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Abstract

We study¥”, , of all a € @' such that(a *, ¢, ¢) > 0 for everygp C8°, wherex, denotes the
twisted convolution. We prove that certain boundedness: ferﬁfﬁr are completely determined of
the behaviour for at origin, for example that € ¥, and that ifa(0) < oo, thena € L2 N L>®. We
use the results in order to determine wether positive pseudo-differential operators belong to certain
Schatten-casses or not.
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0. Introduction

The aim of the paper is to consider general positivity properties for noncommutative
convolution algebras, especially in the algebra of twisted convolution={thalgebra),
from a somewhat abstract point of view. A motivation for this is the close relation
between positivity in the, -algebra, positivity in operator theory and positivity in pseudo-
differential calculus. In fact, the ideas for handling these questions were originally raised
when discussing positivity in the Weyl calculus of pseudo-differential operators, and
the results presented here also apply immediately to this calculus. In particular we
may express the well-known lower bound results due to Garding, Melin, Hérmander
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and Fefferman/Phong (cf. [6], Theorem 6.2 in [3] and [1]) in terms of thealgebra.
However, we emphasize that one does not need to know anything about Weyl calculus
in order to appreciate the results, since the theory is formulated within the framework of
noncommutative convolution algebras.

Another motivation is that positivity results in the -algebra might be a source of
inspiration for positivity results in other situations. An example of this is the extension of
the Bochner—Schwartz theorem, which asserts that any distribution, which is positive in the
usual convolution algebra, must be a tempered distribution (cf. Theorem 1X.10 in [7]). This
was first proved in the, -algebra, but the results presented here are valid for a large class
of noncommutative convolution algebras. We also give an example where the technique in
the proof is applied to obtain a general positivity result for linear operators in distribution
theory (cf. Theorem 2.8).

In order to describe our results in more detail, we shall now give some necessary
definitions. LetV be a linear vector space of dimension< oo, and letW = T*V =
V @ V', whereV’ is the dual forV. ThenW is a symplectic vector space with symplectic
formo (X, Y) = (y, &) — (x,n), whereX = (x, &) e W andY = (y,n) € W.

The twisted convolutior,, is then defined by the formula

(a *4 b)(X) = (2/7)"/? / a(X = Y)b(Y)e# XN gy (0.1)

whena,b € LY(W). (Cf. [2] or [9-12].) Here and in what follows we use the same
notation for the usual functions and distribution spaces as in [4]. The definitiey of
extends in different ways. It extends for example to a continuous bilinear mapping from
PD'(W) x CgF(W) to 9'(W). We are then concerned with the sét (W) of positive
elements in the -algebra, i.e. the set of alle %' (W) such thai(a *, ¢, ¢) > 0 for every
¢ € C3°(W). Here(a, ¢) = (a, ¢), where(-, ) denotes the duality between elements in
C5° and%'. (A motivation for using¥’, instead of%’_ is given by Theorem 2.6 below.)
We note also that the term, -algebra is not very proper sin€# is not an algebra under
*o . (Itis however aC3°-module undek,, where(Cg°, *,) is an algebra.)
It might seem hard to find common structures for the positivity results intk@gebra,
but there are indeed such ones. In fact, in most of our results, the following principle holds:
Assume that € &, . If a satisfies a certain regularity or boundedness property at the
origin, thena and its Fourier transforné = %a satisfy the same regularity or boundedness
property everywhere.
We prove for example the following results:

(i) (Growth properties at infinity If a € ¥’ , thena € &’ (cf. Proposition 2.8).

(i) (Local boundedness with respect to Fourief-spaces If a € ¥/ and xa € FL?
for somey € & which is nonzero at the origin, thefia € FL” andvya € FL?, for
any ¢ € ¥. A generalization to weighted Fouridr’-spaces is also presented (cf.
Proposition 4.9 and Corollary 4.12).

(iii) (Classical regularity questionglf a € &, is aC?N -function near the origin for some
integer N > 0, thena anda belong toC?". Moreover,X* Dfa € L2 N Cy when
la + B] < N, and similarly fora (cf. Theorem 3.13). Here and in what follows we let
Cp(W) be the set of continuous functions @i, vanishing at the infinity.
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(iv) (Regularity in the framework of micro-local analy3if « € ¥, and(0,Y) ¢ W F (a),
then(X,Y) ¢ WF(a) and(X,Y) ¢ WF(%,a) foreveryX € W. (Cf. Theorem 4.15.)
Here WF(a) c W x (W \ {0}) denotes the wave-front set far and %, is the
symplectic Fourier transform given by (0.6) below.

The assertion (i) is based on our generalization of the Bochner-Schwartz theorem to
weighted convolutions of the type

(a*p@)(x)= /a(x - e()B(x,y)dy, 0.2)

whena, ¢ € C3°(R™). Here we require thaB € C*°(R™ @ R™) is nonzero, and that
B(x,y), B(x,y)~! and their derivatives do not grow faster than polynomials. It is then
clear that the definition ofp extends in similar ways as, above, and we prove that
if a € 2'(R™) is positive in the sense that x5 ¢, @) > 0 for everyp € C3°(R™), then
a € ¥ (R™) (cf. Theorem 2.6).

We note that ifB(x, y) = 1 everywhere, then we obtain the Bochner—Schwartz theorem
in its original shape.

In order to discuss connections between positivity insthealgebra and positivity in
operator algebras a#i(V) we recall the operataa in [9-12], which is a mapping from
' (W) to the set of continuous operators fréfV) to ¥’ (V). Assume first that € ¥(W).
ThenAa is the operator with Schwartz kernel given by

(Aa)(x, y) = (27) "2 / a((y — x)/2.6)e ) g 0.3)

For generak € ¥ (W), Aa is defined by continuous extension, if&a = (T o @gl)a,
whereTU (x, y) =U((y — x)/2, —(x + y)) and %2 denotes the partial Fourier transform
of

FE&) =F1 @) = @02 / &8 () dx 0.4)

with respect to the second variable. Here and in what follows we identify operators with
their Schwartz kernels.

The main relation between positivity i, -algebra and positivity in operator theory is
thenthat € ¥’ (W) ifand only if ((Aa) f, f) > O foreveryf € #(V) (i.e. Aa is a positive
semi-definite operator a#i(V)). (Cf. [9-12], or Proposition 1.10 below.)

For the reader familiar with the Weyl calculus we observe also the similarities between
the Aa and the Weyl quantizatiom®™ (x, D), given by

" (x, D) f(x) = (27)" / / a((x +y)/2.€) f ()8 dy de, (0.5)

whena € (W) and f € (V). (Cf. [4,5] or [9-12].) It follows from (0.3) and (0.5) that

the integral kernel ofi” (x, D) is (27)~"/2(Aa)(—x, y). A somewhat more “symplectic
elegant” way to express this connection might be done by using the symplectic Fourier
transform ort¥’ (W), whose restriction t& (W) is defined by

a(X) = (Foa)(X) En_”/a(Y)eZi”(X’y)dY. (0.6)
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Then we have that™(x, D) = (2rn)"/2A(%,a), and it follows from the above that
a"(x, D) >0, ifand only if (¥,a) € ¥, (W). This implies also that" (x, D) is bounded
from below (i.e. for some constagt> 0 then(a¥(x, D) f, ) > —C||f||i2 holds for any
feP(V)),ifand only if F,a + Cp € ¥, for some constard > 0. In the lower bound
results due to Melin (cf. [6]), Hormander (cf. Theorem 6.2 in [3]), Feffermann/Phong
(cf. [1]) and the author (cf. Theorem 4.5 in [10]), one gives sufficient and sometimes
necessary conditions an in order to thata™ (x, D) should be lower bounded. In the
last section we explicitely write down some consequences of our investigations in pseudo-
differential calculus.

Next we shall discuss the notion @fpositivity, an analogue to the definition of positive
definite functions, and which is also deeply related to positivity ingh@lgebra. Assume
thata € C(W). Then we say that is o -positiveif

M
> alXj - Xp)e XX e > 0, (0.7)
jk=1

for all pairs of sequenceX1,..., Xy € W andcy,...,cy € C. We let C(W) be
the set ofo-positive functions. By a slight reformulation one obtains tligt(W) =

g (W) N C(W). We will prove thatC, (W) C s1(W), wheresi (W) is the set of all

a € (W) such thatda (or alternativelya™ (x, D)) is a trace class operator drf(V).
More generally, we prove that it € ¥’ (W) satisfies a vague boundary condition at
the origin, thena € s1(W) is o-positive (cf. Theorem 3.3). We obtain (iii) in case
N =0 on p. 2 from this since; ¢ L2 N Cz and F,s1 = s1. (See [9-12] or Section 1
below.) This gives a complete characterization of thgositive functions as the set
of all a € ¥ (W) such thatAa (or alternatively (¥,a)*(x, D)) is a positive semi-
definite trace class operator ab?(V). In the usual convolution algebra, the result
corresponds to Bochner's theorem which completely characterizes the set of positive
definite functions.

According to the last considerations, we discuss also necessary and sufficient conditions
on elements irt#’ (W) in order to belong ta, (W), the set of alla € ¥'(W) such that
Aa (or alternativelya® (x, D)) is a Schatten—von Neumann operator of order[1, oo]
on L2(V). We prove for generai thatifa € ¥, (W) andy, ¥ € $(W) such that (0) # 0,
thena e s, if and only if xa € s, and(1 — ¢)a € s, (cf. Corollary 4.12). From the same
proof one also obtains (ii) above.

An important ingredient in the proof of the last result is the existence of nonzero
elements inC;. (W) with small supports at origin. This gives rise to questions concerning
support properties for elements i (W), and in the last section we prove that there
are no nontriviala € ¥’ (W) such thata has compact support. In this section we
also discuss some other properties for element$’in and complete some discussions
from [12]. We prove, for example, thaf,, ¥, s1 and s, are not invariant under
dilations, and that elements i6i,. (W) might be negative (as functions d#) on quite
large sets.

