Existence of fractional neutral functional differential equations*

R.P. Agarwal ${ }^{\text {a }}$, Yong Zhou ${ }^{\text {b,* }}$, Yunyun He ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Xiangtan University, Hunan 411105, PR China

A R TICLE INFO

Keywords:

Fractional neutral differential equations
Existence
Bounded delay

Abstract

In this paper, the initial value problem is discussed for a class of fractional neutral functional differential equations and the criteria on existence are obtained.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the initial value problems (IVP for short) of fractional neutral functional differential equations with bounded delay of the form

$$
\left\{\begin{array}{l}
{ }^{c} D^{\alpha}\left(x(t)-g\left(t, x_{t}\right)\right)=f\left(t, x_{t}\right), \quad t \in\left(t_{0},+\infty\right), t_{0} \geq 0 \tag{1}\\
x_{t_{0}}=\phi,
\end{array}\right.
$$

where ${ }^{c} D^{\alpha}$ is the standard Caputo's fractional derivative of order $0<\alpha<1, f, g:\left[t_{0},+\infty\right) \times C\left([-r, 0], R^{n}\right) \rightarrow R^{n}$ are given functions satisfying some assumptions that will be specified later, $a>0$ and $\phi \in C\left([-r, 0], R^{n}\right)$. If $x \in C\left(\left[t_{0}-r, t_{0}+a\right], R^{n}\right)$, then for any $t \in\left[t_{0}, t_{0}+a\right]$ define x_{t} by $x_{t}(\theta)=x(t+\theta)$, for $\theta \in[-r, 0]$.

Fractional differential equations have gained considerable importance due to their application in various sciences, such as physics, mechanics, chemistry, engineering, etc.. In the recent years, there has been a significant development in ordinary and partial differential equations involving fractional derivatives, see the monographs of Kilbas et al. [1], Lakshmikantham et al. [2], Miller and Ross [3], Podlubny [4] and the papers in [5-19] and the references therein. In [5], Agarwal, Belmekki and Benchohra obtain existence results for semilinear functional differential inclusions involving fractional derivatives. In [7], Benchohra et al. consider the IVP for a class of fractional neutral functional differential equations with infinite delay. In [11], El-Sayed discusses a class of nonlinear functional differential equations of arbitrary orders. In [20], Lakshmikantham initiates the basic theory for fractional functional differential equations. In [17-19], Zhou et al. investigated the existence and uniqueness for fractional functional differential equations with unbounded and infinite delay.

In this paper, we discuss the initial value problem for a class of fractional neutral functional differential equations with bounded delay. We firstly deduce IVP (1) to a equivalent integral equation. Next, by using Krasnoselskii's fixed point theorem, we get that the equivalent operator has (at least) a fixed point, it means that IVP (1) has at least one solution.

2. Preliminaries

In this section, we introduce definitions and preliminary facts which are used throughout this paper.
Let $J \subset R$. Denote $C\left(J, R^{n}\right)$ be the Banach space of all continuous functions from J into R^{n} with the norm

$$
\|x\|=\sup _{t \in J}|x(t)|,
$$

where | \cdot | denotes a suitable complete norm on R^{n}.

[^0]Definition $2.1([1,4])$. The fractional integral of order q with the lower limit t_{0} for a function f is defined as

$$
I^{q} f(t)=\frac{1}{\Gamma(q)} \int_{t_{0}}^{t} \frac{f(s)}{(t-s)^{1-q}} \mathrm{~d} s, \quad t>t_{0}, q>0,
$$

provided the right-hand side is pointwise defined on $\left[t_{0}, \infty\right)$, where Γ is the gamma function.
Definition 2.2 ([1,4]). Riemann-Liouville derivative of order q with the lower limit t_{0} for a function $f:\left[t_{0}, \infty\right) \rightarrow R$ can be written as

$$
D^{q} f(t)=\frac{1}{\Gamma(n-q)} \frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \int_{t_{0}}^{t} \frac{f(s)}{(t-s)^{q+1-n}} \mathrm{~d} s, \quad t>t_{0}, n-1<q<n .
$$

