Modified Linear Dependence and the Capacity of a Cyclic Graph

S. K. Stein
Mathematics Department
University of Califomia
Davis, Califormia 95616

Submitted by Ky Fan

Abstract

In 1956 Shannon raised a problem in information theory, which amounts to this geometric question: How many n-dimensional cubes of width 2 can be packed in the n-dimensional torus described by the nth power of the cyclic group C_{m} ? The present paper examines this question in the special circumstance that the set of centers of the cubes form a subgroup-that is, a lattice packing. In this case, the machinery of vector spaces is available when m is a prime. This approach introduces a modified definition of linear independence, obtains some known results with its aid, and suggests a promising direction for future computation and theory. The paper concludes by showing that, in return, combinatorial information can yield results about finite vector spaces.

INTRODUCTION

A problem in information theory raised by Shannon [5] in 1956 has been the subject of several graph-theoretical, combinatorial, and geometrical investigations [1, 2, 4]. It is our purpose to examine it from an algebraic viewpoint, in particular, to show that a modified definition of linear dependence provides an explanation of some known results and possibly an approach to a general solution.

1. FREE SETS IN ABELIAN GROUPS

Let C_{m} be the cyclic group of order m, and let k be a positive integer. A set $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \subset C_{m}^{k}$ is free if $\sum_{i=1}^{n} \epsilon_{i} b_{i}=0, \epsilon_{i}=0, \pm 1$ implies that
$\epsilon_{i}=0, i=1,2, \ldots, n$. In case $m=2$ or 3 this notion coincides with the usual linear independence in a vector space. If m is prime, C_{m}^{k} is a vector space over $\mathrm{GF}(m)$ but B may be free though not linearly independent. For instance, $B=\{1,2\} \subset C_{5}$ is free but not linearly independent over GF(5).

Let $\tau\left(C_{m}^{k}\right)$ denote the number of elements in a largest free set in C_{m}^{k}. Since distinct subsets of a free set B have distinct sums,

$$
\tau\left(C_{m}^{k}\right) \leqslant \log _{2}\left(m^{k}\right)=\left(\log _{2} m\right) k
$$

On the other hand, as Erdös has pointed out in conversation,

$$
\tau\left(C_{m}^{k}\right) \geqslant \log _{3}\left(m^{k}\right)=\left(\log _{3} m\right) k
$$

since any free set with fewer than $\log _{3}\left(m^{k}\right)$ elements can be extended to a larger free set. Thus

$$
\left(\log _{3} m\right) k \leqslant \tau\left(C_{m}^{k}\right) \leqslant\left(\log _{2} m\right) k
$$

Moreover, it is clear that $\tau\left(\mathrm{C}_{m}^{k+l}\right) \geqslant \tau\left(C_{m}^{k}\right)+\tau\left(\mathrm{C}_{m}^{l}\right)$. Now, for any numerical function f, defined on the positive integers, such that $f(k+l) \geqslant f(k)+f(l)$ and $f(k) \leqslant a k$ for all positive integers k and l and some constant a, there is a constant c such that $\lim _{k \rightarrow \infty} f(k) / k=c[3, \mathrm{p} .17]$. Thus for a given group C_{m}, the quotient $\tau\left(C_{m}^{k}\right) / k$ approaches a limit as $k \rightarrow \infty$. This limit will be denoted by $\tau^{*}\left(C_{m}\right)$ and called the free capacity of C_{m}. From the above observations,

$$
\log _{3} m \leqslant \tau^{*}\left(C_{m}\right) \leqslant \log _{2} m,
$$

$\tau^{*}\left(C_{2}\right)=1$, and $\tau^{*}\left(C_{3}\right)=1$. In case m is a power of 2 , it is easy to see that $\tau^{*}\left(C_{m}\right)=\log _{2} m$, for $B=\left\{1,2,2^{2}, 2^{3}, \ldots, 2^{\log _{2} m} / 2\right\}$ is free in C_{m}. For no other values of m is $\tau^{*}\left(C_{m}\right)$ known.