We finally remark that the paper is in many sense a completion of [12], where one
discusses some general continuity questions for the twisted convolution andshaces.
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1. Preliminaries

In this section we review some continuity results concerning the twisted convolution,
the operatord and thes,-spaces which we did encounter in the introduction. We omit the
proofs since they can be found in Section 1.4 in [9], Section 1.1 in [10] and in Section 1
in [12].

In order to formulate our problems in a coordinate invariant way, we shall, as in [12],
consider the usual function and distribution spaces on-tienensional vector spadg, as
densities with values it21/2(V), the set of all mappings : A"V — C such thaju(rw) =
11121 (w), whent € R\ {0} andw € A"(V). (The reader not interested in this coordinate
invariant view may consideV as R".) This means thaC{® (V) = C5°(V; 2Y2(v))
and similarly for other function and distribution spaces, and thaf, § € ¥(V) and
w=e1 A - Aey, then

(f, 8 = / fxier+ -+ xpep; w)g(x1er + - - + xpep; w)dxy - - dxy
Rll

is independent on the choice of basis. .., ¢, for V. After extending the forni-, -) in
usual ways, it follows that we may identify the dual spaceSHf(V), (V) or L?(V) with
9'(V), ¥ (V) andL?(V) respectively, as usual. We also (¢t g) = (f, ) for admissiblef
andg. The restriction of -, -) to L? is the then usual scalar product.

Assume next thaW is a Zi-dimensional symplectic vector space, with symplectic
form o. Then2/2(W) ~ C, and the usual functions and distributions may be considered
as scalar valued. Ifx, &) = (x1,...,x,, &1, ..., &,) are symplectic coordinates such that
a((x,8), (y,m) = (y,§) = (x,m) then fy, f(X)dX = [fpu g f(x, §) dx d§. This shows
also thatW may be represented &8 = T*V =V @ V’/, whereV is a vector space of
dimension, andV’ is the dual ofV with duality inherited from the symplectic form.

We recall that the symplectic Fourier transfodw. in (0.6) is a homeomorphism
on ¥(W) which extends to a homeomorphism 6AW), which is unitary onL2. One
has tha@??, is the identity map o' (W), and that

Fo(ara2) =1 "Fpa1 * Fean, Fo (a1 *az) =n"Fsa1Faz, (1.2)

whenaz, az € $(W).

Next we shall discuss the operatdrand the twisted convolution. One has thais
a homeomorphism frorff(W) to $(V @ V), which extends to a homeomorphism from
$'(W) to ¥ (V @ V), and to a unitary map oh?, since similar facts are true fat and %,
after (0.3).

An important relation between the operatér the twisted convolution product and
operator algebras d#(V) is given by

A(a *4 b) = (Aa) o (Ab), (1.2)

whena, b € $(W). (By duality it follows that (1.2) holds also when b € ¥’ (W) such
thata € (W) or b € ¥(W).) The homomorphism (1.2) together with the simple character
of the twisted convolution and the similarities betwetenanda® (x, D), give motivations

for using the twisted convolution and the quantizatiom in the Weyl calculus. We note
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for example that the Weyl product #, defined b)) (x, D) = a™ (x, D)b¥ (x, D), is in
many situations more technical than the twisted convolution.

In the following lemma we list some important properties of the operatand the
twisted convolution.

Lemma 1.1. Let A be the operator if0.3)and letU = Aa wherea € ¥'(T*V). Then the
following are true

() U= Ad, whered(X) =a(—X), for everyX e T*V;
(i) JeU = A%ya = (2n)"%a™ (x, D), whereJzU (x, y) = U(—x, y);
(i) the Hilbert space adjoint ofla equalsAa, wherea(X) = a(—X);
(iv) if a1, a2,az3 € (W), then(ay *, a2) *; a3 = a1 *, (a2 *; az) and (a1 *, az, a3z) =
(a1, as *q a2);
V) AT, &) =) ™2 [U(y/2—x,y/2+x)eV 5 dy.

Next we discuss elements of rank one. From [9,10,12] we recallitkai.?(W) is
calledsimpleif u =it %, u and||u||;2 = 1.

Proposition 1.3. Assume that € ¥'(W). Then the following conditions are equivalent.

(1) uis simple
(2) Au= (27)"/*(F,u)" (x, D) is an orthonormal projection of rank one
(3) u=A"Y(f ® f), for some unit vectof € L>(V).

Remark 1.4. We note that the set of simple elements is invariant under compositions
by linear symplectic mappings. (Recall that the ni&pn W is called symplectic if
o(TX, TY)=0(X,Y)foreveryX,Y € W.) In fact, it follows easily that itz is simple,T

is a linear symplectic map anty =u o T, thenur =it *; ur and|lur| 2 = 1, which
proves the assertion.

We shall also consider the s&&(W) of all sequencegv;) in L2(W) such that
lvill;2 =1, U; %, v; is simple andv; %, vy = 0 whenj # k. Then(v;) € B(W), if
and only if Av; = f; ® g; for every j, where(f;), (g;) € ON(V). Here ONV) is
the family of orthonormal sets iL2(V). We let also®%(W) be the set of all finite
sequencesv;) € B(W) such thatv; e $(W) for every j. Then(v;) BO(W), if and
only if Av; = f; ® g;, for some(f;), (gj) € ONo(V), where ON(V) is the set of all
finite sequencesf;) € ON(V) such thatf; € #(V) for every;.

We shall now discuss the Schatten—von Neumann classes, ang-8paces from
the introduction. Assume that € [1, oc]. Then$,, the set of Schatten—von Neumann
operators of ordep on L2(V), consists of all operatot on L2(V) such that

17115, =sup|((Tf7. 81) =4 ll10 (1.3)
is finite. (Cf. [8].) Here the supremum is taken over(g:;‘l});o 1 and(gj)§o 1IN ON(V) (or

alternatively in ON(V)). We note that¥1, $2 and$, are the sets of trace-class, Hilbert—
Schmidt and continuous operators bArespectively.
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We recall that, (W) consists of al € ¥'(W) such thatda € $,, which is the same as
a"(x, D) € I,. The topology on, (W) is then defined by the norif||s, = || Aalls,, and
it follows that the mag: — Aa from s, (W) to 9, is an isometric homeomorphism. We
also lets2 (W) be the set of all: € /(W) such thatAa is compact orL?(V).

Proposition 1.5. The following holds for the,-spaces

(1) the sets, (W), p € [1, oc], is a Banach space. [f1 < p2 < oo, then¥ C s, Cs5p, C
5% C Soo- ONE has|alls,, < llalls,, < llalls,, andlallz~ < (2/7)"/?|alls,. It holds
thats, = L2 with equality in norms, and that ¢ Cp;

(2) assume thap, p’ € [1, o] satisfiesl/p + 1/p’ = 1. Then the product§, -) and (-, -)
on ¥(W) extends uniquely to dualities betwegi(W) ands, (W), and one has for
everya € s,(W) andb € s,y (W) that

max(|(a, b)l, |(a, b)]) < llalls, 1615, llalls, = Sud(a, ¢)| = sup(a, )|,

where the supremums should be taken over alk, (W) such thaulcllsp/ =1;

(3) the set¥(W) is dense irs, (W), whenp < oo, and insgo(W). It is dense insqo (W)
with respect to the wedkopology.

The trace of an element € s1(W) is defined by t€z) = Tr(Aa), where the right-
hand side is the usual trace defined on the operator glgsse. if T € $1, then T(T) =
> (Tf;, fj), where(f;) is an orthonormal basis fdr2(V). Itis often convenient to use the
trace when dealing with positivity questions in operator calculus. Indeed, foF ang1,
we have thal Tr(T)| < ||T|l¢,, and that T¢T) = ||T||¢, if and only if 7 is a positive
semi-definite operator. This in turn implies the¢ s1 (W) and ta) = ||a||5, if and only if
a € ¥ (W) andAa is a positive semi-definite trace-class operator.

Proposition 1.6. Assume that € (W) and p € [1, co]. Then the following is true

(1) the mappings: — Aa anda — a"¥(x, D) are homeomorphisms frosp (W) to $,.
Moreover,[la® (x, D)ls, = (27)~"/?|al,;

(2) one hasthatjalls, =sup}_ I(a, uj)|1’)1/1’, where the supremum should be taken over
all sequencesu ;) € B(W). It suffices to take the supremum over@l}) BOW).
In particular, [|a||s, is independent of the choice of symplectic coordinate®on

(3) if a € s1(W), thentr(a) = (7r/2)"/?a(0). Moreover,(r/2)"/%a(0) = |la|s,, if and only
if Aa is a positive semi-definite trace-class operator.

In the next result we discuss extensions of the twisted convolution product.

Proposition 1.7. Assume thap, g, r € [1, oc] satisfies the Holder conditioly p + 1/g =
1/r. Then the twisted convolution and the Weyl product extend uniquely to continuous
bilinear mappings from, (W) x s, (W) to s, (W), and for anya € s, (W) andb € s, (W)
one haslla *¢ b|ls, < llals,lIblls,- On the other hand, it € s, (W), thenc = a *; b
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and [lcls, = llalls,lI2lls,, for some choice o& € s,(W) and b € s, (W). If in addition
ce¥ (W)yandp =g, thenc =a*, a and|c|, = ||a||szp for somea € 5,(W).
Moreover,(1.2)is still valid whena, b € soo (W).

In the following proposition we consider decomposition of elements in jhepaces.

Proposition 1.8. Assume that € sgo(W). Then for soméu ;) € B(W) andr = (A;) € I
suchthat0 < A; — 0asj — oo, one has that = ) A ;u ;, with convergence i, (W).
If 1< p < oo, thena € 5,(W) if and only ifA € 17, and then|a|ls, = [[All;» and Y 4 ju;;
converges i, (W).

Moreover, ifa € ¥/ (W) N sgo(W), thenu ; is simple when. ; # 0.

Next we discuss relations between the symplectic Fourier transform, composition by
affine symplectic transformations and the twisted convolution.

