Modified Linear Dependence and the Capacity of a Cyclic Graph

S. K. Stein Mathematics Department University of California Davis, California 95616

Submitted by Ky Fan

ABSTRACT

In 1956 Shannon raised a problem in information theory, which amounts to this geometric question: How many *n*-dimensional cubes of width 2 can be packed in the *n*-dimensional torus described by the *n*th power of the cyclic group C_m ? The present paper examines this question in the special circumstance that the set of centers of the cubes form a subgroup—that is, a lattice packing. In this case, the machinery of vector spaces is available when *m* is a prime. This approach introduces a modified definition of linear independence, obtains some known results with its aid, and suggests a promising direction for future computation and theory. The paper concludes by showing that, in return, combinatorial information can yield results about finite vector spaces.

INTRODUCTION

A problem in information theory raised by Shannon [5] in 1956 has been the subject of several graph-theoretical, combinatorial, and geometrical investigations [1, 2, 4]. It is our purpose to examine it from an algebraic viewpoint, in particular, to show that a modified definition of linear dependence provides an explanation of some known results and possibly an approach to a general solution.

1. FREE SETS IN ABELIAN GROUPS

Let C_m be the cyclic group of order m, and let k be a positive integer. A set $B = \{b_1, b_2, \dots, b_n\} \subset C_m^k$ is free if $\sum_{i=1}^n \epsilon_i b_i = 0$, $\epsilon_i = 0, \pm 1$ implies that LINEAR ALGEBRA AND ITS APPLICATIONS 17, 191–195 (1977) 191 © Elsevier North-Holland, Inc., 1977 $\epsilon_i = 0, i = 1, 2, ..., n$. In case m = 2 or 3 this notion coincides with the usual linear independence in a vector space. If m is prime, C_m^k is a vector space over GF(m) but B may be free though not linearly independent. For instance, $B = \{1,2\} \subset C_5$ is free but not linearly independent over GF(5).

Let $\tau(C_m^k)$ denote the number of elements in a largest free set in C_m^k . Since distinct subsets of a free set B have distinct sums,

$$\tau(C_m^k) \leq \log_2(m^k) = (\log_2 m)k.$$

On the other hand, as Erdös has pointed out in conversation,

$$\tau(C_m^k) \ge \log_3(m^k) = (\log_3 m)k,$$

since any free set with fewer than $\log_3(m^k)$ elements can be extended to a larger free set. Thus

$$(\log_3 m)k \leq \tau (C_m^k) \leq (\log_2 m)k.$$

Moreover, it is clear that $\tau(C_m^{k+l}) \ge \tau(C_m^k) + \tau(C_m^l)$. Now, for any numerical function f, defined on the positive integers, such that $f(k+l) \ge f(k) + f(l)$ and $f(k) \le ak$ for all positive integers k and l and some constant a, there is a constant c such that $\lim_{k\to\infty} f(k)/k = c$ [3, p. 17]. Thus for a given group C_m , the quotient $\tau(C_m^k)/k$ approaches a limit as $k\to\infty$. This limit will be denoted by $\tau^*(C_m)$ and called the *free capacity* of C_m . From the above observations,

$$\log_3 m \leq \tau^*(C_m) \leq \log_2 m,$$

 $\tau^*(C_2)=1$, and $\tau^*(C_3)=1$. In case *m* is a power of 2, it is easy to see that $\tau^*(C_m)=\log_2 m$, for $B=\{1,2,2^2,2^3,\ldots,2^{\log_2 m}/2\}$ is free in C_m . For no other values of *m* is $\tau^*(C_m)$ known.

2. INDEPENDENT SETS IN A LINEAR GRAPH

The set C_m^n may also be interpreted as a linear graph. Two distinct vertices of C_m^n are *adjacent* if their difference, as elements of the group C_m^n , is of the form $(\epsilon_1, \epsilon_2, \ldots, \epsilon_n)$, each $\epsilon_i = 0, 1, \text{ or } -1$. A set of vertices, no two of which are adjacent, is called *independent*. Denote by $\beta(C_m^n)$ the largest number of vertices in an independent set in C_m^n . Moreover, for positive integers p and q clearly $\beta(C_m^{p+q}) \ge \beta(C_m^n)\beta(C_m^n)$. Define $f(n) = \log_2 \beta(C_m^n)$.

Again, by [3, p. 17], f(n)/n has a limit as $n \to \infty$. Consequently $\sqrt[n]{\beta(C_m^n)}$ has a limit as $n \to \infty$. This limit, denoted $\theta(C_m)$, is called the *capacity* of the graph C_m .

For any $m \ge 4$, it is easy to show that $(m-1)/2 \le \theta(C_m) \le m/2$. If m is even, $\theta(C_m) = m/2$, for $\beta(C_m)$ is m/2. For odd $m \ge 5$, $\theta(C_m)$ is not known. However, it follows immediately from Theorem 1 in [1] that if $\theta(C_5) = \frac{5}{2}$, then $\theta(C_m) = m/2$ for all odd $m \ge 5$.

Incidentally, $\beta(C_m^n)$ may also be interpreted as the largest number of cubes of side 2 that can be packed in the *n*-dimensional toroid C_m^n (see [5]).

