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Abstract

Terras [A. Terras, Fourier Analysis on Finite Groups and Applications, Cambridge Univ. Press,
1999] gave a conjecture on the distribution of the eigenvalues of finite upper half plane graphs. This
is known as a finite analogue of Sato–Tate conjecture. There are several modified versions of them.
In this paper, we show that this conjecture is not correct in its original form (i.e., Conjecture 1.1).
This is shown for the calculations of the 3rd and 4th moments of the distribution of the eigenvalues.
We remark that a weaker version of the conjecture (i.e., Conjecture 1.2) may still hold.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We suppose Fq is a finite field with q elements (q odd). For a fixed non-square element
δ ∈ Fq , we define a finite upper half plane as follows:

Hq := Fq

(√
δ
) − Fq = {

x + y
√

δ
∣∣ x, y �= 0 ∈ Fq

}
.
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We can define a distance d between points z and w ∈ Fq :

d(z,w) = N(z − w)

Im z · Imw
,

where z = x + y
√

δ ∈ Hq , and we denote N(z) = x2 − δy2 and Im z = y.
Also, we can define a graph Xq(δ, a) for a ∈ Fq whose vertices are the points of Hq

and whose edges are the pairs of two vertices z, w in Hq such that d(z,w) = a. Then we
define an adjacency matrix Aa by

(Aa)z,w =
{

1, if z is adjacent to w,
0, otherwise.

Terras [10] gave the following conjecture about the distribution of these eigenvalues. This
is known as a finite analogue of the Sato–Tate conjecture.

Conjecture 1.1. Given q , we fix δ. For a �= 0,4δ, the distribution of the eigenvalues of the
upper half plane graphs is asymptotically semi-circle or Sato–Tate distribution. That is,

1

q − 1
�

{
λ

∣∣∣∣ λ√
q

∈ E

}
∼

1

2π

∫
E

√
4 − x2 dx, as q → ∞ ,

for any Borel set E of the interval [−2,2].
Terras gave some modifications of Conjecture 1.1. Conjecture 1.2 is one of them.

Conjecture 1.2. [6] Given q , we fix δ. Let Λ be the multi-set of all eigenvalues of the q − 2
graphs Xq(δ, a), where a runs through F ∗

q with a �= 4δ. Λ has an asymptotic semi-circle
distribution as q → ∞.

Kuang [6] proved that the first moments and the second moments, or average and
variance of the distribution asymptotically match those of the semi-circle distribution for
Conjectures 1.1 and 1.2. In the next section, we will consider the properties and the facts
about finite upper half plane graphs. In Section 3, we will calculate the 3rd and the 4th mo-
ments of the distribution of the eigenvalues. This implies that Conjecture 1.1 is not correct
although Conjecture 1.2 may still hold.

2. Preliminaries

In this section, we will consider the properties and the facts about the finite upper half
plane graphs. See Terras [10] for the proofs.

First, the matrix g = (
a b
c d

) ∈ G = GL(2,Fq) acts transitively on z ∈ Hq by fractional
linear transformation

g · z = az + b ∈ Hq.

cz + d
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So we can identify Hq with G/K , where K is a subgroup of G which fixes
√

δ. That is,

K =
{(

a bδ

b a

) ∣∣∣∣ a, b ∈ Fq, a2 − δb2 �= 0

}
,

which is isomorphic to the multiplicative group Fq(
√

δ)∗.

Proposition 2.1. [10] Assume that q = pr , where p is an odd prime. Suppose that δ is a
non-square in Fq . Let a ∈ Fq .

(1) The graph Xq(δ, a) is a (q + 1)-regular graph provided that a �= 0 or 4δ.
(2) The graphs Xq(δ, a) and Xq(δc2, ac2) are isomorphic for any c ∈ F ∗

q .
(3) The graph Xq(δ, a) is connected, provided that a �= 0,4δ. In fact, the graph Xq(δ, a)

is a Cayley graph for the affine group

Aff(q) =
{(

y x

0 1

) ∣∣∣∣ x, y ∈ Fq, y �= 0

}
,

using the generators

Sq(
√

δ, a) =
{(

y x

0 1

) ∣∣∣∣ x, y ∈ Fq, y �= 0, x2 = ay + δ(y − 1)2
}
.