The first-and maybe the most important-property of Riemann-Liouville fractional derivative is that for $t>t_{0}$ and $q>0$, we have

$$
D^{q}\left(I^{q} f(t)\right)=f(t),
$$

which means that Riemann-Liouville fractional differentiation operator is a left inverse to the Riemann-Liouville fractional integration operator of the same order q.
Definition 2.3 ([1,4]). Caputo's derivative of order q with the lower limit t_{0} for a function $f:\left[t_{0}, \infty\right) \rightarrow R$ can be written as

$$
{ }^{c} D^{q} f(t)=\frac{1}{\Gamma(n-q)} \int_{t_{0}}^{t} \frac{f^{(n)}(s)}{(t-s)^{q+1-n}} \mathrm{~d} s=I^{n-q} f^{(n)}(t), \quad t>t_{0}, n-1<q<n .
$$

Obviously, Caputo's derivative of a constant is equal to zero.
Remark 2.1. We need to mention that there exits a link between Riemann-Liouville and Caputo's fractional derivative of order q. Namely,

$$
\begin{aligned}
{ }^{c} D^{q} f(t) & =\frac{1}{\Gamma(n-q)} \int_{t_{0}}^{t} \frac{f^{(n)}(s)}{(t-s)^{q+1-n}} \mathrm{~d} s \\
& =D^{q} f(t)-\sum_{k=0}^{n-1} \frac{f^{(k)}\left(t_{0}\right)}{\Gamma(k-q+1)}\left(t-t_{0}\right)^{k-q} \\
& =D^{q}\left[f(t)-\sum_{k=0}^{n-1} \frac{f^{(k)}\left(t_{0}\right)}{k!}\left(t-t_{0}\right)^{k}\right], \quad t>t_{0}, n-1<q<n .
\end{aligned}
$$

Lemma 2.1 (Krasnoselskii's Fixed Point Theorem). Let X be a Banach space, let E be a bounded closed convex subset of X and let S, U be maps of E into X such that $S x+U y \in E$ for every pair $x, y \in E$. If S is a contraction and U is completely continuous, then the equation

$$
S x+U x=x
$$

has a solution on E.

3. Main results

Let

$$
\begin{aligned}
& I_{0}=\left[t_{0}, t_{0}+\delta\right], \\
& A(\delta, \gamma)=\left\{x \in C\left(\left[t_{0}-r, t_{0}+\delta\right], R^{n}\right)\left|x_{t_{0}}=\phi, \sup _{t_{0} \leq t \leq t_{0}+\delta}\right| x(t)-\phi(0) \mid \leq \gamma\right\},
\end{aligned}
$$

where δ, γ are positive constants.
Before stating and proving the main results, we introduce the following hypotheses.
$\left(\mathrm{H}_{1}\right) f(t, \varphi)$ is measurable with respect to t on I_{0},
$\left(\mathrm{H}_{2}\right) f(t, \varphi)$ is continuous with respect to φ on $C\left([-r, 0], R^{n}\right)$,
$\left(H_{3}\right)$ there exist $\alpha_{1} \in(0, \alpha)$ and a real-valued function $m(t) \in L^{\frac{1}{\alpha_{1}}}\left(I_{0}\right)$ such that for any $x \in A(\delta, \gamma),\left|f\left(t, x_{t}\right)\right| \leq m(t)$, for $t \in I_{0}$,
$\left(H_{4}\right)$ for any $x \in A(\delta, \gamma), g\left(t, x_{t}\right)=g_{1}\left(t, x_{t}\right)+g_{2}\left(t, x_{t}\right)$,
(H_{5}) g_{1} is continuous and for any $x^{\prime}, x^{\prime \prime} \in A(\delta, \gamma), t \in I_{0}$

$$
\left|g_{1}\left(t, x_{t}^{\prime}\right)-g_{1}\left(t, x_{t}^{\prime \prime}\right)\right| \leq l\left\|x^{\prime}-x^{\prime \prime}\right\|, \quad \text { where } l \in(0,1)
$$

$\left(\mathrm{H}_{6}\right) \mathrm{g}_{2}$ is completely continuous and for any bounded set Λ in $A(\delta, \gamma)$, the set $\left\{t \rightarrow g_{2}\left(t, x_{t}\right): x \in \Lambda\right\}$ is equicontinuous in $C\left(I_{0}, R^{n}\right)$.

