On a Class of Baric Algebras

Raúl Andrade and Alicia Labra*
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Chile
Casilla 653, Santiago, Chile

Abstract

It is known that baric algebras satisfying the identity $\left(x^{2}\right)^{2}=w(x) x^{3}$ have idempotent elements and every linear form $w: A \rightarrow K$ is a multiplicative map. We prove that these algebras are Jordan-Bernstein of order 2 and special train algebras. Moreover, as a corollary we obtain that the train equation of these algebras is $x^{4}-w(x) x^{3}=0$, and we give examples of baric algebras satisfying $x^{4}-w(x) x^{3}=0$ but not satisfying $\left(x^{2}\right)^{2}=w(x) x^{3}$.

1. INTRODUCTION

In what follows, K is an infinite field of characteristic not 2 , and A is a commutative, not necessarily associative algebra over K.

We recall that A is a Jordan algebra if the identity $x^{2}(y x)=\left(x^{2} y\right) x$ holds in A. If $u: A \rightarrow K$ is a nonzero algebra homomorphism, then the ordered pair (A, w) is called a baric algebra and w its weight function. If the baric algebra (A, w) satisfies the identity $x^{[n+2]}=(w(x) x)^{[n+1]}$, it is called a Bernstein algebra of order n, where n is the minimum integer for which the identity holds and $x^{[1]}=x, \ldots, x^{[k+1]}=x^{[k]} x^{[k]}, k \geq 1$, are the plenary powers of x. For references, see [2] and [4]. If the baric algebra (A, w) satisfies the equation $x^{r}+\gamma_{1} w(x) x^{r-1}+\cdots+\gamma_{r-1} w(x)^{r-1} x=0$ (train equation), it is called a train algebra of rank r, where r is the minimum integer for which the above identity holds, $\gamma_{1}, \ldots, \gamma_{r-1}$ are fixed elements in K, and $x^{1}=x, \ldots, x^{k+1}=x^{k} x$ are the principal powers of x. The baric algebra (A, w^{\prime}) is a special train algebra if $\operatorname{Ker}(w)^{k}$ is an ideal of A for every $k \in \mathbb{N}$ and $\operatorname{Ker}(w)$ is nilpotent. Moreover, every special train algebra is a train algebra; see [4] for details.

[^0]Let us consider the sets

$$
B_{1}=\left\{(A, w) \mid\left(x^{2}\right)^{2}=w(x) x^{3}\right\}
$$

and

$$
B_{2}=\left\{(A, w) \mid x^{4}=w(x) x^{3}\right\}
$$

In this paper we study the elements of B_{1}, i.e., the class of baric algebras satisfying $\left(x^{2}\right)^{2}=w(x) x^{3}$. We prove that these algebras are JordanBernstein of order 2. Moreover, we prove that $B_{1} \subset B_{2}$ a proper containement and the elements of B_{1} are special train algebras.
2. BARIC ALGEBRAS SATISFYING $\left(x^{2}\right)^{2}=w(x) x^{3}$

In [1], it is proved that algebras satisfying the identity

$$
\begin{equation*}
\left(x^{2}\right)^{2}=w(x) x^{3} \tag{1}
\end{equation*}
$$

always have idempotent elements and every linear form $w: A \rightarrow K$ is also a multiplicative map. Moreover, A admits a Peirce decomposition $A=$ $K e \oplus N_{1 / 2} \oplus N_{0}$, where $N_{i}=\{x \in \operatorname{Ker}(w) \mid e x=i x\}, i=0, \frac{1}{2}$ and $N_{1 / 2}^{2} \subseteq N_{0}, N_{1 / 2} N_{0} \subseteq N_{1 / 2}, N_{0}^{2} \subseteq N_{0}$, and for every $u \in N_{1 / 2}, v \in N_{0}$ we have

$$
\begin{align*}
u^{3} & =0, \quad v^{3}=0, \tag{2}\\
u v^{2} & =2(u v) v, \tag{3}\\
u^{2} v & =2 u(u v) . \tag{4}
\end{align*}
$$

Example. Let $A=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ be an algebra with the following multiplication table: $x_{1}^{2}=x_{1}, x_{1} x_{2}=x_{2} x_{1}=\frac{1}{2} x_{2}, x_{2}^{2}=x_{3}, x_{4}^{2}=\lambda x_{3}$, $\lambda \neq 0$, all other products being zero. Then A is a commutative algebra. Moreover, A is a baric algebra with weight function $w: A \rightarrow K$ defined by $w\left(x_{1}\right)=1, w\left(x_{i}\right)=0, i=2,3,4$, and the elements of A satisfy (1).