3. FREE SETS AND THE ALGEBRAIC CAPACITY OF A CYCLIC GRAPH

Let $\beta_L(C_m^n)$ be a largest independent set in C_m^n that form a subgroup. The algebraic capacity of C_m , denoted $\theta_L(C_m)$, is defined as

$$\lim_{n\to\infty}\sqrt[n]{\beta_L(C_m^n)}.$$

Clearly $\theta_L(C_m) \leq \theta(C_m)$. Trivially, for *m* even, $\theta_L(C_m) = \theta(C_m)$. We conjecture that $\theta_L(C_m) = \theta(C_m)$ for all *m*.

The relation between free sets and independent sets is expressed in the following two theorems.

THEOREM 1. If there is a free set of n elements in C_m^k , then there is an independent subgroup in C_m^n with at least m^{n-k} elements.

Proof. Let $\{b_1, b_2, \ldots, b_n\}$ be a free set in C_m^k . Define a homomorphism

$$f: C_m^n \to C_m^k$$

by

$$f(E_i) = b_i, \quad i = 1, 2, \dots, n.$$

[Here $E_i = (0, ..., 1, ..., 0)$, the standard *i*th unit vector.] Let K be the kernel of f. We assert that K is an independent set. For, let v_1 and v_2 be distinct vertices in K. If v_1 and v_2 were adjacent, there would exist integers ϵ_i , i = 1, 2, ..., n, $\epsilon_i = 0, 1, -1$, such that

$$v_2 = v_1 + \sum_{i=1}^n \epsilon_i E_i.$$

Application of f yields

$$0=0+\sum_{i=1}^{n}\epsilon_{i}b_{i},$$

contradicting the freeness of the set $\{b_1, b_2, \dots, b_n\}$.

If m is prime, the argument for Theorem 1 is reversible and one has an equivalence between independent subgroups in C_m^n and free sets in C_m^k . This is expressed in the next theorem.

THEOREM 2. Let m be prime and let k be a positive integer. Then there is a free set of n elements in C_m^k if and only if there is an independent subgroup of C_m^n that consists of m^{n-k} vertices.

As an illustration of Theorem 1, note that $\{(0,1), (1,1), (1,3), (2,1), (3,6)\}$ is a free set in C_7^2 . Hence

$$\beta_L(C_7^5) \ge 7^{5-2} = 7^3,$$

and therefore

$$\theta_L(C_7) \ge 7^{3/5} \doteq 3.21.$$

This provides an alternative argument for the proof of Theorem 7 in [1]. Note that it is stronger than the result obtained in [2], namely $\theta(C_7) \ge \sqrt{10} = 3.16$.

As a second illustration, since $B = \{1,2\}$ is a free set in C_5 , there is an independent set in the graph C_5^2 consisting of 5 elements. Shannon [5] obtained this result by exhibiting an appropriate packing of the torus C_5^2 .

The proof of the following corollary is straightforward.

COROLLARY 1. Let $\tau(C_m^k) = \alpha \log_2 m^k$. Then $\theta_L(C_m) \ge m/2^{1/\alpha}$.

Thus, showing that $\theta_L(C_5) = \frac{5}{2}$ is equivalent to showing that as $k \to \infty$, $\tau(C_5^k)/k \to \log_2 5 \doteq 2.3$. It is not hard to show that for $1 \le k \le 5$, $\tau(C_5^k)/k = 2$, but $\tau(C_5^6)/6$ is not yet determined.

Independent sets, in return, can provide information about free sets, as the next corollary shows.

COROLLARY 2. If m is odd, then

$$\tau(C_m^k) \leq \left[\log_2(m^{k-1}(m-1))\right].$$

MODIFIED LINEAR DEPENDENCE

Proof. Let $\tau(C_m^k) = n$. Then there is an independent set in C_m^n of m^{n-k} vertices. Thinking of the linear graph C_m^n as embedded in the *n*-dimensional toroid, note that a set of disjoint 2-by-2-by...-by-2 cubes meets each line parallel to an axis in at most (m-1)/2 such cubes. Independent vertices correspond to centers of disjoint 2-by-2-by-...-by-2 cubes. Hence

$$m^{n-k} \cdot 2^n \leq m^{n-1} (m-1)$$

or

$$2^n \leq m^{k-1} (m-1),$$

which completes the proof.

This corollary implies that $\tau(C_5^4) \le 9$; thus $\tau(C_5^4) = 8$. The inequality $\tau(C_5^4) \le \log_2 5^4$ implies merely that $\tau(C_5^4) \le 9$.

REFERENCES

- 1 L. D. Baumert, et al. A combinatorial packing problem, Computers in Algebra and Number Theory, SIAM/AMS Proc. 4 (1971), 97-108.
- 2 R. S. Hales, Numerical invariants and the strong product of graphs, J. Comb. Theory B(15) (1973), 146-155.
- 3 G. Polyá and G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Dover. New York, 1945, Problem 98, p. 17.
- 4 M. Rosenfeld, On a problem of C. E. Shannon in graph theory, Proc. Am. Math. Soc. 18(1967), 315-319.
- 5 C. E. Shannon, The zero error capacity of a noisy channel, IRE Trans. Inf. Theory, IT-2 (1956), 8-19; MR 19, 623.

Received 15 September 1975; revised 1 February, 6 May 1976