Proposition 1.9. The symplectic Fourier transform and composition by any affine
symplectic transformation oW are unitary mappings osfo(W) and ons, (W), for every
1< p<oo.Ifa,bess (W), then

Fo(a *q b) = (Foa) %o b =a x5 (Fob). (1.4)

We note that ifAu = f ® f where f € $(V), anda € ¥ (W), then ((Aa) f, ) =
(Aa, Au) = (a,u), since A is a unitary map onL?. Hence Lemma 1.1, and the
Propositions 1.3, 1.5, 1.7 and 1.8 give the following.

Proposition 1.10. Assume that € ¥'(W). Then the following conditions are equivalent

(1) (a*s @.p) >0foreveryp e C*(W),i.e.a e (W),

() ((Aa) f, ) = (2m)"2((Foa)" (x, D) f. ) = Ofor every f € #(V);
(3) (a,u) > 0for everyu € (W) which is simple

(4) (a,u) > 0Ofor everyu e ¥ (W) NF(W).

Moreovera € soo (W) NS’ (W) if and only if (a x, ¢, ¢) > O for everyp e L2(W).

Remark 1.11. We note that Remark 1.4 and Proposition 1.10 implies tHatW) is
invariant under composition by linear symplectic transformations.

2. A generalization of Bochner—Schwartz theorem

In this section we shall give an extension of Bochner—Schwartz theorem to noncom-
mutative convolutions of the type (0.2). In the first part we make a somewhat classical
approach to the topic and present some general facts for positive elements in the algebra
which are at the same time continuous functions. The considerations are similar to the
usual treatments for the positive definite functions (cf. Section 1X.2 in [7]).
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We start by introducing the notion a#-positive functions, an analogue of positive
definite functions.

Assume thatt € C(R™). Thena is said to beB-positive (or aB-positive function), if
for every pairs of sequences, ..., cy € C andxy, ..., xy € R™, one has

M
Z a(xj —x)B(xj, xg)cjck = 0. (2.1)
Jok=1
Here and in what follows we assume tliag C*°(R™ @& R™; C), and that for every integer
N > 0 we may find a polynomiaPy onR™ & R™ such that

|B@ (e, »)| + |[Blx, )| 7" < Py(x,y), el <N. (2.2)

We note that if B(x, y) = 1 everywhere, then we obtain the definition of positive
definite functions, treated by Bochner, andRif' is replaced by, and thatB(X,Y) =
e?o(X.Y) “then we obtain the definition ef-positive functions from the introduction. We
let Cp +(R™) denote the set aB-positive functions.

It follows from (2.2) thatB(0, 0) # 0, and by multiplyinga and B with appropriate
constants, we may from now on assume théd, 0) = 1.

Proposition 2.1. Assume that € 9'(R™). Thena € Cp +(R™), if and only ifa is
continuous and satisfiga *p ¢, ¢) > 0, for everyp € Cg°(R™).

Proof. If a € Cp,+ and ¢ € C3° we obtain(a *p ¢, ) > 0 if we approximate the
integral expression of the left-hand side by a Riemann sum. On the other hand; if
continuous anda *p ¢, ) > 0 for everyp € C3°, then (2.1) follows if one chooses

p(x)=Y1 Ge Y ((x — x;)/e) with ¥ € CF°, [ ¥(x) dx # 0 and then lets tend to 0.

Remark 2.2. It follows immediately from Proposition 2.2 thate Cp 5, if and only if
a is continuous and that the operator with Schwartz keutel— y)B(x, y) is positive
semi-definite.

Remark 2.3. Assume thatz € Cp +(R™). Then it follows from Proposition 2.1 and
Remark 2.2 that
a(0)B(x,x) >0, a(x —y)B(x,y)=a(y —x)B(y, x),
2
|a(x — y)B(x, y)| <a(0)?B(x,x)B(y,y) x,yeR™.

From this fact one obtains the following:

(2.3)

(1) if0#a, thena(0) > 0 andB(x, x) > O for everyx € R™;
(2) if (x,y) € £2p, then B(y,x) = c(x — y)B(x,y) for somec € C*®(w) such that
¢(x)c(x)=21andc(0) =1. Herec(x) =c(—x),w={x — y; (x,y) € 2} and

2p={(x,y) eR"®R"; a(x —y) #0for somez € Cp +(R")};

(3) if B(y,x) = B(x, y) for every(x, y), thena = a, wherea(x) = a(—x);
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(4) if B(x,x) < max(|B(x,0)|% |B(0, —x)|?) for everyx € R™, then|a(x)| < a(0) for
everyx e R™.

Remark 2.4. We note here that if2g is nonempty in Remark 2.3, then we may always
reduce ourselves such th&x, y) satisfies one of the following conditions:

(1) B(x,x)=1and|B(x,0)| =1 for everyx € R™;

(2) B(y,x) =c(x—y)B(x, y) when(x, y) € 25, wherec ¢ C*(R™) is even and satisfies
le(x)| = 1 for everyx € R™. If in addition ¢(x) = ¢(x)?, for somegp € C*®, then we
may reduce ourselves such tiBty, x) = B(x, y).

In fact, (1) follows if we first replaceB(x, y) in Proposition 2.1 byBi(x,y) =
B(x, y)(B(x,x)B(y, y))~Y2, and then replace(x) and B1(x, y) with a(x)Bi1(x, 0) and
Bi(x — y,0)"1B1(x, y) respectively. The assertion (2) follows if we replace:) and
B(x, y) in Remark 2.3(2) withu (x)|c(x)| "2 and B(x, y) - |c(x — y)|Y/2.

According to Proposition 2.1, we say thate %'(R™) is a B-positive distribution if
(a *p ¢, ) > 0 for everyp € C3°(R™). The set ofB-positive distributions is denoted by
¥+ (R™). (A motivation for using/; , instead otb; | is given by Theorem 2.6 below.)
Then Proposition 2.1 implies théatp + (R™) = 9’;;,+(R’") N C(R™).

We shall now discuss our generalization of the Bochner—Schwartz theorem to weighted
convolutions. It is then convenient to u$é (R™), the set of allf € C" (R™) such that

Iflan=1flwan= > D> suplx®df f(x)]

| <M |BI<N ¥ER"

is finite for everyM > 0. Then¥V(R™) is a Frechét space, and it is obvious that
gcgNceNnLinL>,

In the following proposition we list some important properties 9. We leave the
simple proof for the reader.

Proposition 2.5. Assume thatv > 0 is an integer and thaB € C*°(R" & R™) satisfies
(2.2)for some polynomiaPy . Then the following is true

(i) if T is a linear homeomorphism d®” anda € ¥V (R™), thena o T € N (R™);
(i) the mapf — B - f is continuous o™ (R™ @ R™);
(i) the weighted convolution produetz in (0.2) is a continuous bilinear mapping
on¥N(R™);
(iv) C§°(R™) is dense irt/N (R™).

Our generalization of the Bochner—Schwartz theorem is the following:

Theorem 2.6. Assume thaB € C*°(R™ & R™) and that for any integeN > 0, there is a

polynomialPy onR™ @ R™ such that(2.2) holds. Ther#, , (R™) C #'(R™).
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Since any distribution has finite orders on compact sets, it follows that Theorem 2.6 is a

consequence of the following result.

Theorem 2.6". Let Ng > 0 be an integer and assume thAte C*°(R™ ¢ R™) satisfies
(2.2)for some polynomiaPy, whereN = 2No. Assume also that € 3 | (R™) satisfies
that xa € @’V (R™), for somey € Cg°(R™) such thaty(0) # 0. Then the mapping
(9, ¥) = (a*xp @, ¥) from CF(R™) x C5°(R™) to C extends uniquely to a continuous
mapping fromMo(R™) x $No(R™) to C. If in addition (2.2)is true for everyN, for some
polynomialsPy, thena € ¥ (R™).

Proof. Sincea € 9)39,+- it follows that(-,-), and|| - ||z, on C5°, are well-defined semi-
scalar product and semi-norm respectively, where

@ V)a=@*p . ¥), and |ol.= (g, 0)2/° = (axp ¢, )Y/, (2.4)

when ¢, ¥ € Cg°(R™). In particular one has the Schwartz inequalityp, V)| <
lellallvlla. We first prove that the magp, ¥) — (¢, ¥), extends to a continuous map
from ¥V x ¥V to C. By Proposition 2.5(iv) it sufficies to prove that for some constant
C > 0 and integeM > 0 we have

[(@, ¥)a| < Cllel o 1l vg,01) @, ¥ € CP(R™). (2.5)

In order to prove (2.5) we take a neighbourh@dd- R™ of the origin such thag #0in
aneighbourhood a2 . By multiplying x a with some appropriate test function if necessary,
we may assume that=1in £2.

Take an even and nonnegative functgpa C3°(R™), which satisfieézjej o(—xj)=
1, for some lattice{x;};c; C R™, and such that supgp+ suppp C §2. By Cauchy—
Schwartz inequality we get

[@.¥)a] < D @) vw)al < D lgjllallvilla: ¢, € CF(R™), (2.6)
Jj.keld jked
whereg;(x) = p(x)¢(x — x;), ¥;(x) = ¥ (x)¢(x — x;). The assertion (2.5) will follow
from (2.6) if we prove that for any/; > 0, there is an intege¥ > 0 and a constardyy, ,
independent o and;j such that

lojlla < Call@llng,an (14 1x;1) (2.7)

In fact, a combination of (2.6) and (2.7) gives

2
(@, ¥)a| < (ch >+ |x,~|)‘Ml) Il N, 1) 19 | . b1
jelJ
and (2.5) follows if we choos#f; > m.

In order to prove (2.7), we note thmojnﬁ = (a, ¢ *p, ¢;), whereg;(x) = ¢;(—x)
as before an®1(x, y) = B(x — y, —y). Then (2.2) is fulfilled for some polynomidty,
whenB is replaced byB;. Since the support @f; (- + x;) is contained in supg, it follows
easily from

(@) *B, §j)(x) =/§0j(x +y+x)e;(y+x))Bi(x, —(y +x;))dy, (2.8)
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that the support a; =, ¢; is contained in2, and that the function in the integral in (2.8)
vanishes outsida1 = {(x, y); x € 2 y € suppp}. Hence

lpj2 = (a, ¢; %8, §;) = (xa, ¢ %8, $;) < Cll@j *B, §;ll (N0

for some constant, sinceya is a distribution of orden.

