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In this paper, the initial value problem is discussed for a class of fractional neutral functional
differential equations and the criteria on existence are obtained.
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1. Introduction

In this paper, we consider the initial value problems (IVP for short) of fractional neutral functional differential equations
with bounded delay of the form{cDα(x(t)− g(t, xt)) = f (t, xt), t ∈ (t0,+∞), t0 ≥ 0,

xt0 = φ,
(1)

where cDα is the standard Caputo’s fractional derivative of order 0 < α < 1, f , g : [t0,+∞)×C([−r, 0], Rn)→ Rn are given
functions satisfying some assumptions that will be specified later, a > 0 and φ ∈ C([−r, 0], Rn). If x ∈ C([t0− r, t0+a], Rn),
then for any t ∈ [t0, t0 + a] define xt by xt(θ) = x(t + θ), for θ ∈ [−r, 0].
Fractional differential equations have gained considerable importance due to their application in various sciences, such

as physics, mechanics, chemistry, engineering, etc.. In the recent years, there has been a significant development in ordinary
and partial differential equations involving fractional derivatives, see the monographs of Kilbas et al. [1], Lakshmikantham
et al. [2], Miller and Ross [3], Podlubny [4] and the papers in [5–19] and the references therein. In [5], Agarwal, Belmekki
and Benchohra obtain existence results for semilinear functional differential inclusions involving fractional derivatives.
In [7], Benchohra et al. consider the IVP for a class of fractional neutral functional differential equations with infinite delay.
In [11], El-Sayed discusses a class of nonlinear functional differential equations of arbitrary orders. In [20], Lakshmikantham
initiates the basic theory for fractional functional differential equations. In [17–19], Zhou et al. investigated the existence
and uniqueness for fractional functional differential equations with unbounded and infinite delay.
In this paper, we discuss the initial value problem for a class of fractional neutral functional differential equations with

boundeddelay.We firstly deduce IVP (1) to a equivalent integral equation. Next, by usingKrasnoselskii’s fixedpoint theorem,
we get that the equivalent operator has (at least) a fixed point, it means that IVP (1) has at least one solution.

2. Preliminaries

In this section, we introduce definitions and preliminary facts which are used throughout this paper.
Let J ⊂ R. Denote C(J, Rn) be the Banach space of all continuous functions from J into Rn with the norm
‖x‖ = sup

t∈J
|x(t)|,

where | · | denotes a suitable complete norm on Rn.
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Definition 2.1 ([1,4]). The fractional integral of order qwith the lower limit t0 for a function f is defined as

Iqf (t) =
1

Γ (q)

∫ t

t0

f (s)
(t − s)1−q

ds, t > t0, q > 0,

provided the right-hand side is pointwise defined on [t0,∞), where Γ is the gamma function.

Definition 2.2 ([1,4]). Riemann–Liouville derivative of order qwith the lower limit t0 for a function f : [t0,∞)→ R can be
written as

Dqf (t) =
1

Γ (n− q)
dn

dtn

∫ t

t0

f (s)
(t − s)q+1−n

ds, t > t0, n− 1 < q < n.

The first–andmaybe themost important–property of Riemann–Liouville fractional derivative is that for t > t0 and q > 0,
we have

Dq(Iqf (t)) = f (t),
which means that Riemann–Liouville fractional differentiation operator is a left inverse to the Riemann–Liouville fractional
integration operator of the same order q.

Definition 2.3 ([1,4]). Caputo’s derivative of order qwith the lower limit t0 for a function f : [t0,∞)→ R can be written as

cDqf (t) =
1

Γ (n− q)

∫ t

t0

f (n)(s)
(t − s)q+1−n

ds = In−qf (n)(t), t > t0, n− 1 < q < n.

Obviously, Caputo’s derivative of a constant is equal to zero.

Remark 2.1. We need to mention that there exits a link between Riemann–Liouville and Caputo’s fractional derivative of
order q. Namely,

cDqf (t) =
1

Γ (n− q)

∫ t

t0

f (n)(s)
(t − s)q+1−n

ds

= Dqf (t)−
n−1∑
k=0

f (k)(t0)
Γ (k− q+ 1)

(t − t0)k−q

= Dq
[
f (t)−

n−1∑
k=0

f (k)(t0)
k!

(t − t0)k
]
, t > t0, n− 1 < q < n.

