proportional to the quark mass are alrea
taken care of in the fit to the form(11). In addition, it
has been shown in appendix of Ref.[4] that, for these
correlation functions, theO(a) contribution of oper-
ators which are either non gauge-invariant or van
on-shell by the equation of motion vanish in the c
ral limit. Therefore, while theO(a) effects may affec
the functionsΓ subtr.(p2) andC(p2) in Eq. (20) when
away from the chiral limit, the functionB(p2) is pol-
luted by the artefactsO(a2) and higher. This brings u
back to the continuum extrapolation form(22).

What do we learn from the results(23) in the con-
tinuum limit? As it can be seen fromTable 1, the
corrections∝ 1/p4 are large and positive for everyβ .
Their neglect in the fit IV then expectedly lead to
overestimate of the value for the chiral condensate
confirmed by the last number in Eq.(23). Fits II and
III give quite consistent values for the condensate
the a → 0 limit). In other words, the quark conde
sate in the continuum limit is very weakly sensiti
to the form of the artifacts that we include in our fi
(constant or∝ p2). The tendency of the artifacts, upo
their inclusion in the fit, is to lower the value of th
condensate. The same tendency is observed also i
fit form V, although with larger error bars.

As our final value we will quote the result of th
fit I. The difference between the central value of th
and the fits obtained by including the artifacts (II a
III) is included in the systematic uncertainty. The r
sult of the fit V has larger errors and is consist
with the results obtained by other fits. As we already
pointed out, the radiative corrections are large and
take them into account when fitting the lattice data
e

Eq.(21). To account for the systematics induced by
omission of higher order corrections inαS(p), we will
add±10% of uncertainty (which represents the squ
of the 30% effect of the known radiative corrections
p = 3 GeV). Finally we have7

〈q̄q〉RGI = −(
269± 9+00

−18 ± 12 MeV
)3 ± 10%

⇔ 〈q̄q〉RGI = −(260± 9± 9± 12 MeV)3 ± 10%

⇒ 〈q̄q〉MS(2 GeV)

(24)= −(312± 11± 11± 15± 10 MeV)3,

where the errors are, respectively, statistical, syst
atics due to the continuum extrapolation, to the unc
tainty inr0 and to the uncertainty due to N2LO correc-
tions in the Wilson coefficientcRGI(p) (see Eq.(18)).
Notice that in the second line we symmetrised the s
tematic error bars.

Finally, we repeated the entire exercise by using
alternative quark mass definition, namely the one
rived from the vector Ward identity,mq = 1

2(1/κq −
1/κcrit), instead of the quark massZAρ, used above
The value we obtain in this way is barely distinguis
able from the one we quoted in Eq.(24).8

3.2. 〈q̄q〉 from the GMOR formula

We now repeat the standard exercise of extrac
the value of the quark condensate by employing
GMOR formula. The values of the pseudoscalar m
son and the quark masses are all listed in Table
Ref. [12]. In Table 2of the present Letter, we give th
results obtained by using Eqs.(1) and (2), where we
use for the quark mass the one defined via the a
Ward identity (ρ). The needed renormalization co
stants,ZA and ZRI/MOM

P (1/a), are given in Ref.[4].
For completeness, we also present the values of
(improved) pseudoscalar meson decay constant in
chiral limit, f , which is obtained by linearly extrap
olating in the quark masses (fP = f + const· ρ).
To convert the quark condensate from the RI/MO
scheme to the RGI form, we use the anomalous
mension known up to 4-loops[15]. These latter result

7 We remind the reader thatr0 = 0.530(25) fm, is equivalent to

r0 = 2.68(13)GeV−1.
8 More specifically, with mq instead of ρ, we get

〈q̄q〉MS(2 GeV) = −(313± 11± 13± 15± 10 MeV)3.
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Table 2
Results of the pseudoscalar decay constant in the chiral limit (f ) and the chiral condensate, obtained by means of the GMOR formula (se
Eqs.(1) and (2)) for all four lattice spacings. We also present the results of the linear extrapolation ina2 to the continuum limit (a → 0)