From (2.2) and the fact that1 is bounded we get for some constadtsand M»,
independent of, that| D* B1(x, —(y +x;))| < C(1+ |Xj|)2M2 when|a| < N and(x, y) €
M. By partial integrations it follows also that for amy| < N, thenD*(¢; xp, ;) is a
sum of terms of the type

f(Dﬂfﬂj)(x +y+x) (D7) (y +x,)(D°By) (x, —(y +x,)) dy,

where|B], |y| < No and|5| < N. This gives|l¢; 5, @;llv.0) < C1(1+ |x;1)2M2]lp; (- +
Xj)”%NO,O), and we may conclude that

M;
lpjlla < C2(1+12;1) 2] 95 ¢ +x)] (4.0
The assertion follows therefore if we prove for evétfy> 0 that
-M
0 C+ 2D ooy < Car(L+ i)™ Nl o, m. (2.9)

for some constant,. By using that(1 + |x;|) < (1+ |x)(1+ |x + x;|) we get for any
M >0 that

L+ 1) " losC+ 5Dl g0y = 2 1@+ 1) 0% (0 +x)9) |

la|<No
<o T pasr o)
lee] <No
(T 1) el )
lee] <No
< Cyllol(vg,m)s

and (2.9) follows.

It remains to prove the last part of the theorem. Assume therefore that fa¥ anQ
we may find a polynomiaPy such that (2.2) holds and I&t: Cg°(R™) — %'(R™) be the
linear operator with Schwartz kern@l, y) — a(x — y)B(x, y). Since(g, ¥)q = (T, V),
it follows from (2.5) thatT extends uniquely to a continuous operator frot(R™)
to ¥(R™). Hencea(x — y)B(x, y) € ¥ (R™ & R™) by the kernel theorem of Schwartz,
and from (i) and (ii) in Proposition 2.5 it follows that® 1 € ¥'(R™ @ R™). This implies
thata € ¥'(R™), and the theorem follows.

Remark 2.7. In the classical Bochner—Schwartz theorem one has also that EP/B,+-
with B = 1 everywhere and thata € %'?"o for some integetNg > 0 andy € Cg° such
that x (0) # 0, thena € %20, If this is true for generaB in Theorem 2.6 is not known to
the author.
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In the special casB(X, Y) = e2°X-¥) we can say more.

Proposition 2.8. Let W be a finite dimensional symplectic vector spatde= 2Ng >

0 is even, and assume thate ¥’ (W) such thatxa € 9'N for somey e Ce (W)
which satisfiesy (0) # 0. Then the mappings$e, ¥) — (a %, ¢, ¥) and (¢, V) +—
(Foa) %o @, ) from C5°(W) x C5°(W) to C extend to continuous bilinear mappings
from $No(W) x $No(W) to C. Moreoverd, (W) C &' (W).

Proof. The result except the assertion concernindollows immediately from Theo-
rem 2.6 and Theorem 2.@ith B(X,Y) = %o (X.1),

In order to prove the extension f@p, ¥) — ((F,a) *, ¢, ¥) it follows from the proof
of Theorem 2.6that it sufficies to prove that

|((Foa) 6 0, ¥)| < Cllolvo. ) IV lNo. a1y, @, % € CGE(W), (2.9)
for some constant® andC. By Proposition 1.9 and Schwartz inequality we get
[((Foa) xo ¢, ¥)| = (@ %6 9. Fo¥)| = [(9. Fo ¥)a| < ll@llallFo¥lla,

and sincg|¢|l, < C1/2||<p||(N0,M), for someM, by (2.5), the assertion follows if we prove
that||Fs ¥ lla < CllY (v, m)- From Proposition 1.9 we have that

1T ¥ 112 = (a %5 Fotr, Fo) = (%6 ¥, ) = (@ %0 ¥, ¥) = |V]|2,

and the result follows sincy [l < CIIV l(ve.m) = ClI¥ | (no. - The proof is complete.

The technique used in the proof of Theorem 2.6 works also in other situations, for
example in the following result. We leave the verifications for the reader.

Theorem 2.9. Assume thal is a continuous and linear operator fro@§°(R™) to @'(R™)
with Schwartz kernek € @'(R™ @ R™), and letT, be the operator with Schwartz kernel
Ky(x,y) =¢(x —y)K(x,y), wherep € C5°(R™) satisfiesp (0) # 0. Assume also that the
following properties are fulfilled

(1) (Tf, f) = 0Oforeveryf e C3°(R™);
(2) T4 extends to a continuous map fréiiR™) to ¥’ (R™).

ThenK € ¥(R™ @ R™), and T extends uniquely to a continuous map fréftR™) to
F'(R™).

Moreover, ifK, € @'V, then the magip, ¥) — (T, ¥) from Cy° x Cy° to C extends
uniquely to a continuous mapping frant x ¥V to C.

3. Theo-positive functions

In this section we make a brief discussion@f (W), the set ofo-positive functions
(cf. the introduction). We give a complete characterization of such functions, and prove
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that if A is the mappingin (0.3) ande ¥'(W), thena is o -positive, if and only ifAa is a
positive semi-definite trace-class operator. The result is applied in different ways. It will for
example be used in order to prove tii&P (W) N C (W) C F(W). The results apply also
to the Weyl calculus, where we conclude thas o -positive, if and only if(F,a)" (x, D)
is a positive semi-definite trace-class operator.

Assume thaW is a symplectic vector space of the finite dimensianth symplectic
form o as before. It follows from the definitions that B(X,Y) = e%°X.Y) then
Cp +(W)=Ci(W), B(Y,X) = B(X,Y), and (1)-(2) in Remark 2.4 are fulfilled. In
particular, the following two propositions are immediately consequences of Proposition 2.1
and Remark 2.3.

Proposition 3.1. If a is o-positive thena(X) = a(—X) and |a(X)| < a(0) for every
XeW.

Proposition 3.2. One has thaC, (W) =¥/ (W) N C(W).

We recall that¥’ (W), and thereforeC (W) are invariant under composition with
linear symplectic transformations and under multiplication by any exponential function
X > €7 whereY € W. Thus%,C4 (W) and %, ¥/, (W) are invariant under affine
canonical transformations.

Note that it follows from Proposition 1.10 and Proposition 3.2 that & s, (W) is
bounded and continuous, thens o -positive if and only ifAa is a positive semi-definite
continuous operator oh2. More generally one has thatis o -positive if and only ifAa
is a positive semi-definite trace-class operatorZ3V), which is a consequence of the
following result.

Theorem 3.3. Assume that € %' (W). Then the following conditions are equivalent

(1) a € s1(W) anda is o-positive

(2) a is o-positive

(3) a € ¥/ (W), and in some neighbourhoad of the origin, the restriction o# to 2 is
a measurelu, which satisfies

|imigfg—2" / |du(X)| < oo; (3.1)
|X|<e

(4) a e ¥ (W) and, for someg € (W) with nonvanishing integral one has that

IirSTI_)ilgf(a %o Xe» Xe) < OO, (3.7)
wherey, =& 2y (-/¢).
For the proof we shall need some lemmas.

Lemma3.4. The map(y, a, x) = ¥ *, a*, X, is sequentially continuous froay° (W) x
' (W) x C(W) to C®(W), and fromF (W) x &' (W) x S(W) to FS(W).
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Proof. We may assume tha/ = T*R". The first assertion is obvious. In order to prove
the last assertion, we writé; = Ay, Up = Aa andUz = Ay, wherey, x € ¥,a € ¥ and

A is given by (0.3). We letb(, ) = Ui(x, ) @ Us(-, y). ThenA(Y *5 az *, x)(x,y) =
(Ur0U20U3)(x,y) = (P(s,y), U2) by (1.2), which proves the statement, for we may view
®(4,y) as a Schwartz function df, y) with values in#(R” x R").

Lemma 3.5. Assume that € ¥/, (W), and lety € $(W) be such tha x dX = (/2)"/?,
and setr, = ¥, %o a %o x. Wherey, = e~ x(-/¢). Thena, € $(W)NC (W), anda, — a
in¥" ase — 0.

Proof. Assume thaty € ¥. Then it follows from Lemma 1.1 and a simple argument of
approximation thata., ¢) = (a, xe *o ¢ *o Xe) ANA(a: *o @, @) = (@ %o (Xe *o ¢), Xe *o

¢) >0 asa € ¥,. Hencea, € ¥ N C; by Lemma 3.4. Since it is easily seen that
Xe *o @ % Xe CONVErgesinf to ¢ ase — 0 it follows also thati, — a in ¥’ ase — 0. The
proof is complete.

Proof of Theorem 3.3. Itis obvious that(1) = (2) = (3). Assume that (3) holds. Given
x € C5° such that/ x dX # 0 we choose & v € C§° such tha x; *, x| < .. Hence
for ¢ small enough, we obtain for some constafitandC’ that

(@ %0 Xes 26) = (@ 2o %0 o) < Cla2" / ldu(x).
1X|<Ce

This gives (4).

It remains to prove that (4) implies (1). We assume therefore that (4) holds for gome
It is then no restriction to assume thAl dX = (7/2)"/?. Seta, = e %o @ %o Xe- BY
Lemma 3.5 it follows that, ¢ ¥(W) N C, (W) and thata, — a in ¥ ase — 0.

We observe that (3')lis equivalentta” = liminf,_.ga.(0) < oo, which implies that we
may take a sequeneg — 0, whenj — oo such thatlim_,  a;(0) = C, wherea; = a;.
By Proposition 1.6(3) we obtain

lajlls, = (/2)"2a;(0) < €' < oo,

where C’ is independent ory. This gives us a bound independent pffor the norm
of a; in s3(W). In order to prove that: € s3(W) we recall Lemma 1.1 and (1.3). Let
(ur) € BOW). Then} , |(aj, ux)| < C'. When j — oo it follows from Lemma 3.5 that
> i (@, up)| < C', since(uy) is a finite sequence iff. This implies thatz € s1(W) and
llalls; < C’ by Proposition 1.6(2). Sincer C Cp by Proposition 1.5, it follows from
Proposition 3.2 that € C(W). Hencea satisfies (1), and the proof is complete.