Lemma 2.1 (Krasnoselskii’s Fixed Point Theorem). Let X be a Banach space, let E be a bounded closed convex subset of X and
let S, U be maps of E into X such that Sx+ Uy ∈ E for every pair x, y ∈ E. If S is a contraction and U is completely continuous,
then the equation

Sx+ Ux = x

has a solution on E.

3. Main results

Let
I0 = [t0, t0 + δ],
A(δ, γ ) = {x ∈ C([t0 − r, t0 + δ], Rn)|xt0 = φ, sup

t0≤t≤t0+δ
|x(t)− φ(0)| ≤ γ },

where δ, γ are positive constants.
Before stating and proving the main results, we introduce the following hypotheses.

(H1) f (t, ϕ) is measurable with respect to t on I0,
(H2) f (t, ϕ) is continuous with respect to ϕ on C([−r, 0], Rn),
(H3) there exist α1 ∈ (0, α) and a real-valued function m(t) ∈ L

1
α1 (I0) such that for any x ∈ A(δ, γ ), |f (t, xt)| ≤ m(t), for

t ∈ I0,
(H4) for any x ∈ A(δ, γ ), g(t, xt) = g1(t, xt)+ g2(t, xt),
(H5) g1 is continuous and for any x′, x′′ ∈ A(δ, γ ), t ∈ I0

|g1(t, x′t)− g1(t, x
′′

t )| ≤ l‖x
′
− x′′‖, where l ∈ (0, 1),

(H6) g2 is completely continuous and for any bounded setΛ in A(δ, γ ), the set {t → g2(t, xt) : x ∈ Λ} is equicontinuous in
C(I0, Rn).
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Lemma 3.1. If there exist δ ∈ (0, a) and γ ∈ (0,∞) such that (H1)–(H3) are satisfied, then for t ∈ (t0, t0 + δ], IVP (1) is
equivalent to the following equationx(t) = φ(0)− g(t0, φ)+ g(t, xt)+

1
Γ (α)

∫ t

t0
(t − s)α−1f (s, xs)ds, t ∈ I0,

xt0 = φ.
(2)

Proof. First, it is easy to obtain that f (t, xt) is Lebesgue measurable on I0 according to conditions (H1) and (H2). A direct
calculation gives that (t − s)α−1 ∈ L

1
1−α1 ([t0, t]), for t ∈ I0. In the light of the Hölder inequality and (H3), we obtain that

(t − s)α−1f (s, xs) is Lebesgue integrable with respect to s ∈ [t0, t] for all t ∈ I0 and x ∈ A(δ, γ ), and∫ t

t0
|(t − s)α−1f (s, xs)|ds ≤ ‖(t − s)α−1‖

L
1

1−α1 ([t0,t])
‖m‖

L
1
α1 (I0)

, (3)

where

‖F‖Lp(J) =
(∫
J
|F(t)|pdt

) 1
p

for any Lp-integrable function F : J → R.
According to Definitions 2.1 and 2.3, it is easy to see that if x is a solution of the IVP (1), then x is a solution of the Eq. (2).
On the other hand, if (2) is satisfied, then for every t ∈ (t0, t0 + δ], we have

cDα(x(t)− g(t, xt)) = cDα
[
φ(0)− g(t0, φ)+

1
Γ (α)

∫ t

t0
(t − s)α−1f (s, xs)ds

]
=
cDα

[
1

Γ (α)

∫ t

t0
(t − s)α−1f (s, xs)ds

]
=
cDα(Iα f (t, xt))

= Dα(Iα f (t, xt))− [Iα f (t, xt)]t=t0
(t − t0)−α

Γ (1− α)

= f (t, xt)− [Iα f (t, xt)]t=t0
(t − t0)−α

Γ (1− α)
.

According to (3), we know that [Iα f (t, xt)]t=t0 = 0, which means that
cDα(x(t) − g(t, xt)) = f (t, xt), t ∈ (t0, t0 + δ], and

this completes the proof. �

Theorem 3.1. Assume that there exist δ ∈ (0, a) and γ ∈ (0,∞) such that (H1)–(H6) are satisfied. Then the IVP (1) has at least
one solution on [t0, t0 + η] for some positive number η.

Proof. According to (H4), Eq. (2) is equivalent to the following equationx(t) = φ(0)− g1(t0, φ)− g2(t0, φ)+ g1(t, xt)+ g2(t, xt)+
1

Γ (α)

∫ t

t0
(t − s)α−1f (s, xs)ds, t ∈ I0,

xt0 = φ.