Lemma 3.1. If there exist $\delta \in(0, a)$ and $\gamma \in(0, \infty)$ such that $\left(H_{1}\right)-\left(H_{3}\right)$ are satisfied, then for $t \in\left(t_{0}, t_{0}+\delta\right]$, IVP (1) is equivalent to the following equation

$$
\left\{\begin{array}{l}
x(t)=\phi(0)-g\left(t_{0}, \phi\right)+g\left(t, x_{t}\right)+\frac{1}{\Gamma(\alpha)} \int_{t_{0}}^{t}(t-s)^{\alpha-1} f\left(s, x_{s}\right) \mathrm{d} s, \quad t \in I_{0} \tag{2}\\
x_{t_{0}}=\phi
\end{array}\right.
$$

Proof. First, it is easy to obtain that $f\left(t, x_{t}\right)$ is Lebesgue measurable on I_{0} according to conditions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$. A direct calculation gives that $(t-s)^{\alpha-1} \in L^{\frac{1}{1-\alpha_{1}}}\left(\left[t_{0}, t\right]\right)$, for $t \in I_{0}$. In the light of the Hölder inequality and $\left(\mathrm{H}_{3}\right)$, we obtain that $(t-s)^{\alpha-1} f\left(s, x_{s}\right)$ is Lebesgue integrable with respect to $s \in\left[t_{0}, t\right]$ for all $t \in I_{0}$ and $x \in A(\delta, \gamma)$, and

$$
\begin{equation*}
\int_{t_{0}}^{t}\left|(t-s)^{\alpha-1} f\left(s, x_{s}\right)\right| \mathrm{d} s \leq\left\|(t-s)^{\alpha-1}\right\|_{L^{\frac{1}{1-\alpha_{1}}}\left(\left[t_{0}, t\right]\right)}\|m\|_{L^{\frac{1}{\alpha_{1}}}\left(I_{0}\right)} \tag{3}
\end{equation*}
$$

where

$$
\|F\|_{L^{p}(J)}=\left(\int_{J}|F(t)|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}
$$

for any L^{p}-integrable function $F: J \rightarrow R$.
According to Definitions 2.1 and 2.3 , it is easy to see that if x is a solution of the IVP (1), then x is a solution of the Eq. (2).
On the other hand, if (2) is satisfied, then for every $t \in\left(t_{0}, t_{0}+\delta\right]$, we have

$$
\begin{aligned}
{ }^{c} D^{\alpha}\left(x(t)-g\left(t, x_{t}\right)\right) & ={ }^{c} D^{\alpha}\left[\phi(0)-g\left(t_{0}, \phi\right)+\frac{1}{\Gamma(\alpha)} \int_{t_{0}}^{t}(t-s)^{\alpha-1} f\left(s, x_{s}\right) \mathrm{d} s\right] \\
& ={ }^{c} D^{\alpha}\left[\frac{1}{\Gamma(\alpha)} \int_{t_{0}}^{t}(t-s)^{\alpha-1} f\left(s, x_{s}\right) \mathrm{d} s\right] \\
& ={ }^{c} D^{\alpha}\left(I^{\alpha} f\left(t, x_{t}\right)\right) \\
& =D^{\alpha}\left(I^{\alpha} f\left(t, x_{t}\right)\right)-\left[I^{\alpha} f\left(t, x_{t}\right)\right]_{t=t_{0}} \frac{\left(t-t_{0}\right)^{-\alpha}}{\Gamma(1-\alpha)} \\
& =f\left(t, x_{t}\right)-\left[I^{\alpha} f\left(t, x_{t}\right)\right]_{t=t_{0}} \frac{\left(t-t_{0}\right)^{-\alpha}}{\Gamma(1-\alpha)} .
\end{aligned}
$$

According to (3), we know that $\left[I^{\alpha} f\left(t, x_{t}\right)\right]_{t=t_{0}}=0$, which means that ${ }^{c} D^{\alpha}\left(x(t)-g\left(t, x_{t}\right)\right)=f\left(t, x_{t}\right), t \in\left(t_{0}, t_{0}+\delta\right]$, and this completes the proof.