Corollary 3.6. If a € soo (W) N ¥ (W) is locally integrable near the origin an¢B.1) is
fulfilled with d i (X) = a(X) d X, thena € s (W).

Corollary 3.7. C(W) is the set of all functions x, v, wherev € LZ(W).

Corollary 3.8. Assume that € so (W). Thenv € L? if and only if§ %, v € L.
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Proof. If ve L2 then||o %, vl| < (2/7)"/?||v]|5, < co. On the other hand, if = v, v
anda € L*°, then the assumptions in Corollary 3.6 are fulfilleddyywhich implies that
a € s1(W). HenceU* o U is a trace class operatorif = Av, and it follows thatU andv
areL? functions.

Corollary 3.9. Let W = T*V and assume that € &¥'(W) satisfies thati is a bounded
function near the origin, and that the pseudo-differential operatotr, D) is nonnegative.
Thena™ (x, D) is a trace class operator.

Proof. The result follows if one combines Proposition 1.9, Proposition 1.10 and Theo-
rem 3.3.

Remark 3.10. Corollary 3.9 may be generalized in the following way. Assume tkaR,
a € ¥ (T*R™), and that the pseudo-differential operator

ate. D) f @) =0 [ [[al@=0x+1y.) 70084 dy as
is positive semi-definite. Then the following conditions are equivalent:

(1) a;(x, D) is a trace-class operator;
(2) a is bounded near the origin;
(3) a e Ceg(W)NLEW).

In fact, if r = 1/2, then the assertion follows from Corollary 3.9. For generale may
reduce ourselves to the case 1/2 by the equivalence

a(x,D)=b"(x,D) & (Fb)(x,£)=€YZDNE(Fq)(x, ).
(Cf.[4] or [11].)

We may also use Corollary 3.7 in order to improve Proposition 3.1.
Proposition 3.11. Assume thad # a € C(W) and X # 0. Then|a(X)| < a(0).

Proof. By Corollary 3.7, we may assume that= 7 %, v, wherev € L? is a unit vector.
Thena(0) = (2/7)"/?, and if X # 0 then|a(X)| < (2/7)"?(Jv(- — X)|, |v]), by (0.1).
Since|v(- — X)| is not proportional tqu| it follows that|a(X)| < (2/71)”/2||v||%2 =a(0).

We shall next discuss the restrictionsofpositive functions to Lagrangian planes. Since
the symplectic form is zero on such planes, it follows from (0.7) that the restriction of a
o-positive function to any Lagrangian plankeis a positive definite function. Identifying
the dualA’ of A with W/A by means of the symplectic form it follows that the restriction
of a to A is the Fourier transform of a positive measureWpA. The next result shows
that this measure is absolutely continuous.
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Theorem 3.12. Assume that € C(W) and thatA Cc W is a Lagrangian plane. Then
there is a densitP < a, € L1(W/A) such that

a(X)= / e°Xg (Y)dY, Xe€A.
W/A

Proof. We may assume thay/ = T*R" and thatA = {(0,&); & € R"}. ThenW/A
might be identified with{(x, 0); x € R"}. From the proof of Corollary 3.8 it follows that
Aa = U} o Uy for someUs € L2. Hence, Lemma 1.1(v) gives

a(0.8)= @02 [ 2] 0 U (/2. y/2dy = 0®)
wherew(y) = ['|U1(z, —y/2)|?dz. The result follows now since € L1(R").

We finish this section by presenting the following complementary result to Theorem 3.3,
concerning regularity properties ferpositive functions.

Theorem 3.13. Assume that € C(W) and thata € C2V (£2) for some neighbourhoag
of origin and some intege¥ > 0. Then the following is true

(1) a e C¥N (W) andFya € C2N(W);
(2) X*DPa e s1(W) andX* DPa e s1(W) for anyw, B such thata + B| < N.

In particular, C*(2) NS (W) C S(W).

Here we note that (2) in Theorem 3.13 is independent of the choice of coordinate system
for W. We need some preparations for the proof.

Lemma3.14. Assume that € ¥ (W), andAa =) A, f; ® g;, where(f;), (g;) € ON(V).
Thenf;, g; € (V) wheni; #0.

Proof. We have thatf; = 1;'(Aa)g; € #(V), since(g;) € ON(V), a € ¥ and A is a
homeomorphism off. By similar reasons we ggt; € &, and the proof is complete.

Lemma 3.15. Assume thaY € W and letTy be the operatofy = o (Y, Dx)?—o (Y, X)2.
ThenTy restricts to a continuous map 6ff, (W).

Here and in what follows we lei(Dx) be multiplication byp(X) on the symplectic
Fourier transform side.

Proof. If we choose some appropriate symplectic coordinates (x, £), then we may
assume tha = T*R" and thatY = (y, ), wherey = (0, ...,0) andn = (1,0, ..., 0).
This implies that7y = —851/4 — x2. It is clear thatTy is continuous ort#(W) and
on ¥ (W) for everyY e W. We have to prove thafya € ¥, whena € ¢/,. SinceTy
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is self-adjoint it follows from Proposition 1.10, Lemma 3.14 and duality that it suffices to
prove thatTya € C. N ¥ whena € CL N Y is simple.

We therefore assume thatz = f @ f for some f € ¥. From Lemma 1.1(v) and a
straight-forward computation, we géfya)(x,£) = A~1(g ® g), whereg(x) = x1f(x),
and the result follows sincé (g ® §) e C. N .

Lemma 3.16. Let (f1,;), (f2,;) be two sequences i#'(V) such that the series; =
Y% qukj, k=12 whereu; = A"(fi; ® fr.;), converge ing'(W). Then the
following are true

(1) the seriesag, = Z?‘;lch—l(fl,j ® f2,;) converges iny’ (W) for any bounded
sequence = (c;) in C;
(2) with Ty as in Lemma&.15we have

o0
Tyap = Tyurj €S (W), (3.2)
j=1

with convergence i¥’;
(3) ifin additionay, az € s,(W) for somel < p < oo, thenag . € s,(W) and

1/2
lao.clls, < ”C||l°°(||al||sp||a2”sp) . (3.3)

Furthermore,f; x € L? for everyj andk.

Proof. (1) Since A is a homeomorphism or¥ and g it suffices to prove that
Y 2acifij ® f2; converges ind’, provided Ur = 3222 f1; ® f1,; and Uz =
>321/2® fz.j do. Setlo y = 2?’21 ¢jfi,j ® f2,j. By the kernel theorem of Schwartz
it suffices to verify that for any, ¥ € ¥(V), the limit
(Uop, ¥) = lim (Uon, ¥ ® ¢)
N—o0

exists and satisfiegUoggp, ¥)| < |iclliell@|l|¥ ]| for some seminornjj - || on &.
Now it follows from the Cauchy—Schwartz inequality that

N 2

Y (i ® o b ®P)

j=M

N 2
< ||c||1%o< > A w>||<fz,j,w>|)

j=M

N N
< ||c||?w<2<f1,j®E,w®«ﬁ>)(Z(fz,,-@mw@@).

j=M =M
From this we immediately conclude the existence of the limit and that

[(Uog, ¥)|? < llclZ| (Urg, || U2, ¥)].
This proves (1).
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The assertion (2) follows from (1), Lemma 3.15 and duality, sifigds continuous
on¥(W).

(3) We start to prove thafy ; L? for every j whenay e sp for somep. Assume
that f1 j, ¢ L? for somejo. ThenAay > f1.jo ® f1,j, (as operators), which implies that
Aa1 ¢ 9+, since the right-hand side is an unbounded operatokarHence, a1 ¢ soo,
which gives a contradiction and proves the assertion.

p)l/p

Next we consider
1/p
(Z!((Aao,c)hl,k, hz,k)V’) = (Z
k
where(h1x) € ONg(V) and (h2x) € ONg(V). By applying Cauchy—Schwartz inequality
first on the inner sum, and then on the outer sum we get

k
1/p
<Z| ((Aag, )k, h2k) |p>

k

e (S ) () )

J

1/2p
= el (Z! ((Aav)ha, hix) |”> <Z| ((Aa)hz k. hox) |”)
k

k

ZCj(fl,j, h11)(f2,j, h2,k)
J

1/2p

1/2
<lellr (lalls, lazlls,) ™.

By taking supremum over all orthonormal sequen@as) and(42 x) on the left-hand side
we obtain (3.3), and (3) follows. The proof is complete.

Proof of Theorem 3.13. We may assume thav = T*R". It follows from Theorem 3.3
that the assertion holds whéh= 0. We assume therefore thsit> 1. Setforj =1,...,n

Sj=@i) Y —xj,  Surj =27y — &,

= . - . (3.4)
Sj=(21) agj—l—xj', Sn+j=(21) ax,~+§j-

Then it follows easily that it/ = Au, whereu € ¥'(W), then
(Ao Sju(x,y)=x;U(x,y), (Ao Sutju(x,y)=Dy;U(x,y), 35)

(Ao §j)u(x, »=y;Ux,y), (Ao §n+j)u(x, y) =D, U(x,y),

foreveryj=1,...,n. We note also thal; = S;5; = o (Y;, Dx)? — o (Y;, X)? for some
choice ofY;. By Lemma 3.16(2), it follows thel; is continuous or¥’_ for everyj. Since
N > 1, Theorem 3.3 and Lemma 3.16 gives t(iBia) € C for every .

