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ABSTRACT 

It is known that baric algebras satisfying the identity (z”)~ = w(z)z~’ have 
idempotent elements and every linear form w: A + K is a multiplicative map. 
We prove that these algebras are Jordan-Bernstein of order 2 and special train 
algebras. Moreover, as a corollary we obtain that the train equation of these 
algebras is z4 - w(z)z’ = 0, and we give examples of baric algebras satisfying 
x4 - W(X)Z~ = 0 but not satisfying (z”)” = w(x)x”. 

1. INTRODUCTION 

In what follows, K is an infinite field of characteristic not 2, and A is a 
commutative, not necessarily associative algebra over K. 

We recall that A is a Jordan algebra if the identity a’ = (:E~!/)x 
holds in A. If w: A ---f K is a nonzero algebra homomorphism, then the 
ordered pair (A, w) is called a baric algebra and 1~’ its weight function. If 
the baric algebra (A, w) satisfies the identity &+‘I = (~~(z):c)[~+~]. it is 
called a Bernstein algebra of order 71, where 71 is the minimum integer for 
which the identity holds and z[‘] = Z, , x[‘+~] = z~~]:~[~], k > I. are 

the plenary powers of Z. For references, see [2] and [4]. If the baric algebra 
(A, w) satisfies the equation ~~+yl~u(s)z~-‘+. .+T~_~w(z)~-‘x = 0 (train 
equation), it is called a train algebra of rank r. where r is the minimum 
integer for which the above identity holds, 71, , y-1 are fixed elements 
in K, and .cl = x . xk+’ = Ic > > x x a,re the principal powers of Z. The baric 
algebra (A, 7~) is a special train algebra if Ker(w)” is an ideal of A for every 
Ic E W and Ker(zLI) is nilpotent. Moreover, every special train algebra is a 
train algebra; see [4] for details. 
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Let us consider the sets 

and 

Bi = {(A,w) 1 (x”)~ = w(x)x3}, 

B2 = {(A,w) 1 cc4 = w(~)z3}. 

In this paper we study the elements of BI, i.e., the class of baric alge- 
bras satisfying (x2)2 = w(x)x 3. We prove that these algebras are Jordan- 
Bernstein of order 2. Moreover, we prove that BI c B2 a proper containe- 
ment and the elements of B1 are special train algebras. 

2. BARIC ALGEBRAS SATISFYING (x2)” = w(x)x3 

In [l], it is proved that algebras satisfying the identity 

(x2)2 = w(x)x3 (1) 

always have idempotent elements and every linear form 2~: A + K is also 
a multiplicative map. Moreover, A admits a Peirce decomposition A = 
Ke @ Nip $ NO, where Ni = {x E Ker(w) 1 ex = ix}, i = 0,; and 
N;,2 C No, N,/zNo c K/2, N$ S NO, and for every u E N112, v E NO we 
have 

u3 = 0, v3 = 0, (2) 
u?J2 = 2(uv)?J, (3) 

U2V = 2u(uv). (4) 

EXAMPLE. Let A = (x1,x2, x3,24) be an algebra with the following 
multiplication table: x4 = xi, 21x2 = 22x1 = $x2, x; = x3, x: = Xx3, 

X # 0, all other products being zero. Then A is a commutative algebra. 
Moreover, A is a baric algebra with weight function w: A --+ K defined by 
w(xi) = 1, w(xi) = 0, i = 2,3,4, and the elements of A satisfy (1). 

We observe that (2) implies that Jacobi’s identity is valid in Nil2 and 
in NO. Moreover, (3) and (4) imply that for every u, U’ E Ni/z, v, 21’ E NO, 
we have 

u(v?J’) = (uv)w’ + (uw’)w, (5) 

(u?+ = U(U’V) + u/(2121). (6) 

By linearizing the identity (1) we have the following result. 
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PROPOSITION 2.1. For every x, y, L E A, we have 

4x2(xy) = w(z)[22y+2z(xy)]+w(y)23, (7) 

4x2(yz) +~(~Y)(xz) = AWN +Y(=)+z(xY)] 

+ w(y)[z2z + 2x(~)] + w(z)[x?y + 2x(~)]. (8) 

The relation (7) is equivalent to the identity (l), and if the characteristic 
of K is also different from 3, the relation (8) is equivalent to the identity (1). 

If we denote N = Ker(w), we have that (7) and (8) imply that for every 

x, Y, z E N 

22(zy) = 0, (9) 

x2(yt) + 2(.ry)(xz) = 0. (10) 

Moreover, the relations (3), (5), and (9) imply that 

(uw2)w = 0, u(u2w) = 0. (11) 

THEOREM 2.2. Suppose A satisfies the identity (1). Then A is a Jordan- 
Bernstein algebra of order 2. 