β r0f −r0[〈q̄q〉RI/MOM (µa = 1)]1/3 −r0[〈q̄q〉RGI]1/3

6.0 0.360(7) 0.709(10) 0.611(9)

6.2 0.365(10) 0.727(14) 0.612(12)

6.4 0.358(11) 0.730(16) 0.605(13)

6.45 0.365(39) 0.743(50) 0.613(41)

∞ 0.362(13) – 0.601(25)
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are then extrapolated to the continuum limit linearly
a2 (see Eq.(22)). In physical units, our results read

〈q̄q〉RGI = −(224± 9± 10 MeV)3

(25)

⇒ 〈q̄q〉MS(2 GeV) = −(273± 11± 15 MeV)3.

We checked that this value is completely consist
with the alternative definition of the quark mas
namely, with mq = 1

2(1/κq − 1/κcrit), and with
ZRI/MOM

S (1/a) also given in Ref.[4].9 Finally we
also note that the above result agrees very well w
the QCD sum rule estimate of Ref.[16], where
〈q̄q〉MS(2 GeV) = −(267± 16 MeV)3 has been quot
ed.

4. Summary and conclusion

We now briefly summarize our findings and co
ment on some results reported in the literature.

(1) We update the value of the chiral condensate
tained from quenched QCD on the lattice, by u
ing the GMOR formula. After combining the e
rors given in Eq.(25) in the quadrature, we have

(26)〈q̄q〉MS
GMOR(2 GeV) = −(273± 19 MeV)3.

This result is obtained from simulations pe
formed at four lattice spacings, by employin
non-perturbative renormalization andO(a)-im-
provement, followed by an extrapolation to t
continuum limit.

9 When using the quark mass defined via the vector Ward id

tity instead of the axial one, we get〈q̄q〉MS(2 GeV) = −(268±
13± 15 MeV)3.
(2) We compute the quark condensate by using an
ternative strategy, namely, by studying the lo
distance (Goldstone) part of the pseudoscalar
tex function. In terms of the OPE, the chiral co
densate appears in the coefficient of the lead
power correction in 1/p2. From the calculation
at four lattice spacings and after extrapolating
the continuum limit we obtain

(27)〈q̄q〉MS
OPE(2 GeV) = −(312± 24 MeV)3.

(3) From the above results, it seems that the two c
pletely different strategies lead to quite a cons
tent value of the quark condensate. To better
preciate this point we rewrite the RGI results
units ofr0, i.e.,

−r0
[〈q̄q〉RGI]1/3

= {
0.701(23)(20)(23)OPE, 0.601(25)GMOR

}
.

The method based on using OPE is less relia
since radiative and further power corrections
large. Even if we combine the errors in quadrat
the agreement would be at the 2σ -level, which is
far from what has been claimed in Ref.[5], where
the OPE and GMOR results were argued to dif
by a factor of 3.

Before closing this Letter, we should explain w
our conclusion is qualitatively different from the on
reported in Ref.[5]. The first difference is that in
Eq. (11), besides the Goldstone term (∝ 1/ρ) we also
allow for the presence of the term linear in quark ma
Such a term could not be studied in Ref.[5] since
only three quark masses were considered. The ne
fect of this modification is that the functionB(p2)

becomes smaller. Secondly, in the OPE, we allow
the presence of the term∝ 1/p4, and we find that, for
moderately large momenta, this (subleading) po
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03.
p-

,

ep-
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correction is not negligible, while in Ref.[5] such a
term was not found. Finally, we also accounted for
terms that are due to the lattice artifacts (see Eq.(22)),
which further reduce the value of the condensate
the continuum limit. Such effects were not studied
Ref. [5] (where they only considered the data p
duced atβ = 6.0). Notice also that the reference val
of the chiral condensate considered in Ref.[5], was
20% smaller than the one we obtain here by using
GMOR formula.
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