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We construct a topology on the union of the double arrow space (Cantor set version) and the 

integers which is a hereditarily LindelGf hereditarily separable O-dimensional compact Hausdorf? 

space but not the continuous image of a closed subspace of the product of the double arrow 

space and the closed unit interval (answering a question of Fremlin). 
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double arrow space (two arrow space) 

1. Introduction 

This paper originates in the observation that there do not seem to be many 

examples of compact perfectly normal nonmetrizable spaces in ZFC. The fact that 

compact perfectly normal nonmetrizable spaces are hereditarily LindelGf and are 

consistently hereditarily separable seemingly reduces the possibilities to the double 

arrow space of Alexandroff and some minor variations. In particular some pairs of 

points in the double arrow space can be identified and so long as there remain 

uncountably many unidentified pairs, the resulting space remains a compact perfectly 

normal space which is not metrizable. Another variation is to multiply the double 

arrow space by the closed unit interval. It seemed to David Fremlin that these might 

exhaust the possibilities and so Fremlin [2] offered 2 pounds sterling for a solution 

to the problem: Is there, in ZFC, a compact hereditarily Lindelijf space which is 

not the continuous image of a closed subspace of the product of the closed unit 
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interval and the double arrow space? In this paper, we construct such a space, as 

the union of the (Cantor set variant of the) double arrow space and the integers: 

2. The construction 

Let K be the Cantor middle thirds set. Let S be the set of all midpoints of those 

removed middle third intervals. If s E S, let IsI E w be such that s is the midpoint of 

a removed interval of length 3-l”‘. For each p E K, there is a canonical sequence 

p’ = {p(n): n > 0) of elements of S which converges to p: define p(n) to be the closest 

element top such that /p(n)] = n. p( n ) is well-defined because if x is a point midway 

between two elements s i, S,ES where Is,]=IszI= n then XES and IxI<n. Let 

FLIP be a function from K into .9(w). We define a topological space X(FLIP) 

on the set (K x {I, r}) u S. For each p E K and r, u E S where t <p < U, let 

Z(t,p,u)={(p, Z)}u({qcK: t<q<p}x{Z,r})u{scS: tcs<p and s@$}u{p(n): 

nEw and t<p(n)<u and (p(n)>p~nEFLIP(p))v(p(n)<p~nEFLIP(p))} 

and let r(t,p,u)={(p,r)}u({q~K:p<q<u}x{Z,r})u{s~S:p<s<u and 

sG$}u{p(n): nEm and t<p(n)<u and (p(n)<pAnEFLIP(p))v(p(n)> 

p A n ET FLIP(p))}. 

Declare these sets I( t, p, u) and r( t, p, u) to be open and declare the points of S 

to be isolated. Now some elementary facts about these sets, no matter what the 

function FLIP turns out to be. 

Z(f, P, u) c Z(t’, P, u’) and r(t, p, u) c r(t’, p, u’) 

whenever t’s t<p<ucu’; (1) 

Z(t,p, u)n r(f,p, u’) =0; (2) 

(Z(t, p, u) u r(f, p, u)) n (E(t’, P’, u’) u df’, p’, 4) = 0 

whenever t 2 u’; (3) 

Z(t,p, u)ur(t,p, u)c Z(t’,p’, u’)uC’ 

whenever t’<t<p<u<p’<u’ 

and (4) 

Z(f,p,u)ur(t,p,u)=r(t’,p’,u’)~’ 

whenever t’<p’< t <p < us u’. 

(1) and (4) imply that we have defined a topology for X(FLIP) and (2) and (3) 

imply that this a Hausdorff topology. 

Furthermore, as a subspace, K x {I, r} is homeomorphic to a compact subspace 

of the double arrow space (see pp. 270 of [4]). The crucial property of S is that 

any infinite subset A of S has a limit point x in K and thus a limit point (x, r) or 

(x, I) in X(FLIP) (depending on whether A has a monotone sequence converging 
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to x from the left or the right and inside FLIP(x) or outside FLIP(x).) The topological 

properties of X(FLIP) can now be deduced: Any infinite subset of K x (1, r} has a 

limit point as the subspace is compact so the Hausdorff space X( FLIP) is countably 

compact (see pp. 258 of [4]). X(FLIP) is the union of a hereditarily Lindeliif- 

hereditarily separable space and a countable space and is therefore a hereditarily 

Lindelijf hereditarily separable compact Hausdorff space. 

3. The problem of Fremlin 

We shall show that if 9 is any family of 2 tio-many hereditarily separable 

hereditarily Lindelof compact Hausdorff spaces, then X(FLIP) can be defined so 

that it is not the continuous image of any closed subspace of an element of 9. 

First, we can assume 9 is closed hereditary since any element of 5 has at most 

2”o-many closed subspaces (by inequality 9.1 of [3]). Next, any continuous mapping 

f from an element of 5 onto X(FLIP) contains a bijection II from a subspace of 

an element of 9 onto S. There are at most 2Ko-many countable subsets of each 

element of 9 (by inequality 4.10 of [3]) and so at most 2Ko-many possibilities for 

II. List these possibilities with index set K by 

II,: A,+S (~EK) 

where A, is a subset of an element of 9 and ZI, is the restriction of a mapping from 

an X, to S. 

For each r E K let A = If,‘(;). A is an infinite subset of X,. so let B c A be a 

convergent sequence in X, (each element of 9 is sequentially compact). We can 

assume D,(B) lies all on one side of r without loss of generality. 

Choose FLIP(r) such that 

]IT,(B)n{r(n): rr~FLIP(r)}l=w and IIIr(B)\{r(n): n E FLIP(r)}1 = w. 

II, is not the restriction to A, of any continuous function from X, to X(FLIP) since 

B is a convergent sequence in X, while n,(B) has two limit points in X(FLIP). 

This paper is in the tradition of V. Filippov [I] who proved that there are 2“-many 

nonhomeomorphic perfectly normal compact Hausdorff spaces and thus that there 

is no universal perfectly normal compact Hausdorff space. In particular we can let 

K consist of one space, a putative universal space Y, and note that the resulting 

X(FLIP) is not a (necessarily closed) subspace of Y. 
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