Theorem 3.1. Assume that there exist $\delta \in(0, a)$ and $\gamma \in(0, \infty)$ such that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{6}\right)$ are satisfied. Then the IVP (1) has at least one solution on $\left[t_{0}, t_{0}+\eta\right]$ for some positive number η.

Proof. According to $\left(\mathrm{H}_{4}\right)$, Eq. (2) is equivalent to the following equation

$$
\left\{\begin{array}{l}
x(t)=\phi(0)-g_{1}\left(t_{0}, \phi\right)-g_{2}\left(t_{0}, \phi\right)+g_{1}\left(t, x_{t}\right)+g_{2}\left(t, x_{t}\right)+\frac{1}{\Gamma(\alpha)} \int_{t_{0}}^{t}(t-s)^{\alpha-1} f\left(s, x_{s}\right) \mathrm{d} s, \quad t \in I_{0} \\
x_{t_{0}}=\phi
\end{array}\right.
$$

Let $\tilde{\phi} \in A(\delta, \gamma)$ be defined as $\widetilde{\phi}_{t_{0}}=\phi, \widetilde{\phi}\left(t_{0}+t\right)=\phi(0)$ for all $t \in[0, \delta]$. If x is a solution of the IVP (1), let $x\left(t_{0}+t\right)=\widetilde{\phi}\left(t_{0}+t\right)+y(t), t \in[-r, \delta]$, then we have $x_{t_{0}+t}=\widetilde{\phi}_{t_{0}+t}+y_{t}, t \in[0, \delta]$. Thus y satisfies the equation

$$
\begin{align*}
y(t)= & -g_{1}\left(t_{0}, \phi\right)-g_{2}\left(t_{0}, \phi\right)+g_{1}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right)+g_{2}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right) \\
& +\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right) \mathrm{d} s, \quad t \in[0, \delta] \tag{4}
\end{align*}
$$

Since g_{1}, g_{2} are continuous and x_{t} is continuous in t, there exists $\delta^{\prime}>0$, when $0<t<\delta^{\prime}$,

$$
\begin{equation*}
\left|g_{1}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right)-g_{1}\left(t_{0}, \phi\right)\right|<\frac{\gamma}{3} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g_{2}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right)-g_{2}\left(t_{0}, \phi\right)\right|<\frac{\gamma}{3} . \tag{6}
\end{equation*}
$$

Choose

$$
\begin{equation*}
\eta=\left\{\delta, \delta^{\prime},\left(\frac{\gamma \Gamma(\alpha)(1+\beta)^{1-\alpha_{1}}}{3 M}\right)^{\frac{1}{(1+\beta)\left(1-\alpha_{1}\right)}}\right\} \tag{7}
\end{equation*}
$$

where $\beta=\frac{\alpha-1}{1-\alpha_{1}} \in(-1,0)$ and $M=\|m\|_{L^{\frac{1}{\alpha_{1}}}\left(I_{0}\right)}$.
Define $E(\eta, \gamma)$ as follows

$$
E(\eta, \gamma)=\left\{y \in C\left([-r, \eta], R^{n}\right) \mid y(s)=0 \text { for } s \in[-r, 0] \text { and }\|y\| \leq \gamma\right\}
$$

Then $E(\eta, \gamma)$ is a closed bounded and convex subset of $C\left([-r, \delta], R^{n}\right)$. On $E(\eta, \gamma)$ we define the operators S and U as follows

$$
\begin{aligned}
& S y(t)= \begin{cases}0, & t \in[-r, 0], \\
-g_{1}\left(t_{0}, \phi\right)+g_{1}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right), & t \in[0, \eta],\end{cases} \\
& U y(t)= \begin{cases}0, & t \in[-r, 0], \\
-g_{2}\left(t_{0}, \phi\right)+g_{2}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right) & \\
+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right) \mathrm{d} s, & t \in[0, \eta] .\end{cases}
\end{aligned}
$$

It is easy to see that if the operator equation

$$
\begin{equation*}
y=S y+U y \tag{8}
\end{equation*}
$$

has a solution $y \in E(\eta, \gamma)$ if and only if y is a solution of Eq. (4). Thus $x\left(t_{0}+t\right)=y(t)+\widetilde{\phi}\left(t_{0}+t\right)$ is a solution of Eq. (1) on $[0, \eta]$. Therefore, the existence of a solution of the IVP (1) is equivalent that (8) has a fixed point in $E(\eta, \gamma)$.