Now we may writea = 3" u;, whereAu; = fi ® f, for some sequenogf) in L2.
ThenY_ |l fi ||i2 = (/2)"/?a(0) = ||a||s,, and Lemma 3.16(2) together with some straight-
forward computation give forevery=1,...,nthatTja =}, Tjux € Cy andT,ja =
> Totjux € Co, WhereTjug = A71((xj fi) ® (x; fv)) and Tt jux = A~1(D; fi) ®
(Dj fi)). This implies that
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D lxj fill22 = (/2)"*(Tja)(0) < oo and
k

> IDj fill22 = (/23 (Tyyja)(0) <oo, 1< j<n.
k

If we repeat these arguments, then we get

al = > uf,a eCy(W) and “ag ||S1 =>"|x*D* f; ||i2 < 00,

(3.6)
WhereAuf = (x*D? fi) ® (x*D# fi), and|a + B| < N

Now we observe that for any multi-index such that|y| < 2N, we may find
polynomialspg, g, (X) on W such thatD¥ =" p, g, y(X)S“Sﬁ where the sum should
only be taken ovefe| < N and|B| < N. In order to prove that € C2N (W), it suffices
therefore to prove tha® SPa is continuous wheftw| < N and|8| < N. By (3.5) it follows
that if || < N and|8| < N, thens®SPq is a linear combination of terms of the type

> AT (D" i) @ (2D f)).
k

where|y; + 81| < N and|y2 + 82| < N. Hences®SPa € s1 by (3.6) and Lemma 3.16(3),
and since; c C we conclude that € C2V.
In order to prove thak® Dfa e s; when|a + B| < N, we note that the operatoxg,
&j, Dx; and Dg; are linear combinations dfS} and {S} by (3.4). This implies that if
lo + B| < N, thenX*DPq is a linear combination of terms of the typﬂéS% where
ly| < N and|§| < N. Since we have already proved tt$tS®a € s1 for such choice of
ands, it follows that X* Dfa € s; when|a 4+ | < N. Hence the assertions concerning
follows.
If we repeat these arguments and use Lemma 1.1(ii), then the assertions concerning
Fqa follow by similar arguments. The proof is complete.

Remark 3.17. It follows from Theorem 3.13 and its proof that the sd) A~1(fi ® fi)
belongs tac?V, if and only if 3, IIx"Dﬂfklliz < oo for everya, B suchthata + 8| < M.
In particular, if uy € C; for everyk e I anda =) ;. ux € C?N, then ), uy €
c?N ncy foreverylyC 1.

4. Positivity propertiesfor elementsin s,(W) and %, L? (W)

In this section we shall find necessary and sufficient conditions for elemefts(i)
to belong tos,(W) or %, LP(W), when p € [1,00]. More precisely, we prove that
elements in’_ belong tos, (or %, L") if and only if they belong tas, (or %, L?)
near the origin and near the infinity. We present also generalizations to weightet!
spaces. We apply also some parts of the basic analysis, in order to refine the regularity
results in Section 3 in terms of wave-front sets, and prove théxjfY) € WF(a) or
(X,Y) e WF(%Fsa) forsomeX, Y € W, then(0,Y) € WF(a).
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We start the section by giving a review of some Young type results for dilated
multiplications and convolutions, which are needed. We omit the proof, since it might
be found in [9] or in [12].

Theorem 4.1. Assume that,t € R\ {0} and thatp, ¢, r € [1, o0] satisfyl/p + 1/q =
1+ 1/r and=+s? + % = 1 for some choice of at each place. Then the following is true

(1) the mappingSa, b) — a(s-)b(t-) and (a,b) — a(-/s) * b(-/t) on F(W) extends
uniquely to a continuous mapping from (W) x s,(W) to s.(W). If in addition
a,bed_, thena(s)b(r) e ¥,

(2) the convolutior{a, b) — a*b extends uniquely to continuous mappings fsQitv) x
5q(W) to L™ (W), and froms, (W) x L7(W) to s, (W).

Moreover, one has the estimates

latsb@) |, < C"lalls, b1, lla bllr < C"llalls, 1blls, .
la/s)«bC/0||, < CMllalls, Ibls,, — llaxclls, < Cllalis,llcliza, (4.1)

where the constar is independenton € s,(W), b € s,(W) andc € LY(W).

Corollary 4.2. If £2 ¢ W is an arbitrary open neighbourhood of the origin, then one can
finda € C+ (W) N C3°(W) with support ing2 such thatz > 0 anda(0) = 1. On the other
hand, ifa € C+ (W) anda is compactly supported, then= 0.

Proof. In order to construct a nontrivial and nonnegative C (W) with small support,
we letg € C3°(W) \ {0} be even and sef = ¢ *, é. Theny € CrrW)yncCy(W)\ {0}
is even, and sincey = ¢ it follows that v is real-valued. But then an application
of Theorem 4.1 shows that the functiaiX) = ¥2(X/+/2) belongs toC,(W). It is
nonnegative and smooth, and its support is containef? jrif one chooses with a
sufficiently small support.

We postpone the verification of thé\u N Co = {0} to the next section (cf. Proposi-
tion 5.1).

Corollary 4.3. Assume that: € (W) and x € ¥(W). Thena € s,(W), if and only if
xacsy,and(l— x)aes,.

Remark 4.4.1n [9] and [12] one applies Theorem 4.1(2) in order to prove mﬁg_z/pl C

spC Hfull—Z/pl’ for everyu > 2n. HereH} (W) denotes the Sobolev space of distribution
with s € R derivatives inL? (W).

One may also apply Theorem 4.1(2), in order to prove thai¢’ = %, L? N¢€'. (See
for example Corollary 2.12 in [12].) We shall need the following modification of this result.
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Proposition 4.5. Assume thaty € $(W). Then one may find € ¥(W) and a constant,
depending oy and x only such that

”Vfallsp <C||O}0’(Xa)||Lp9 ||@o‘(wa)”l‘p <C”Xa”3‘pﬂ (42)
for everya € ¥ (W).
Moreover, one has thaf(W) - s,(W) = (W) - F, L’ (W), or equivalentlyy(W) «
sp(W) =F (W) * LP(W).

Proof. We may assume tha¥/ = T*R". Let {<pj}§°:0 be a sequence of nonnegative and
nonzeroCg°-functions onW such that for some constanty < oo we have) ¢; =1,
suppp; C Bj11\ Bj_1 and|D%p;| < C, for every integerj > 0. Here B, denotes the
closed ball with center at origin and radius(We use the convention th#. = ¢ when

r <0.) Set

X (X) = Z cj-/z(pj (X)9 WhereCj = Z || Daw || L°°(Bj+3\Bj-3)"
>0 ol <21

Theny € (W), and if || < 2n + 1 then D¥ (¥ (X)/x (X)) is continuous and rapidly
decreasing to zero dX| — oo. In particular,||F (¥/x)| 1 < oo and || D* (Y /x) |1 <

oo asla| < 2n+ 1. Hencey/x € HSl for somes > 2rn, and we conclude that/x €

s1N LN F, Lt by Remark 4.4. A combination of this fact and Theorem 4.1(2) now gives

Ivals, = |Fo(W/00)],,
= 77" (Fa 0/ 0) * (Fo )|, < C|Fo x|

for someC < oo. This proves the first inequality in (4.2), and the second inequality in (4.2)
is obtained by similar arguments.

In order to prove the last part, it suffices to prove that #,L? = ¢ -5, by
Proposition 1.9. Assume first thate s,, and lety be as above. Then Theorem 4.1(2)
gives

Fo ((t/f/)()a) =n""Fs(Y/x)*a Csy1xsp, CLP.

Henceya = x((¥/x)a) € ¥ - F, LP, which proves that/ - s, C ¥ - F,LP. By similar
arguments, an opposite inclusion is obtained. The proof is complete.

We shall combine Proposition 4.5 with the following result. Here and in what follows
we let xy (X) = x (X — Y), if nothing else is stated.

Proposition 4.6. Assume that € &', (W) and thaty € C (W) N F(W). ThenF, (xa) is
a nonnegative function. If = (%, (xa))Y2and X, Y € W, then

|Fo (Xxya)(X)| Su(X 4+ Y)u(X —Y),

|Fo (Fo X)va)(X)| Su(X +Y)uy — X). (4.3)
Proof. Since it is clear thaty € C;, and that¥’, is invariant under multiplication

by exponentials, it follows from Proposition 1.10 thag (x a)(X) = (e¥°Xq, ¥) is
nonnegative. This proves the first part of the proposition.
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In order to prove the first inequality in (4.3) we take a functignsuch thaty =
¥ #, ¥, and assume first that € &. Theniy = ¥y %, ¢y, whereyy = /(- + Y) and
¢y = e 20y From the fact that# (X-)a € ¥/, for everyX € W, an application of
Cauchy-Schwartz inequality gives

|Fo Gra)(X)|? = |(€2°Xa, iy %4 ¢y)[°
< (eP9Xa Py xo Yy ) (€575 a, dy x4 dy).

By some simple calculations one obtains thigt x, ¥y = €°Y) %, andgy %, ¢y =
g% 5% This implies that

(700, Gy w0 97) = (€70 a 7) = T (ra)(X ~ ),

(4.4)

and similarly(e?°X-a, ¢y #o ¢y) = Fo (xa)(X +Y). The firstinequality in (4.3) follows
now in this case from the last identities and (4.4).

For generaky € & the first inequality in (4.3) follows now by a simple argument of
approximation, using Lemma 3.5.

Finally, the second inequality in (4.3) follows from the first one, since

Fo (Fo X)ya)(X) = X DGF, (xxa)(Y),

by Fourier’s inversion formula. The proof is complete.

Proposition 4.5 and Proposition 4.6 allow us to continue the regularization discussion
from Section 3 in terms of local weighte#l, L” spaces which we shall discuss now.
Assume thaiu is a nonnegative Borel measure @nand thatp € [1, oo]. Then we let
H,’j(W), be the set of alk € ¥’ (W) such that#,a is u-measurable and

1/p
lallzp = ( / !%cz(X)|de(X))

is finite. We also IeHZQIOC(W) (the corresponding local space) be the set af @l (W)
such thatya € H”(W) foreveryy € Cg3°(W). In the most situations we shall deal with the
subspacé{l’i,,oc (W) of HP | (W), consisting of allz € #'(W) such thatya € H};(W)
for everyy € (W).

We note that!, c H” loc IS Not true for generak. On the other hand, & in addition
satisfies a growth conorltlon of the type

du(X +Y)<g(V)du(X), X,YeWw, (4.5)

w,lo

for some polynomia on W, then we have the following.