2. INDEPENDENT SETS IN A LINEAR GRAPH

The set C_{m}^{n} may also be interpreted as a linear graph. Two distinct vertices of C_{m}^{n} are adjacent if their difference, as elements of the group C_{m}^{n}, is of the form $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)$, each $\epsilon_{i}=0,1$, or -1 . A set of vertices, no two of which are adjacent, is called independent. Denote by $\beta\left(C_{m}^{n}\right)$ the largest number of vertices in an independent set in C_{m}^{n}. Moreover, for positive integers p and q clearly $\beta\left(C_{m}^{p+q}\right) \geqslant \beta\left(C_{m}^{p}\right) \beta\left(C_{m}^{q}\right)$. Define $f(n)=\log _{2} \beta\left(C_{m}^{n}\right)$.

Again, by [3, p. 17], $f(n) / n$ has a limit as $n \rightarrow \infty$. Consequently $\sqrt[n]{\beta\left(C_{m}^{n}\right)}$ has a limit as $n \rightarrow \infty$. This limit, denoted $\theta\left(C_{m}\right)$, is called the capacity of the graph C_{m}.

For any $m \geqslant 4$, it is easy to show that $(m-1) / 2 \leqslant \theta\left(C_{m}\right) \leqslant m / 2$. If m is even, $\theta\left(C_{m}\right)=m / 2$, for $\beta\left(C_{m}\right)$ is $m / 2$. For odd $m \geqslant 5, \theta\left(C_{m}\right)$ is not known. However, it follows immediately from Theorem 1 in [1] that if $\theta\left(C_{5}\right)=\frac{5}{2}$, then $\theta\left(C_{m}\right)=m / 2$ for all odd $m \geqslant 5$.

Incidentally, $\beta\left(C_{m}^{n}\right)$ may also be interpreted as the largest number of cubes of side 2 that can be packed in the n-dimensional toroid C_{m}^{n} (see [5]).

3. FREE SETS AND THE ALGEBRAIC CAPACITY OF A CYCLIC GRAPH

Let $\beta_{L}\left(C_{m}^{n}\right)$ be a largest independent set in C_{m}^{n} that form a subgroup. The algebraic capacity of C_{m}, denoted $\theta_{L}\left(C_{m}\right)$, is defined as

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\beta_{L}\left(C_{m}^{n}\right)}
$$

Clearly $\theta_{L}\left(C_{m}\right) \leqslant \theta\left(C_{m}\right)$. Trivially, for m even, $\theta_{L}\left(C_{m}\right)=\theta\left(C_{m}\right)$. We conjecture that $\theta_{L}\left(C_{m}\right)=\theta\left(C_{m}\right)$ for all m.

The relation between free sets and independent sets is expressed in the following two theorems.

Theorem 1. If there is a free set of n elements in C_{m}^{k}, then there is an independent subgroup in C_{m}^{n} with at least m^{n-k} elements.

Proof. Let $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a free set in C_{m}^{k}. Define a homomorphism

$$
f: C_{m}^{n} \rightarrow C_{m}^{k}
$$

by

$$
f\left(E_{i}\right)=b_{i}, \quad i=1,2, \ldots, n
$$

[Here $E_{i}=(0, \ldots, 1, \ldots, 0)$, the standard i th unit vector.] Let K be the kernel of f. We assert that K is an independent set. For, let v_{1} and v_{2} be distinct vertices in K. If v_{1} and v_{2} were adjacent, there would exist integers ϵ_{i}, $i=1,2, \ldots, n, \epsilon_{i}=0,1,-1$, such that

$$
v_{2}=v_{1}+\sum_{i=1}^{n} \epsilon_{i} E_{i}
$$

Application of f yields

$$
0=0+\sum_{i=1}^{n} \epsilon_{i} b_{i}
$$

contradicting the freeness of the set $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$.
If m is prime, the argument for Theorem 1 is reversible and one has an equivalence between independent subgroups in C_{m}^{n} and free sets in C_{m}^{k}. This is expressed in the next theorem.