Now we show that $S+U$ has a fixed point in $E(\eta, \gamma)$. The proof is divided into three steps.
Step I. $S z+U y \in E(\eta, \gamma)$ for every pair $z, y \in E(\eta, \gamma)$.
In fact, for every pair $z, y \in E(\eta, \gamma), S z+U y \in C\left([-r, \eta], R^{n}\right)$. Also, it is obvious that $(S z+U y)(t)=0, t \in[-r, 0]$.
Moreover, for $t \in[0, \eta]$, by (5)-(7) and the condition $\left(\mathrm{H}_{3}\right)$, we have

$$
\begin{aligned}
|S z(t)+U y(t)| \leq & \left|-g_{1}\left(t_{0}, \phi\right)+g_{1}\left(t_{0}+t, z_{t}+\widetilde{\phi}_{t_{0}+t}\right)\right|+\left|-g_{2}\left(t_{0}, \phi\right)+g_{2}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right)\right| \\
& +\frac{1}{\Gamma(\alpha)} \int_{0}^{t}\left|(t-s)^{\alpha-1} f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right)\right| \mathrm{d} s \\
\leq & \frac{2 \gamma}{3}+\frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha_{1}}} \mathrm{~d} s\right)^{1-\alpha_{1}}\left(\int_{t_{0}}^{t_{0}+t}(m(s))^{\frac{1}{\alpha_{1}}} \mathrm{~d} s\right)^{\alpha_{1}} \\
\leq & \frac{2 \gamma}{3}+\frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha_{1}}} \mathrm{~d} s\right)^{1-\alpha_{1}}\left(\int_{t_{0}}^{t_{0}+\delta}(m(s))^{\frac{1}{\alpha_{1}}} \mathrm{~d} s\right)^{\alpha_{1}} \\
\leq & \frac{2 \gamma}{3}+\frac{M \eta^{(1+\beta)\left(1-\alpha_{1}\right)}}{\Gamma(\alpha)(1+\beta)^{1-\alpha_{1}}} \\
\leq & \gamma .
\end{aligned}
$$

Therefore,

$$
\|S z+U y\|=\sup _{t \in[0, \eta]}|(S z)(t)+(U y)(t)| \leq \gamma
$$

which means that $S z+U y \in E(\eta, \gamma)$ for any $z, y \in E(\eta, \gamma)$.
Step II. S is a contraction on $E(\eta, \gamma)$.
For any $y^{\prime}, y^{\prime \prime} \in E(\eta, \gamma), y_{t}^{\prime}+\widetilde{\phi}_{t_{0}+t}, y_{t}^{\prime \prime}+\widetilde{\phi}_{t_{0}+t} \in A(\delta, \gamma)$. So by $\left(\mathrm{H}_{5}\right)$, we get that

$$
\begin{aligned}
\left|S y^{\prime}(t)-S y^{\prime \prime}(t)\right| & =\left|g_{1}\left(t_{0}+t, y_{t}^{\prime}+\widetilde{\phi}_{t_{0}+t}\right)-g_{1}\left(t_{0}+t, y_{t}^{\prime \prime}+\widetilde{\phi}_{t_{0}+t}\right)\right| \\
& \leq l\left\|y^{\prime}-y^{\prime \prime}\right\|
\end{aligned}
$$

which implies that

$$
\left\|S y^{\prime}-S y^{\prime \prime}\right\| \leq l\left\|y^{\prime}-y^{\prime \prime}\right\| .
$$

In view of $0<l<1, S$ is a contraction on $E(\eta, \gamma)$.
Step III. Now we show that U is a completely continuous operator.
Let

$$
U_{1} y(t)= \begin{cases}0, & t \in[-r, 0] \\ -g_{2}\left(t_{0}, \phi\right)+g_{2}\left(t_{0}+t, y_{t}+\widetilde{\phi}_{t_{0}+t}\right), & t \in[0, \eta]\end{cases}
$$

and

$$
U_{2} y(t)= \begin{cases}0, & t \in[-r, 0] \\ \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right) \mathrm{d} s, & t \in[0, \eta]\end{cases}
$$