Proposition 4.7. Assume that satisfie5(4 5)and thatp € [1, oco], for some polynomig
on W. ThenH[; (W) CH] 5. o (W) CHY (o (W).

In the proof of Proposition 4.7 and in some other situations we need to apply
Minkowski’s inequality, in a somewhat general form. We recall that fdwemeasurable
function f with values in the Banach spaBewith norm || - ||, then Minkowski’s inequality
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statesthaf [ f dv|| < [ || flldv. In our applications one has th&itis equal toL” (d ), for
somep € [1, 0o}, and then Minkowski’s inequality takes the forifi| [ f dv|? du)YP <

[ 1fIPdw)YPav.

Proof of Proposition 4.7. It suffices to prove the first of the inclusions. Assume that
a € ¥ (W). Then Minkowski’s inequality gives
b4 1/p
dM(X)>

1/p
(/!%(xa)(X)V’du(X)) = n‘”(/‘/i(Y)&(X— Y)dy
1/p
ax — Y)|”du(X)> dy.

< n—"/ﬂm(/

By (4.5) it follows now that the right-hand side is less than or equa{NtHHﬁ, where
C = [13(Y)|g(Y)Y? dy is finite. The proofis complete.

We may now prove the following result.

Theorem 4.8. Assume thap € [1, oo], and letu be a positive Borel measure d# such
thatdu(—X) = du(X) and that(4.5) holds for some polynomigl, and lety, v € $(W)
be chosen such that(0) # 0. Then for some constant, depending ory and+ only, we
have

IWallyn < Clixalyy and |[Yallyn < Clixallyge (4.6)

foreverya € ¥’ (W). In particular,a € Hfuloc’y whenya € H}; anda € ¢, . If in addition
¥ (0) #£ 0, then for some constaxit we have

CHxallyy < Wallyg < Clixallye (4.7)

for everya € ¥/ (W).

Proof. Assume firstthay € C; N¥ is nonnegative such thg(txzdx =1. Then we have
1/p
lValyy = ( / |%(¢a)(X)|de(X))
) b4 1/p
= ( / ‘ [Fewidayar dM(X)>

< n—n(/‘f |@U(¢Xy)(2)ofg(xya)(x—Z)|deZ

b4 1/p
du(X)) .

Here we considet as fixed parameter when we apply the Fourier transformations. By
applying Minkowski’s inequality on the last expression we get

1/p
IWallyy <7 / f %0 (0 x)(2)] ( / % (eya) (X — Z)V’du(X)) dydz.
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If we combine the first inequality in (4.3) with (4.5) and Cauchy’s inequality it follows
that

1/p
( / | %o (xra) (X — Z)|pdu(X)> < (82 =1)(Z + 1) P xallyy.

By summing up we obtainn/fanﬂi < CIIXaIIHf;. where

C=n" //!Ofg(l//Xy)(Z)Kg(Z ~YV)g(Z+ ) avdz. (4.8)

HereC < oo, since(X,Y) — v (X)xy (X) = v (X)x (X — Y) is a tempered function,
which implies that the integrand in (4.8) is rapidly decreasing to zero at infinity.

The second inequality in (4.6) follows by similar arguments if we use the second
inequality instead of the first one in (4.3), and inseft§2dY instead of [ x2dY.
(Note that x is real-valued sincegy = x was chosen nonnegative, which implies that
[ xr(X0%dY = [ x(X)?dX =1)

It remains for us to prove (4.6) for arbitrary € $(W) such thaty(0) # 0. By
Corollary 4.2 we may take a nonnegative elemest §1 € C N Cy° such thaty # 0
in a neighbourhood of supa. Then for somep € C;° we have thatx = 1 in suppy:.

By Proposition 4.7 we get

xaallyg = [ Gad)xalye < Clixally

and (4.6) follows from this estimate and the first part of the proof. The proof is complete.

Remark 4.9. Assume thafu is a positive Borel measure oW which satisfies (4.5) for
some functiorg such that which is bounded by some polynomial. Letyr € $(W) such
that x (0) # 0, and setyy, z(X) = e 27Xy, (X — Z). Then the proof of Theorem 4.8
gives that

1/2
1. zallyy < C(e(1)?2(Z)8(=2)) " Ixallyy
foreverya € ¥ (W). If in additiondu(—X) = du(X), then
~ 1/2
1. zéllyg < Ce(N)2(Z)g(=2)) " lxallzy

foreverya € ¥/, (W).

Corollary 4.10. Assume thap € [1, oc] and thaty € (W) such thaty (0) £ 0. Then for
some constant, depending ory only, one has

CHxals, < |Fs(xa)|,, < Clixals,

for everya € ¥/ (W).

Proof. If du(X)=dX andy = x2 in Theorem 4.8, then Theorem 4.1(2) and (4.8) gives

|Fs(xa)||,, < C1|Fo(x%a)|,, = C2||% * Fo(xa)|,, < Callxall,.
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On the other hand, Proposition 4.5 and (4.7) shows that for spraef(W) (depending
on x only) we have

Ixals, < C1|Fs(Wa)||,, < C2|Fo(xa)| .

and the proof follows.

Corollary 4.11. Assume thap € [1, co] and thaty, ¥ € ¥(W) such thaty (0) # 0. Let
Yy,z(X) = ¥ (X — 2)e 270X "and let| - ||(p.x), k = 1, 2, be a collection of,-norms
and %, L”-norms. Then for some constant depending ory andy only, we have

Iy, zall(p,1) < Clixallp,2), IVy.z*als, < Clixallp.2),
1Yy, zallp,1) < Clixall(p,2), l¥y.z *alls, < Clixalp.2),
for everya € ¥ (W) and everyp € [1, oc].

Proof. The result is an immediate consequence of Proposition 1.9, Remark 4.9 and
Corollary 4.10.

If we combine Theorem 3.3, Corollary 4.3 and Corollary 4.11, then we get the
following.

Theorem 4.12. Assume thag, ¢ € $(W) such thaty (0) # 0. Then the following is true

(1) ifae ¥ (W), thena e sy ifand only if xa € s1;
(2) ifae ¥ (W)andp €[1,o00], thena € s, ifand only if ya € s, and (1 — y)a € 5.

Remark 4.13. We note that ifp = 1, then the assertion (1) is more sharp than (2) in
Theorem 4.12, and the question arises whether it is possible to replace the condition
(1 —v¥)a €5, in Theorem 4.12(2) by a weaker condition whenr<lp < co. If such
improvements exist or not is not known to the author. We note however that (2) is false
when the conditiofl — v)a € s, is completely removed and not replaced by something
else.

In fact, assume that/ = T*R", and lety (x, £) = e~ (**+E®  Then it suffices to find
a sequence; € s,(W) N’ (W) such that| xa, ||s, stays bounded, bufa, [|s, — oo as
A — 0.

Leta, = A2 A=Y( £, ® £.), where fi (x) = e **I> and > 0. Sincea; is a positive
semi-definite operator of rank one we have yat C and

laxlls, = laxllsy = A"72P || fill, = (r/2)" a7,

and it follows thatja; [|s, — oo asi — 0 andp > 1.

On the other hand, sincg, is a Gauss function, it follows that and thereforeca, are
Gauss functions. In particular we may compute ti¥ej”-norms exactly, and by some
straight-forward computations one achieves th@t (xa)||Lr = ¢, (21 + 1)" for some
constant,, depending om only. Hence,|F, (xa)lls, < ¢, (21 + 1)" by Corollary 4.11,
which proves thall %, (xa)lls, stays bounded as— 0, and the assertion follows.
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Proposition 4.6 gives us also the opportunities to continue our discussion concerning
regularity for elements ¥’ (W) in terms of wavefront sets (see Section 8.1 in [4]). We
recall that ifa € 9'(W) and(X,Y) e W x (W \ {0}), then(X, Y) ¢ WF(a) (whereWF(a)
is the wavefront set fo), if and only if for somey e C5°(W) such thaty (X) # 0 and
some open con& containingY, we may to anyV > 0 find a constan€y such that

F(xa) 2| <cn(i+1z))", zex. 4.9)

Theorem 4.14. Assume that € ¥/ (W), and that(0, Y) ¢ WF(a). Then for anyX € W
one hasthatX,Y) ¢ WF() and(X,Y) ¢ WH(F.a).

Proof. We note that the statement is invariant of the choice of Fourier transform in the
definition of wave-front set, and we shall use the symplectic Fourier transfgrimstead
of Fin (4.9).
Assume that0, Y) ¢ WF(a). Then for someq € C3°(W) such thaty (0) # 0 we have
that (4.9) is valid for everyV > 0 and some open conic neighbourhabdof Y. From
Section 8.1 in [4] and Corollary 4.2 it follows also that we may assume also tgt &
C4 N Cy°. By Proposition 4.6 it follows that (4.9) holds for evelywhen X' is replaced
by a smaller open cone containiXg and x is replaced byxx = x (- — X). This proves
that (X, Y) ¢ WF(a), and by similar arguments it follows also th@, Y) ¢ WF(F,a).
The proof is complete.

5. Somefurther properties

In this section we shall discuss some further properties for elemersts inWe start
by considering support properties for element&ytf’, (W), and prove that there are no
nontrivial elements which are compactly supported. We shall actually prove a more general
result, that ifa € %,9’_ (W) has support in a convex set, such that its boundary contains
“symplectic corners”, thea = 0. Thereafter we discuss dilation properties and prove that
51, S0 @nd ¥’ are not invariant under dilations. In the end of the section we show that
there are positive elements in thg-algebra which are negative (as functions) on quite
large domains.