Let φ̃ ∈ A(δ, γ ) be defined as φ̃t0 = φ, φ̃(t0 + t) = φ(0) for all t ∈ [0, δ]. If x is a solution of the IVP (1), let
x(t0 + t) = φ̃(t0 + t)+ y(t), t ∈ [−r, δ], then we have xt0+t = φ̃t0+t + yt , t ∈ [0, δ]. Thus y satisfies the equation

y(t) = −g1(t0, φ)− g2(t0, φ)+ g1(t0 + t, yt + φ̃t0+t)+ g2(t0 + t, yt + φ̃t0+t)

+
1

Γ (α)

∫ t

0
(t − s)α−1f (t0 + s, ys + φ̃t0+s)ds, t ∈ [0, δ]. (4)

Since g1, g2 are continuous and xt is continuous in t , there exists δ′ > 0, when 0 < t < δ′,

|g1(t0 + t, yt + φ̃t0+t)− g1(t0, φ)| <
γ

3
, (5)

and

|g2(t0 + t, yt + φ̃t0+t)− g2(t0, φ)| <
γ

3
. (6)
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Choose

η =

{
δ, δ′,

(
γΓ (α)(1+ β)1−α1

3M

) 1
(1+β)(1−α1)

}
(7)

where β = α−1
1−α1
∈ (−1, 0) andM = ‖m‖

L
1
α1 (I0)

.

Define E(η, γ ) as follows

E(η, γ ) = {y ∈ C([−r, η], Rn)| y(s) = 0 for s ∈ [−r, 0] and ‖y‖ ≤ γ }.

Then E(η, γ ) is a closed bounded and convex subset of C([−r, δ], Rn). On E(η, γ )we define the operators S and U as follows

Sy(t) =
{
0, t ∈ [−r, 0],
−g1(t0, φ)+ g1(t0 + t, yt + φ̃t0+t), t ∈ [0, η],

Uy(t) =


0, t ∈ [−r, 0],
−g2(t0, φ)+ g2(t0 + t, yt + φ̃t0+t)

+
1

Γ (α)

∫ t

0
(t − s)α−1f (t0 + s, ys + φ̃t0+s)ds, t ∈ [0, η].

It is easy to see that if the operator equation

y = Sy+ Uy (8)

has a solution y ∈ E(η, γ ) if and only if y is a solution of Eq. (4). Thus x(t0 + t) = y(t)+ φ̃(t0 + t) is a solution of Eq. (1) on
[0, η]. Therefore, the existence of a solution of the IVP (1) is equivalent that (8) has a fixed point in E(η, γ ).
Now we show that S + U has a fixed point in E(η, γ ). The proof is divided into three steps.

Step I. Sz + Uy ∈ E(η, γ ) for every pair z, y ∈ E(η, γ ).
In fact, for every pair z, y ∈ E(η, γ ), Sz + Uy ∈ C([−r, η], Rn). Also, it is obvious that (Sz + Uy)(t) = 0, t ∈ [−r, 0].
Moreover, for t ∈ [0, η], by (5)–(7) and the condition (H3), we have

|Sz(t)+ Uy(t)| ≤ | − g1(t0, φ)+ g1(t0 + t, zt + φ̃t0+t)| + | − g2(t0, φ)+ g2(t0 + t, yt + φ̃t0+t)|

+
1

Γ (α)

∫ t

0
|(t − s)α−1f (t0 + s, ys + φ̃t0+s)|ds

≤
2γ
3
+

1
Γ (α)

(∫ t

0
(t − s)

α−1
1−α1 ds

)1−α1(∫ t0+t

t0
(m(s))

1
α1 ds

)α1
≤
2γ
3
+

1
Γ (α)

(∫ t

0
(t − s)

α−1
1−α1 ds

)1−α1(∫ t0+δ

t0
(m(s))

1
α1 ds

)α1
≤
2γ
3
+

Mη(1+β)(1−α1)

Γ (α)(1+ β)1−α1
≤ γ .

Therefore,

‖Sz + Uy‖ = sup
t∈[0,η]

|(Sz)(t)+ (Uy)(t)| ≤ γ ,

which means that Sz + Uy ∈ E(η, γ ) for any z, y ∈ E(η, γ ).
Step II. S is a contraction on E(η, γ ).
For any y′, y′′ ∈ E(η, γ ), y′t + φ̃t0+t , y

′′
t + φ̃t0+t ∈ A(δ, γ ). So by (H5), we get that

|Sy′(t)− Sy′′(t)| = |g1(t0 + t, y′t + φ̃t0+t)− g1(t0 + t, y
′′

t + φ̃t0+t)|

≤ l‖y′ − y′′‖,

which implies that

‖Sy′ − Sy′′‖ ≤ l‖y′ − y′′‖.