We observe that (2) implies that Jacobi's identity is valid in $N_{1 / 2}$ and in N_{0}. Moreover, (3) and (4) imply that for every $u, u^{\prime} \in N_{1 / 2}, v, v^{\prime} \in N_{0}$, we have

$$
\begin{align*}
& u\left(v v^{\prime}\right)=(u v) v^{\prime}+\left(u v^{\prime}\right) v \tag{5}\\
& \left(u u^{\prime}\right) v=u\left(u^{\prime} v\right)+u^{\prime}(u v) \tag{6}
\end{align*}
$$

By linearizing the identity (1) we have the following result.

Proposition 2.1. For every $x, y, z \in A$, we have

$$
\begin{align*}
4 x^{2}(x y)= & w(x)\left[x^{2} y+2 x(x y)\right]+w(y) x^{3} \tag{7}\\
4 x^{2}(y z)+8(x y)(x z)= & 2 w(x)[x(y z)+y(z x)+z(x y)] \\
& +w(y)\left[x^{2} z+2 x(x z)\right]+w(z)\left[x^{2} y+2 x(x y)\right] \tag{8}
\end{align*}
$$

The relation (7) is equivalent to the identity (1), and if the characteristic of K is also different from 3, the relation (8) is equivalent to the identity (1).

If we denote $N=\operatorname{Ker}(w)$, we have that (7) and (8) imply that for every $x, y, z \in N$

$$
\begin{align*}
x^{2}(x y) & =0, \tag{9}\\
x^{2}(y z)+2(x y)(x z) & =0 . \tag{10}
\end{align*}
$$

Moreover, the relations (3), (5), and (9) imply that

$$
\begin{equation*}
\left(u v^{2}\right) v=0, \quad u\left(u^{2} v\right)=0 \tag{11}
\end{equation*}
$$

Theorem 2.2. Suppose A satisfies the identity (1). Then A is a JordanBernstein algebra of order 2.

Proof. By straightforward calculations, we prove that $x^{2}(y x)-$ $\left(x^{2} y\right) x=0$ for every $x, y \in A$. Therefore, A is a Jordan algebra. So A is power-associative and $\left(\left(x^{2}\right)^{2}\right)^{2}=x^{8}$. Then, by using the identity (1), we prove that $x^{8}=w\left(x^{4}\right) x^{4}$. Thus, A is a Bernstein algebra of order 2, and Theorem 2.2 follows.

Remark. The converse of Theorem 2.2 is not true. For instance, $A=$ $K e \oplus V_{2}, V_{2}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and multiplication table $e^{2}=e, v_{1}^{2}=v_{2}, v_{1} v_{2}=$ $v_{2} v_{1}=v_{3}$, all other products being zero, is a Bernstein algebra of order 2. Moreover, A is a Jordan algebra, and if $x=e+v_{1}+v_{2}+v_{3}$ then $\left(x^{2}\right)^{2}=e$. and $w(x) x^{3}=e+v_{3}$.

Theorem 2.3. For a baric algebra (A, w), the following conditions are equivalent:

1. A $=K e \oplus U \oplus V_{2}$ is a Jordan-Bernstein algebra of order 2 with $v^{3}=0$ for every $v \in V_{2}$.
2. The identity $\left(x^{2}\right)^{2}=w(x) x^{3}$ holds in A.

Proof. We only need to prove that statement 1 implies statement 2. Let $A=K e \oplus U \oplus V_{2}$ be a Jordan-Bernstein algebra of order 2 with $v^{3}=0$ for every $v \in V_{2}$.

By linearizing the Jordan identity we have

$$
\begin{equation*}
(x y)(z t)+(x z)(y t)+(x t)(y z)=[x(y z)] t+[x(z t)] y+[x(y t)] z . \tag{12}
\end{equation*}
$$

By setting $x=y=z=e, t=v \in V_{2}$ in (12), we have $e v=0$. Thus, $e V_{2}=\{0\}$. Moreover, by Lemma 4.1 of [3] we have $U^{2} \subseteq V_{2}, U V_{2} \subseteq U$, $V_{2}^{2} \subseteq V_{2}$, and the elements $u, u^{\prime} \in U$ and $v, v^{\prime} \in V_{2}$ verify the following identities: $u^{3}=0,2 u(u v)=u^{2} v, 2(u v) v=u v^{2}, u\left(u^{2} v\right)=u^{2}(u v)=$ $0, u\left(u^{2} u^{\prime}\right)=u^{2}\left(u u^{\prime}\right)=0, u^{2} v^{2}+4(u v)^{2}=2 v\left(u^{2} v\right), v\left(v^{2} u\right)=v^{2}(v u)$, $v^{2}\left(v v^{\prime}\right)=v\left(v^{2} v^{\prime}\right)=0$, and $v^{4}=0$. By using these relations we prove that $\left(x^{2}\right)^{2}-w(x) x^{3}=4(u v) v^{2}+\left[u^{2} v^{2}+2 v\left(u^{2} v\right)\right]$.