Clearly, $U=U_{1}+U_{2}$.
Since g_{2} is completely continuous, U_{1} is continuous and $\left\{U_{1} y: y \in E(\eta, \gamma)\right\}$ is uniformly bounded. From the condition that the set $\left\{t \rightarrow g_{2}\left(t, x_{t}\right): x \in \Lambda\right\}$ be equicontinuous for any bounded set Λ in $A(\delta, \gamma)$, we can conclude that U_{1} is a completely continuous operator.

On the other hand, for any $t \in[0, \eta]$, we have

$$
\begin{aligned}
\left|U_{2} y(t)\right| & \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left|f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right)\right| \mathrm{d} s \\
& \leq \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha_{1}}}\right)^{1-\alpha_{1}}\left(\int_{t_{0}}^{t_{0}+t}(m(s))^{\frac{1}{\alpha_{1}}} \mathrm{~d} s\right)^{\alpha_{1}} \\
& \leq \frac{M \eta^{(1+\beta)\left(1-\alpha_{1}\right)}}{\Gamma(\alpha)(1+\beta)^{1-\alpha_{1}}} .
\end{aligned}
$$

Hence, $\left\{U_{2} y: y \in E(\eta, \gamma)\right\}$ is uniformly bounded.
Now, we will prove that $\left\{U_{2} y: y \in E(\eta, \gamma)\right\}$ is equicontinuous. For any $0 \leq t_{1}<t_{2} \leq \eta$ and $y \in E(\eta, \gamma)$, we get that

$$
\begin{aligned}
\left|U_{2} y\left(t_{2}\right)-U_{2} y\left(t_{1}\right)\right|= & \left\lvert\, \frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right] f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right) \mathrm{d} s\right. \\
& \left.+\frac{1}{\Gamma(\alpha)} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right) \mathrm{d} s \right\rvert\, \\
\leq & \frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}}\left[\left(t_{1}-s\right)^{\alpha-1}-\left(t_{2}-s\right)^{\alpha-1}\right]\left|f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right)\right| \mathrm{d} s \\
& +\frac{1}{\Gamma(\alpha)} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1}\left|f\left(t_{0}+s, y_{s}+\widetilde{\phi}_{t_{0}+s}\right)\right| \mathrm{d} s \\
\leq & \frac{M}{\Gamma(\alpha)}\left(\int_{0}^{t_{1}}\left[\left(t_{1}-s\right)^{\alpha-1}-\left(t_{2}-s\right)^{\alpha-1}\right]^{\frac{1}{1-\alpha_{1}}} \mathrm{~d} s\right)^{1-\alpha_{1}}+\frac{M}{\Gamma(\alpha)}\left(\int_{t_{1}}^{t_{2}}\left[\left(t_{2}-s\right)^{\alpha-1}\right]^{\frac{1}{1-\alpha_{1}}} \mathrm{~d} s\right)^{1-\alpha_{1}} \\
\leq & \frac{M}{\Gamma(\alpha)}\left(\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\beta}-\left(t_{2}-s\right)^{\beta} \mathrm{d} s\right)^{1-\alpha_{1}}+\frac{M}{\Gamma(\alpha)}\left(\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\beta} \mathrm{d} s\right)^{1-\alpha_{1}} \\
\leq & \frac{M}{\Gamma(\alpha)(1+\beta)^{1-\alpha_{1}}}\left(t_{1}^{1+\beta}-t_{2}^{1+\beta}+\left(t_{2}-t_{1}\right)^{1+\beta}\right)^{1-\alpha_{1}}+\frac{M}{\Gamma(\alpha)(1+\beta)^{1-\alpha_{1}}}\left(t_{2}-t_{1}\right)^{(1+\beta)\left(1-\alpha_{1}\right)} \\
\leq & \frac{2 M}{\Gamma(\alpha)(1+\beta)^{1-\alpha_{1}}}\left(t_{2}-t_{1}\right)^{(1+\beta)\left(1-\alpha_{1}\right)},
\end{aligned}
$$

which means that $\left\{U_{2} y: y \in E(\eta, \gamma)\right\}$ is equicontinuous. Moreover, it is clear that U_{2} is continuous. So U_{2} is a completely continuous operator. Then $U=U_{1}+U_{2}$ is a completely continuous operator.