Proof By straightforward calculations, we prove that x2(yz)- 
(x2y)z = 0 for every x, y E A. Therefore, A is a Jordan algebra. So A 
is power-associative and ((x2)2)2 = x8. Then, by using the identity (l), we 
prove that x8 = Wan. Thus, A is a Bernstein algebra of order 2, and 
Theorem 2.2 follows. ??

REMARK. The converse of Theorem 2.2 is not true. For instance, A = 
Ke @ V2, V2 = (v1,v2,v3) and multiplication table e2 = e, UT = ~2, 2117~2 = 
212~1 = 213, all other products being zero, is a Bernstein algebra of order 2. 
Moreover, A is a Jordan algebra, and if 2 = e + vi + w2 + ‘us then (x2)2 = e 
and w(x)x3 = e + 213. 

THEOREM 2.3. For a baric algebra (A, w)? the following conditions are 
equivalent: 

1. A = Ke @ U @ V2 is a Jordan-Bernstein algebra of order 2 with v3 = 0 
for every w E V2. 

2. The identity (x2)2 = w(x)z3 holds in A. 

Proof. We only need to prove that statement 1 implies statement 2. 
Let A = Ke@U@ V2 be a Jordan-Bernstein algebra of order 2 with w3 = 0 
for every u E V2. 
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By linearizing the Jordan identity we have 

(xYl)(Zt) + (xz)(yt) + (xt)(yz) = [x(Yz)lt + b44lY + [x(Yt)l~. (12) 

By setting x = y = .z = e, t = w E Vz in (12), we have eu = 0. Thus, 
eV2 = (0). Moreover, by Lemma 4.1 of [3] we have U2 2 Vz, UV, 2 U, 
V; C Vz, and the elements U, U’ E U and U, U’ E VP verify the follow- 
ing identities: u 3 = 0, 2U(U?J) = ZAJ, 2(U?J)U = 21712, U(U%) = G(W) = 
0, U(&‘) = z?(UU’) = 0, U2V2 + 4(WJ)2 = 27J(U%), ?J(w%) = 7?(W), 
~~(21~‘) = u(‘u~v’) = 0, and v4 = 0. By using these relations we prove that 
(x2)2 - u)(x)23 = 4(UV)V2 + [U%2 + 2V(U%)]. 

By setting x = e, y = U, z = u2, and t = II in (12) and by using 
UV2 C U, V: 2 V2, we have uv3 = (w~)w + (UZI)U~. But (21~~)~ = (uw)w~; 
hence, uw3 = 2(uw)w2. Since w3 = 0, we have (uw)u2 = 0. Finally, Jacobi’s 
identity in V2 and U2 G V2 imply that 2w(wu2) = -w2u2. Therefore, (x2)” - 
w(x)x3 = 0. ??

COROLLARY 2.4. Every bark algebra satisfying the identity (x2)2 = 
W(IC)X’ also satisfies x4 - w(x)x3 = 0. 

Proof. Since from Theorem 2.2 we have power associativity, Equation 
(1) immediately gives x4 - w(x)x’ = 0. ??

Recall the sets 

B1 = {(A,w) ) (x2)2 = w(x)x3} 

and 

B2 = ((4~) / x4 = w(x)x3}. 

From Corollary 2.4, we have 

but in general, we have a proper containement, as we can see in the following 
examples: 

EXAMPLE 1. Let A = (e, ~1.52~23) be an algebra with the following 
multiplication table: e2 = e, exl = xre = ix,, exs = xge = x2, xi = x2, 
all other products being zero. Then A is a commutative algebra. Moreover, 
w: A -+ K defined by W(e) = 1, w(z,) = 0, i = 1, 2, 3, is its weight function. 
So A is a baric algebra satisfying x4 - w(x)x3 = 0, and if a = e + x3 then 
(a2)” = e and w(a)a3 = e + x2. Therefore, A is an algebra in B2 which is 
not in Br. 
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EXAMPLE 2. This example was suggested by the referee (see note 4.9 
in [3]). Let A = Z(n, 2) be the zygot,ic algebra of a diploid population wit,h 
7~ alleles and D(A) the commutative duplicate of A. It is known that D(A) 
is not power-associative, so (x2)” # ,z4 for every .u E D(A). On the other 
hand, o? = u~(x)x~ for all n: E A, and y” = 71!d(!y)y3 for every y t D(A). 
where ~11~1 is the weight function of D(A). So D(A) is an algebra in Bz which 
is not, in B1. 

THEOREM 2.5. Suppose A satiqfies the identity (1). Th,en A is a ~pccl,d 
train, nl,g~bra. 

The proof of this theorem follows from Theorem 2.2 and from Theo- 
rem 4.6 of [3]. 

R.E~IARK. In [3, note 4.81 Ouat,tara gives an example of a power-associa- 
tive Bernstein algebra of order 2, not Jordan, which is not a special train 
algebra. 

‘fhr authors wzsh to thank the referee for his kluable suggestions. 
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