Theorem 2. Let m be prime and let k be a positive integer. Then there is a free set of n elements in C_{m}^{k} if and only if there is an independent subgroup of C_{m}^{n} that consists of m^{n-k} vertices.

As an illustration of Theorem 1, note that $\{(0,1),(1,1),(1,3),(2,1),(3,6)\}$ is a free set in C_{7}^{2}. Hence

$$
\beta_{L}\left(C_{7}^{5}\right) \geqslant 7^{5-2}=7^{3}
$$

and therefore

$$
\theta_{L}\left(C_{7}\right) \geqslant 7^{3 / 5} \doteq 3.21
$$

This provides an alternative argument for the proof of Theorem 7 in [1]. Note that it is stronger than the result obtained in [2], namely $\theta\left(C_{7}\right) \geqslant \sqrt{10}$ $\doteq 3.16$.

As a second illustration, since $B=\{1,2\}$ is a free set in C_{5}, there is an independent set in the graph C_{5}^{2} consisting of 5 elements. Shannon [5] obtained this result by exhibiting an appropriate packing of the torus C_{5}^{2}.

The proof of the following corollary is straightforward.
Corollary 1. Let $\tau\left(C_{m}^{k}\right)=\alpha \log _{2} m^{k}$. Then $\theta_{L}\left(C_{m}\right) \geqslant m / 2^{1 / \alpha}$.
Thus, showing that $\theta_{L}\left(C_{5}\right)=\frac{5}{2}$ is equivalent to showing that as $k \rightarrow \infty$, $\tau\left(C_{5}^{k}\right) / k \rightarrow \log _{2} 5 \dot{=} 2.3$. It is not hard to show that for $1 \leqslant k \leqslant 5, \tau\left(C_{5}^{k}\right) / k=2$, but $\tau\left(C_{5}^{6}\right) / 6$ is not yet determined.

Independent sets, in return, can provide information about free sets, as the next corollary shows.

Corollary 2. If m is odd, then

$$
\tau\left(C_{m}^{k}\right) \leqslant\left[\log _{2}\left(m^{k-1}(m-1)\right)\right]
$$

Proof. Let $\tau\left(C_{m}^{k}\right)=n$. Then there is an independent set in C_{m}^{n} of m^{n-k} vertices. Thinking of the linear graph C_{m}^{n} as embedded in the n-dimensional toroid, note that a set of disjoint 2-by-2-by...-by-2 cubes meets each line parallel to an axis in at most $(m-1) / 2$ such cubes. Independent vertices correspond to centers of disjoint 2-by-2-by-...-by-2 cubes. Hence

$$
m^{n-k} \cdot 2^{n} \leqslant m^{n-1}(m-1)
$$

or

$$
2^{n} \leqslant m^{k-1}(m-1),
$$

which completes the proof.
This corollary implies that $\tau\left(C_{5}^{4}\right)<9$; thus $\tau\left(C_{5}^{4}\right)=8$. The inequality $\tau\left(C_{5}^{4}\right) \leqslant \log _{2} 5^{4}$ implies merely that $\tau\left(C_{5}^{4}\right) \leqslant 9$.

REFERENCES

1 L. D. Baumert, et al. A combinatorial packing problem, Computers in Algebra and Number Theory, SIAM/AMS Proc. 4 (1971), 97-108.
2 R. S. Hales, Numerical invariants and the strong product of graphs, J. Comb. Theory B(15) (1973), 146-155.
3 G. Polyá and G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Dover. New York, 1945, Problem 98, p. 17.
4 M. Rosenfeld, On a problem of C. E. Shannon in graph theory, Proc. Am. Math. Soc. 18(1967), 315-319.
5 C. E. Shannon, The zero error capacity of a noisy channel, IRE Trans. Inf. Theory, IT-2 (1956), 8-19; MR 19, 623.