(4) The K-double cosets for G are represented by the sets Sq(
√

δ, a), for a ∈ Fq .

And our graphs are Ramanujan graphs, k-regular graphs such that for all non-trivial
eigenvalues λ, |λ| � 2

√
k − 1. This definition was given by Lubotzky, Phillips, and Sarnak

[9]. Katz [5] and Li [7,8] independently proved this positively, using different methods.
The eigenvalues of our graphs are given by R. Evans [4]. We call them λj (a)q and let

their multiplicities be mj , j = 0, . . . , q − 1, as in [6]. We recall λ0(a)q = q + 1, m0 = 1
and mj = q − 1, q or q + 1, for j = 1, . . . , q − 1.

Regarding Conjecture 1.1, Terras [10, p. 358] says: “We neglect the multiplicities and
look only at the q − 1 eigenvalues.” But as above, all non-trivial eigenvalues have multi-
plicity q − 1, q , or q + 1. So we do not worry about multiplicity because we may multiply
the sum of the all non-trivial eigenvalues or Eq. (3) (see Section 3) by 1/q .

3. Main results

In this section, we will give the new results and make some preparations. Theorems 3.1
and 3.2 are for Conjecture 1.1. Moreover, in the next section, we will be referring to the
proofs of these theorems, considering Conjecture 1.2.
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Theorem 3.1. The 3rd moment of the distribution of the set {λi(a)q/
√

q | i = 1, . . . , q −1}
asymptotically matches with that of the Sato–Tate semi-circle distribution. That is,

lim
q→∞

1

q − 1

q−1∑
i=1

(
λi(a)q√

q

)3

= 0,

and the limits are uniform and independent of a �= 0 and δ as long as a �= 4δ.

Theorem 3.2. For a ∈ Fq �= 0, 2δ, 4δ, the 4th moment of the distribution of the set
{λi(a)q/

√
q | i = 1, . . . , q − 1} asymptotically matches with that of the Sato–Tate semi-

circle distribution. That is,

lim
q→∞

1

q − 1

q−1∑
i=1

(
λi(a)q√

q

)4

= 2,

and the limits are uniform and independent of a �= 0, 2δ, 4δ and δ.
For a = 2δ, the 4th moment of the above set does not asymptotically match with that of

semi-circle distribution.

The 3rd and 4th moments of the semi-circle distribution are, respectively, 0 and 2. The-
orem 3.1 gives positive evidence to Conjecture 1.1. Theorem 3.2 gives a counterexample.
Now we give one definition for the proof.

Definition 3.3. [1,10] A connected graph X(V,E) is highly regular with collapsed adja-
cency matrix C = (cij ) if and only if for every vertex v ∈ V , there is a partition of V into
sets Vi , i = 1, . . . , n, with V1 = {v}, such that each vertex y ∈ Vi is adjacent to exactly cij

vertices in Vj .

Our graphs are highly regular since we can take Sq(
√

δ, i), i ∈ Fq , as the above partition,
where Sq(

√
δ,0) = {√δ} and Sq(

√
δ,4δ) = {−√

δ}. And it is known that cij is 0, 1, 2 or
q + 1. So we have the following proposition. See Angel [1] for the details of the proof.

Proposition 3.4. [1,10] The graph Xq(δ, a) is highly regular. Also, the entries of the col-
lapsed adjacency matrix of Xq(δ, a) are as follows:

cij =

⎧⎪⎨
⎪⎩

q + 1, if (i, j) = (0, a), (4δ,4δ − a),
2, if Δij is square,
1, if Δij = 0,
0, if Δij is non-square,

(1)

where Δij = δ(i − j)2 + aδ(a − 2i − 2j) + aij.