By setting $x=e, y=u, z=v^{2}$, and $t=v$ in (12) and by using $U V_{2} \subseteq U, V_{2}^{2} \subseteq V_{2}$, we have $u v^{3}=\left(u v^{2}\right) v+(u v) v^{2}$. But $\left(u v^{2}\right) v=(u v) v^{2}$; hence, $u v^{3}=2(u v) v^{2}$. Since $v^{3}=0$, we have $(u v) v^{2}=0$. Finally, Jacobi's identity in V_{2} and $U^{2} \subseteq V_{2}$ imply that $2 v\left(v u^{2}\right)=-v^{2} u^{2}$. Therefore, $\left(x^{2}\right)^{2}-$ $w(x) x^{3}=0$.

Corollary 2.4. Every baric algebra satisfying the identity $\left(x^{2}\right)^{2}=$ $w(x) x^{3}$ also satisfies $x^{4}-w(x) x^{3}=0$.

Proof. Since from Theorem 2.2 we have power associativity, Equation (1) immediatcly gives $x^{4}-w(x) x^{3}=0$.

Recall the sets

$$
B_{1}=\left\{(A, w) \mid\left(x^{2}\right)^{2}=w(x) x^{3}\right\}
$$

and

$$
B_{2}=\left\{(A, w) \mid x^{4}=w(x) x^{3}\right\}
$$

From Corollary 2.4, we have

$$
B_{1} \subseteq B_{2}
$$

but in general, we have a proper containement, as we can see in the following examples:

Example 1. Let $A=\left\langle e, x_{1}, x_{2}, x_{3}\right\rangle$ be an algebra with the following multiplication table: $e^{2}=e, e x_{1}=x_{1} e=\frac{1}{2} x_{1}, e x_{3}=x_{3} e=x_{2}, x_{3}^{2}=x_{2}$, all other products being zero. Then A is a commutative algebra. Moreover, $w: A \rightarrow K$ defined by $w(e)=1, w\left(x_{i}\right)=0, i=1,2,3$, is its weight function. So A is a baric algebra satisfying $x^{4}-w(x) x^{3}=0$, and if $a=e+x_{3}$ then $\left(a^{2}\right)^{2}=e$ and $w(a) a^{3}=e+x_{2}$. Therefore, A is an algebra in B_{2} which is not in B_{1}.

Example 2. This example was suggested by the referee (see note 4.9 in [3]). Let $A=Z(n, 2)$ be the zygotic algebra of a diploid population with n alleles and $D(A)$ the commutative duplicate of A. It is known that $D(A)$ is not power-associative, so $\left(x^{2}\right)^{2} \neq x^{4}$ for every $x \in D(A)$. On the other hand, $x^{3}=w(x) x^{2}$ for all $x \in A$, and $y^{4}=w_{d}(y) y^{3}$ for every $y \in D(A)$, where w_{d} is the weight function of $D(A)$. So $D(A)$ is an algebra in B_{2} which is not in B_{1}.

Theorem 2.5. Suppose A satisfies the identity (1). Then A is a special train algebra.

The proof of this theorem follows from Theorem 2.2 and from Theorem 4.6 of [3].

Remark. In [3, note 4.8] Ouattara gives an example of a power-associative Bernstein algebra of order 2, not Jordan, which is not a special train algebra.

The authors wish to thank the referee for his valuable suggestions.

REFERENCES

1 M. T. Alcalde, C. Burgueño, and C. Mallol, Les Pol (n, m)-algèbres, Linear Algebra Appl. 191:215-234 (1993).
2 C. Mallol, A. Micali, and M. Ouattara, Sur les algèbres de Bernstein IV, Linear Algebra Appl. 158:1-26 (1991).
3 M. Ouattara, Sur les algèbres de Bernstein d'ordre 2, Linear Algebra Appl. 144:29-38 (1991).
4 A. Wörz-Busekros, Algebras in Genetics, Lecture Notes in Biomath. 36, Springer-Verlag, New York, 1980.

[^0]: *Research partially supported by Fondecyt 1930843.