Therefore, Krasnoselskii's fixed point theorem shows that $S+U$ has a fixed point on $E(\eta, \gamma)$, and hence the IVP (1) has a solution $x(t)=\phi(0)+y\left(t-t_{0}\right)$ for all $t \in\left[t_{0}, t_{0}+\eta\right]$. This completes the proof.

In the case where $g_{1} \equiv 0$, we get the following result.
Theorem 3.2. Assume that there exist $\delta \in(0, a)$ and $\gamma \in(0, \infty)$ such that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold and
$\left(\mathrm{H}_{5}\right)^{\prime} g$ is continuous and for any $x^{\prime}, x^{\prime \prime} \in A(\delta, \gamma), t \in I_{0}$

$$
\left|g\left(t, x_{t}^{\prime}\right)-g\left(t, x_{t}^{\prime \prime}\right)\right| \leq l\left\|x^{\prime}-x^{\prime \prime}\right\|, \quad \text { where } l \in(0,1)
$$

Then the IVP (1) has at least one solution on $\left[t_{0}, t_{0}+\eta\right]$ for some positive number η.
In the case where $g_{2} \equiv 0$, we have the following result.
Theorem 3.3. Assume that there exist $\delta \in(0, a)$ and $\gamma \in(0, \infty)$ such that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold and
$\left(\mathrm{H}_{6}\right)^{\prime} \mathrm{g}$ is completely continuous and for any bounded set Λ in $A(\delta, \gamma)$, the set $\left\{t \rightarrow g\left(t, x_{t}\right): x \in \Lambda\right\}$ is equicontinuous on $C\left(I_{0}, R^{n}\right)$.
Then the IVP (1) has at least one solution on $\left[t_{0}, t_{0}+\eta\right]$ for some positive number η.

References

[1] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam, 2006.
[2] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
[3] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[4] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1993.
[5] R.P. Agarwal, M. Belmekki, M. Benchohra, Existence results for semilinear functional diferential inclusions involving Riemann-Liuville fractional derivative, Dyn. Contin. Discrete Impuls. Syst. Ser.A Math. Anal. (in press).
[6] R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. (2008), doi:10.1007/s10440-008-9356-6.
[7] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008) 1340-1350.
[8] V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multi-term fractional differential equations, J. Math. Anal. Appl. 345 (2008) $754-765$.
[9] K. Diethelm, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002) 229-248.
[10] M.M. El-Borai, Semigroups and some nonlinear fractional differential equations, Appl. Math. Comput. 149 (2004) 823-831.
[11] A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998) 181-186.
[12] N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal. 70 (2009) 2521-2529.
[13] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008) 2677-2682.
[14] M. Muslim, Existence and approximation of solutions to fractional differential equations, Math. Comput. Modelling 49 (2009) $1164-1172$.
[15] H.A.H. Salem, On the existence of continuous solutions for a singular system of non-linear fractional differential equations, Appl. Math. Comput. 198 (2008) 445-452.
[16] J. Vasundhara Devi, V. Lakshmikantham, Nonsmooth analysis and fractional differential equations, Nonlinear Anal. (in press).
[17] Yong Zhou, Existence and uniqueness of fractional functional differential equations with unbounded delay, Int. J. Dyn. Syst. Differ. Equs. 1 (4) (2008) 239-244.
[18] Yong Zhou, Feng Jiao, Jing Li, Existence and uniqueness for p-type fractional neutral differential equations, Nonlinear Anal. 71 (2009) $2724-2733$.
[19] Yong Zhou, Feng Jiao, Jing Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal. 71 (2009) 3249-3256.
[20] V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. 69 (2008) 3337-3343.

[^0]: Th Research supported by National Natural Science Foundation of P.R. China and Research Fund of Hunan Provincial Education Department (08A071).

 * Corresponding author.

 E-mail addresses: agarwal@fit.edu (R.P. Agarwal), yzhou@xtu.edu.cn (Y. Zhou).