In view of association scheme [2], Definition 3.3 is not important, and Proposition 3.4
is well known. For it is known that the upper half plane is a symmetric association scheme
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with relation of the distance, and the entry of the collapsed adjacency matrix cij corre-
sponds to the intersection numbers of this association scheme. But here we used the above
definition, as well as Terras [10] and Angel [1].

4. Proof of the main result

We will give the proofs of Theorems 3.1 and 3.2. We use the idea in Biggs [3] that the
number of closed walks of length l in graph is equal to the sum of all l powers of each
eigenvalue of the adjacency matrix. That is, let Nl be the number of the closed walks of the
length l in the graph Xq(δ, a); we have

Nl =
q−1∑
i=0

mi

(
λi(a)q

)l
. (2)

Then we can interpret the lth moments of our distribution as the following limits:

lim
q→∞

1

q − 1

q−1∑
i=1

mi

q

(
λi(a)q√

q

)l

= lim
q→∞

1

q(
√

q)l(q − 1)

{
Nl − (q + 1)l

}
. (3)

So, to get the lth moments, we may count up all the closed walks of length l. Clearly
N1 = 0 and N2 = q(q − 1)(q + 1) for a �= 0,4δ, we get the first and second moments. We
can give another proof of Kuang [6].

Proposition 4.1. For a �= 0,4δ, N3 is given by

N3 =
{2q(q + 1)(q − 1), if a − 3δ is square,

q(q + 1)(q − 1), if a − 3δ = 0,
0, if a − 3δ is non-square.

(4)

Proof. Since G acts transitively on Hq , we consider the closed walks whose origin and
terminal are

√
δ. If two vertices z1 and z2 in Sq(

√
δ, a) are adjacent, we get such walk. In

other words, if the entry in position (a, a) of the collapsed adjacency matrix is one or two,
we have one or two triangles for one vertex in Sq(

√
δ, a).

Since Δa,a = a2(a − 3δ), when a − 3δ = 0, we have the one walk {√δ, z1, z2,
√

δ}
for all z1 ∈ Sq(

√
δ, a), where z1 ∈ Sq(

√
δ, a) is adjacent to z2. By Proposition 2.1(4),

Sq(
√

δ, a) = Kza for za ∈ Sq(
√

δ, a). So, we have such |K| walks, then N3 = q(q+1)(q−
1).

For a such that a − 3δ is a square, as well as above, we have N3 = 2q(q + 1)(q − 1).
The factor 2 causes from that we have the two closed walks whose origin and terminal are√

δ for all z1 ∈ Sq(
√

δ, a) because Δa,a is a square. �
Before Proposition 4.4 which gives the number of the walks of length 4, we give some

preliminary propositions.
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Proposition 4.2. Let Q be the set of squares in F ∗
q , and let N be the set of non-squares

in F ∗
q . For any c ∈ F ∗

q , we have

∣∣(N + c) ∩ Q
∣∣ = 1

4

{
q − 1 − ε(c) + ε(−c)

}
,

∣∣(N + c) ∩ N
∣∣ = 1

4

{
q − 3 + ε(c) + ε(−c)

}
.

Here ε is a non-trivial quadratic character of F ∗
q and N + c = {y + c | y ∈ F ∗

q }.

Proof. We can consider ε as a multiplicative character of Fq , that is,

ε(x) =
{1, if x is square,

0, if x = 0,
−1, if x is non-square.

We calculate

∑
x∈F ∗

q

ε(x)ε(x + c) =
∑
x∈F ∗

q

ε
(
x2)ε(1 + x−1c

) =
∑
x∈Fq

ε
(
1 + x−1c

) − ε(1) = −1.

Also, we have

∑
x∈F ∗

q

ε(x)ε(x + c) =
∑
x∈Q

ε(x)ε(x + c) +
∑
x∈N

ε(x)ε(x + c)

=
∑
x∈Q

ε(x + c) −
∑
x∈N

ε(x + c).