The support result which we shall prove is the following:

Proposition 5.1. Assume that € &', (W) such thasupp%,a C D, whereD is given by
D={XeW; o(X,Y)<C, 0(X,Z)<C}, wheres(Y,Z)+#0. (5.1)
Thena = 0. In particular #, ¥’ (W) N €' (W) = {0}.
We note that ifD is given by (5.1), then for some appropriate choice of symplectic
coordinatest = (x1, ..., &) and some constandt, we have
D={(x,§)eW; x1<C, &<C}. (5.1)

Proof. We may assume tha¥ = T*R", and thatD is given by (5.1). Assume that
a € ¥ (W). By a simple argument of approximation using Lemma 3.5 together with
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the fact that%,Cy is invariant under translation, it follows that we may assume that
acCy(W)yNP(W) and thatC =0in (5.1).
From Lemma 1.1 and Proposition 1.8 we have for s@ify¢ € ON(R") that

a(x, &) = (20) "2 / E08) (F(y/2—x), f(y/24 1)) dy, (5.2)

where f = (/A1 f1, VA2 f2, ...) is anL? function with values in? such thatf; € ¥ for
everyj. By (5.2) and Lemma 1.1 we have

Foal(x, &) = (2m) "/ / UGy E1 —y 2+ Xy 2+ ') dy
wherex’ = (x2,...,x,),y = (y2, ..., y,) and

G(x1.61.x",y) = / &ML f(=y1/24 x1, %), f(y1/2+ x1, ) dy1. (5.3)

If we let g = %1 f, where%, is the partial Fourier transform &f in (0.4) with respect to
the variablexs, then it follows from (5.3) and some straight-forward computations, using
Fourier’s inversion formula that

G(Xl,Sl,X’,y/)=/e_ixlnl(g(—n1/2+$1,x/),g(771/2+$1,Y’))dnl- (5.3)

Since supg C D, it follows from (5.2) and Fourier's inversion formula th@tx1, &1, x’,
y") =0whenx; > 0 or&; > 0. By applying Fourier’s inversion formula in (5.3) and (5,3
we get that(f(x), f(y)) and (g(&1, x), g(n1, y’)) vanish in the sets; + y; > 0 and
&1+ n1 > 0 respectively. Hence sufpp) and supg®1 f) are contained in the sét; x3 €
R_ andx’ e R*1}, whereR_ = {x e R; x <0}.

This means that ifF,/ ;(x1) = fj(x1,...,x,) is considered as a function ity € R
with x” as fix parameter, theR\/ ; € ¥(R) by Lemma 3.14, and the supports By ;
and I?x/,j are contained ifR_. From the support property far,. ;, it follows thatfx/,j
is an analytic function in the half-spaee= {z € C; Im(z) > 0}, which is continuous
in the closurew of w, and zero at the positive real axis. An application of Schwartz
principle of reflection implies thal’F}/,j extends to a function which is analytic everywhere
except at the negative real axis. Since this function is zero on the positive real axis, it
follows that I’i/,j must be identical zero. Since was arbitrary chosen, we conclude
that fj(x1,...,x,) = Fyv j(x1) =0, for every(xy, ..., x,) € R". Hence f(x) = 0, and
it follows thata (X) = 0. The proof is complete.

Remark 5.3. Assume that: € ¥ N C.. Then it follows from (5.2) and Fourier’s inversion
formula that

a(x, €)= (2r)™"? / e N (fn/2-8), f(n/2+8&))dn. (5.4)

From Corollary 4.2, the proof of Proposition 5.1 and an inspection of the formulas (5.2)
and (5.4) it follows that it is possible to construct a functiog § € L2(R"; I2) such that

(@), () = (f€). f()) =0 when|x — y| > ¢, |§ — n| > &, wheree may be any
small positive number. In fact, such functighis obtained if one chooses= v %, v € C+
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in (5.2), where 0% v € C3° with support in a sufficiently small neighbourhood of the
origin.

Next we shall prove that and positivity inx,-algebra are not invariant under dilations.

Proposition 5.4. There exist simple elemenisb € s1(W) with b € &¥ such that ifp ¢
{—1,1}, thena(p-) ¢ ¥, Usy andb(p-) ¢ &,

Proof. We may assume tha¥ = T*R" and we writeda = f ® f, whereA is as in (0.3)
and f € L2(R"). We also seti, = a(p-) andb, = b(p-). If p =0, thena, = (2/w)"/?
everywhere and it follows from Theorem 3.3 and Proposition 1.5th& neither positive
semi-definite nor in1. Assume thap ¢ {0, —1, 1}. A simple computation shows that

IpI"(Aap)(x,y) = f(ax + By) f(Bx +ay), (5.5)

wherea = (p+p~1)/2 andg = (o~ — p)/2. HencexB # 0 anda + B # 0. If a, € s1(W)
thenAaq, is the operator kernel of a self-adjoint trace class operatdr’oR”). Hence we
may write

Flox + By) F(Bx +ay) = 1oI"(Aup) (x, ) = Y ;8 ()T ().

where the(g;) € ON(R") and}_ |2 ;| < co. Replacingy by (z — ax)/B we have, since
az — l+ /32

FF(@z=x)/B) =) 1;gj()Z((z —ax)/B),

where the right-hand side above is a function(efz) which is integrable oveR” x K
when K is any cube irR". An application of Fubini’s theorem implies therefore that
must be integrable ifi, € s1(W). In order to have the conditiom, ¢ s1(W) fulfilled it
suffices for us therefore to choogan L2\ L1.

We choosef also such thaff is continuous andf (x) = e2™), where Q is real and
continuous, and? (0) = 0. We shall see that it is possible to chogdeuch that, is not
positive semi-definite for any as above.

A necessary condition fota, to be positive semi-definite is that

| f(ax +By) F(Bx +an)| < |f(@@+ B)x)|| f((@+B)y)|, x.yeR™

By replacing(x, y) by (x, y)/(a + B) in this inequality we see that it suffices for us to
constructQ such that the inequality

Qax + By) + Q(Bx +ay) > Q) + Q(y) (5.6)

is solvable for any choice ef andg with a8 # 0 anda + 8 = 1. Then it sufficies to choose
Q such thatQ(x) = |x|? in an open neighbourhood of the origin, and tigaty) = —|x|?
whenx belongs to an other open set. The proof is complete.

Remark 5.5. It follows from Proposition 5.4, and duality (cf. Proposition 1.5) that W)
is not invariant under dilations.
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Remark 5.6. According to Proposition 5.4 we note here that € (W) anda, = a(p-)
is positive semi-definite for every > 0, thena = 0. To see this we observe that when
is positive semi-definite it follows from Lemma 3.5 that

(/2)"2a(0) = llay s, = lapll 2 = |l ™" llall 2.
Whenp — 0 this shows that = 0.

The following result shows that the set where -gositive function is negative may be
of infinite volume.

Proposition 5.7. There exists € s1(T*R)\ L1(T*R) such that is simple4 = ¢ and such
that the set? = {X; a(X) < 0} contains infinitely many open disjoint parallelograms of
arear /4.

Proof. Let f be the characteristic function of the interyall, 1] and define: € L3(T*R)
by Aa = f ® f/2. Thena is simple andi = a in view of Lemma 1.1(ii). It follows from
Lemma 1.1(v) and a straight-forward computation that

a(x.&) = @2m) Y% f(x) sin(2(1— |x])g).
and it followsa ¢ L1, and that2 contains
2, = {(x,E); O<x<1 (2n—Dm <2(1—x)¢& <2n71}, n=12....

Each of these sets has infinite area.

We let(s, 1) = (2§ /m, 1— x) be new coordinates, in whia21 corresponds to the sg;
defined by O< 7 <1, 1< st < 2. For anyo > 2, then§2; contains the open parallelogram
with corners at(o, 1/0), (0,2/0), (6/2,2/0) and (6/2,3/0). The result follows now
since there are infinitely numbers of such parallelograms, and that the area of any of the
corresponding parallelograms4ey is equal tar /4. The proof is complete.

Remark 5.8. We note that it is possible to find simple elements which are negative on quite
larger sets thas in Proposition 5.7. More precisely, éf> 0, then the following is true:
(1) there is a simple elementwhich is negative outside
{(x.&) e T*R: ex?+£%/e <1/2);
(2) there is a simple elemeatsuch thatF,a = a anda is negative outside
{(x,&) e T*R; |x|<e(l€]+ 1)}

In fact, let £ (x) = (\/7)Y4e**, wherer > 0 andx € R. Thenao(x, &) = A~ X(f ®
F)(x, &) = (2/m)Y2e~x*+E2/1) s simple. From Lemma 3.15 and its proof it follows that
if T=—4"12—x2, then

a(x, &) = c(Tag) (x, &) = c(2/m)YV"1(1/2 = 2x? — £2 /1) e " HE°/%)

is simple for some choice @f> 0. By choosing. = ¢, we obtain that: satisfies (1).
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In the same way one obtains (2) if we insteaddet ¢T2ag, for some constant > 0
and some appropriate choicejf

6. Applicationsto pseudo-differential calculus

In this section we shall use the results in previous sections together with Propo-
sition 1.10 and Remark 3.10, in order to establish some positivity results in pseudo-
differential calculus. For any € R and p € [1, co], we use the notatio,,p(RZ”) for
the set of all € ¥'(R?") such that, (x, D) € $,. (Note here that the general symplectic
vector spacéV is replaced byR?", since the symplectic invariance which is valid for the
Weyl quantization, i.e. the case= 1/2, is not true for general)

Proposition 6.1. Assume that2 ¢ R? is an open neighbourhood of origin, and that
a € ¥'(R?") satisfiess, (x, D) > 0 for somer € R. Then the following is true

(1) if @ e C?N(£2) for some integeW > 0, thenX“Df}a € s;,1 for everya and g such
that|o + 8| < N;

(2) if x,¥ € $(R?) such thaty has nonvanishing integral, thep * a s:,p and
a+ vy *xaecs p, ifand only ifa € s; ,. A similar result holds when thg , spaces
are replaced by.? spaces

(3) if r=1/2 and (X, Y) € WF(a) for someX, Y € R? such thatY # 0, then(0,Y)
WF(Fa);

(4) if r =1/2 anda has compact support, then= 0.

Proof. The result follows immediately from Proposition 1.9, Proposition 1.10, Re-
mark 3.10, Theorem 3.13, Theorem 4.12, Theorem 4.14 and Proposition 5.1.
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