In view of 0 < l < 1, S is a contraction on E(η, γ ).
Step III. Now we show that U is a completely continuous operator.
Let

U1y(t) =
{
0, t ∈ [−r, 0],
−g2(t0, φ)+ g2(t0 + t, yt + φ̃t0+t), t ∈ [0, η]
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and

U2y(t) =


0, t ∈ [−r, 0],
1

Γ (α)

∫ t

0
(t − s)α−1f (t0 + s, ys + φ̃t0+s)ds, t ∈ [0, η].

Clearly, U = U1 + U2.
Since g2 is completely continuous, U1 is continuous and {U1y : y ∈ E(η, γ )} is uniformly bounded. From the condition

that the set {t → g2(t, xt) : x ∈ Λ} be equicontinuous for any bounded set Λ in A(δ, γ ), we can conclude that U1 is a
completely continuous operator.
On the other hand, for any t ∈ [0, η], we have

|U2y(t)| ≤
1

Γ (α)

∫ t

0
(t − s)α−1|f (t0 + s, ys + φ̃t0+s)|ds

≤
1

Γ (α)

(∫ t

0
(t − s)

α−1
1−α1

)1−α1(∫ t0+t

t0
(m(s))

1
α1 ds

)α1
≤

Mη(1+β)(1−α1)

Γ (α)(1+ β)1−α1
.

Hence, {U2y : y ∈ E(η, γ )} is uniformly bounded.
Now, we will prove that {U2y : y ∈ E(η, γ )} is equicontinuous. For any 0 ≤ t1 < t2 ≤ η and y ∈ E(η, γ ), we get that

|U2y(t2)− U2y(t1)| =
∣∣∣∣ 1
Γ (α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]f (t0 + s, ys + φ̃t0+s)ds

+
1

Γ (α)

∫ t2

t1
(t2 − s)α−1f (t0 + s, ys + φ̃t0+s)ds

∣∣∣∣
≤

1
Γ (α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]|f (t0 + s, ys + φ̃t0+s)|ds

+
1

Γ (α)

∫ t2

t1
(t2 − s)α−1|f (t0 + s, ys + φ̃t0+s)|ds

≤
M
Γ (α)

(∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]

1
1−α1 ds

)1−α1
+

M
Γ (α)

(∫ t2

t1
[(t2 − s)α−1]

1
1−α1 ds

)1−α1
≤

M
Γ (α)

(∫ t1

0
(t1 − s)β − (t2 − s)βds

)1−α1
+

M
Γ (α)

(∫ t2

t1
(t2 − s)βds

)1−α1
≤

M
Γ (α)(1+ β)1−α1

(
t1+β1 − t1+β2 + (t2 − t1)1+β

)1−α1
+

M
Γ (α)(1+ β)1−α1

(t2 − t1)(1+β)(1−α1)

≤
2M

Γ (α)(1+ β)1−α1
(t2 − t1)(1+β)(1−α1),

which means that {U2y : y ∈ E(η, γ )} is equicontinuous. Moreover, it is clear that U2 is continuous. So U2 is a completely
continuous operator. Then U = U1 + U2 is a completely continuous operator.
Therefore, Krasnoselskii’s fixed point theorem shows that S + U has a fixed point on E(η, γ ), and hence the IVP (1) has

a solution x(t) = φ(0)+ y(t − t0) for all t ∈ [t0, t0 + η]. This completes the proof. �

In the case where g1 ≡ 0, we get the following result.

Theorem 3.2. Assume that there exist δ ∈ (0, a) and γ ∈ (0,∞) such that (H1)–(H3) hold and
(H5)

′

g is continuous and for any x′, x′′ ∈ A(δ, γ ), t ∈ I0
|g(t, x′t)− g(t, x

′′

t )| ≤ l‖x
′
− x′′‖, where l ∈ (0, 1).

Then the IVP (1) has at least one solution on [t0, t0 + η] for some positive number η.

In the case where g2 ≡ 0, we have the following result.

Theorem 3.3. Assume that there exist δ ∈ (0, a) and γ ∈ (0,∞) such that (H1)–(H3) hold and
(H6)

′

g is completely continuous and for any bounded set Λ in A(δ, γ ), the set {t → g(t, xt) : x ∈ Λ} is equicontinuous on
C(I0, Rn).

Then the IVP (1) has at least one solution on [t0, t0 + η] for some positive number η.
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