So, we have

∑
x∈Q

ε(x + c) −
∑
x∈N

ε(x + c) = −1. (5)

Since the sum of ε over Fq is zero, we have

∑
x∈Q

ε(x + c) +
∑
x∈N

ε(x + c) =
∑
x∈F ∗

q

ε(x + c) = −ε(c). (6)

By (5) and (6), we get the equation

∑
ε(x + c) = 1

2

(
1 − ε(c)

)
. (7)
x∈N
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Moreover, we have∑
x∈N

ε(x + c) =
∑
x∈N

x+c∈Q

ε(x + c) +
∑
x∈N

x+c∈N

ε(x + c) = ∣∣(N + c) ∩ Q
∣∣ − ∣∣(N + c) ∩ N

∣∣.

So Eq. (7) implies

∣∣(N + c) ∩ Q
∣∣ − ∣∣(N + c) ∩ N

∣∣ = 1

2

(
1 − ε(c)

)
. (8)

Also, we have

∣∣(N + c) ∩ Q
∣∣ + ∣∣(N + c) ∩ N

∣∣ = ∣∣(N + c) ∩ F ∗
q

∣∣
=

{
q−1

2 − 1, if −c ∈ N , that is, 0 ∈ N + c,
q−1

2 , if −c ∈ Q.

Therefore, we get the equation

∣∣(N + c) ∩ Q
∣∣ + ∣∣(N + c) ∩ N

∣∣ = q − 1

2
+ 1

2

(
ε(−c) − 1

)
. (9)

By Eqs. (8) and (9), we get the proposition. �
Proposition 4.3. The number of elements of {n ∈ F ∗

q | Δn,a is square} is 1
2 (q + ε(−1)).

Proof. We have the equation

Δn,a = n(nδ + a2 − 4aδ) = δ

{(
n + a(a − 4δ)

2δ

)2

−
(

a(a − 4δ)

2δ

)2}
.

Suppose that Δn,a = δk, where k is non-square and k + (
a(a−4δ)

2δ

)2 is square. For such k,
the equation Δn,a = δk has two solutions for n. And the equation has only one solution for

k such that k + (
a(a−4δ)

2δ

)2 = 0.
By Proposition 4.2, the number of choices of such k is

∣∣∣∣
{
k +

(
a(a − 4δ)

2δ

)2

∈ Q

∣∣∣∣ k ∈ N

}∣∣∣∣ =
∣∣∣∣
(

N +
(

a(a − 4δ)

2δ

)2)
∩ Q

∣∣∣∣
= 1

4

{
q − 2 + ε(−1)

}
.

Therefore, we have

∣∣{n ∈ F ∗
q

∣∣ Δn,a is square
}∣∣ = 2 × 1{

q − 2 + ε(−1)
} + 1 = 1{

q + ε(−1)
}
. �
4 2
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Now, we are ready to give the number of the walks of length 4. We will prove this in the
same way as in the proof of Proposition 4.1.

Proposition 4.4. For a �= 0,4δ, N4 is given by

N4 =
{

q(q + 1)(q − 1)(4q + 2ε(−1) + 2), if a = 2δ,
q(q + 1)(q − 1)(3q + 2ε(−1) + 2), if a �= 2δ,

(10)

where ε is a quadratic character of F ∗
q .

Proof. We consider the closed walks of length 4 whose origin and terminal are
√

δ. If Δn,a

is a square, there exist two edges from one vertex x + y
√

δ ∈ Sq(
√

δ,n) to two different
vertices in Sq(

√
δ, a). So, for x + y

√
δ ∈ Sq(

√
δ,n), we have a 4-cycle containing

√
δ and

x + y
√

δ. Since Sq(
√

δ,4δ) = {−√
δ} and

Δ4δ,a = 4δ(a − 2δ)2 =
{

0, if a = 2δ,
non-square, if a �= 2δ,

we have two cases according to whether a is 2δ or not.
When a �= 2δ, for n such that Δn,a is a square, we get the above 4-cycle, and there is

a path of length 2 whose origin is
√

δ in that cycle. Also, for n such that Δn,a = 0, that
is, n = a(4δ−a)

δ
, we have q + 1 paths of length 2 whose origin is

√
δ. Clearly, the path of

length 2 is a walk of length 4. So, we have

N4 =
[{

(q + 1) × 2 × 1

2

(
q + ε(−1)

)}

+
{
(q + 1) × 2 × 1

2

(
q + ε(−1)

) + (q + 1) + q(q + 1)

}
+ (q + 1)

]
× q(q − 1).

Similarly, when a = 2δ, we get the above 4-cycles and the paths of length 2 on these
cycles, for n such that Δn,a is a square. For n such that Δn,a = 0, that is, n = 4δ, all q + 1
vertices in Sq(

√
δ, a) are adjacent to −√

δ in Sq(
√

δ,4δ). Taking two different vertices z1,
z2 ∈ Sq(

√
δ, a), we have a 4-cycle whose vertices are

√
δ, z1, z2 and −√

δ. The number of
these 4-cycles is

(
q+1

2

)
. Therefore, we have

N4 =
[{

(q + 1) × 2 × 1

2

(
q + ε(−1)

) + 2 ×
(

q + 1

2

)}

+
{
(q + 1) × 2 × 1

2

(
q + ε(−1)

) + (q + 1) + q(q + 1)

}
+ (q + 1)

]
× q(q − 1).

Thus we obtain the proposition. �
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We finished preparations to prove Theorems 3.1 and 3.2. First, by Proposition 4.1, for
a �= 0,4δ, we have

0 � N3 � 2q(q − 1)(q + 1).

By (3), this inequality implies Theorem 3.1.
Next, by Proposition 4.4, for a �= 0,2δ,4δ, we have

1

q − 1

q−1∑
i=1

mi

q

(
λi(a)q√

q

)4

= q + 1

q3(q − 1)

{
2q3 + (

2ε(−1) − 4
)
q2 − (

2ε(−1) + 5
) − 1

}
.

This equation implies Theorem 3.2. Moreover, for a = 2δ the coefficient of q3 in the nu-
merator of the above equation is 3, the result of (3) is 3. But it is not the 4th moment of the
semi-circle.

Finally, using Propositions 4.1 and 4.4, we consider about Conjecture 1.2. Using Propo-
sition 4.2, we have∣∣{a − 3δ ∈ Q

∣∣ a ∈ F ∗
q , a �= 4δ

}∣∣ = 1

2

(
q − 2 + ε(−3)

)
.

So, we have the equations

∑
a∈F ∗

q

a �=4δ

q−1∑
i=1

mi

(
λi(a)q

)3 = (q + 1)
{(

ε(−3) − 2
)
q2 − (

4 + ε(−3)
)
q − 2

}
,

∑
a∈F ∗

q

a �=4δ

q−1∑
i=1

mi

(
λi(a)q

)4 = (q + 1)
{
2q4 + (

2ε(−1) − 1
)
q3 + (−2ε(−1) − 4

)
q2

+ (−4ε(−1) + 1
)
q + 2

}
.

These two equations imply the following corollary.

Corollary 4.5. Given q , we fix δ. Let Λ be the multi-set of all eigenvalues of the q − 2
graphs Xq(δ, a), where a runs through F ∗

q with a �= 4δ. The 3rd and 4th moment of the
distribution of the set Λ asymptotically match with those of the semi-circle distribution.
That is,

lim
q→∞

1

(q − 1)(q − 2)

∑
a∈F ∗

q

a �=4δ

q−1∑
i=1

(
λi(a)q√

q

)3

= 0

and

lim
q→∞

1

(q − 1)(q − 2)

∑
a∈F ∗

q

q−1∑
i=1

(
λi(a)q√

q

)4

= 2.
a �=4δ
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5. Remarks

By Theorem 3.2, we have a counterexample a = 2δ for Conjecture 1.1. So we have
to modify Conjecture 1.1. One such modification might be Conjecture 1.2. Then Conjec-
ture 1.2 is given positive evidences by Corollary 4.5, and its validity is an open problem.
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