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ABSTRACr A phenomenological model of the process of fast axoplasmic transport is
presented. The process was conceived of as occurring in two parts: (a) synthesis and
storage of material in a cytoplasmic pool; (b) release from the pool and transport
distally along the axon. Considering the fate of labeled proteins, the activity at points
along the axon reflects events occurring earlier within the pool through the relation-
ship: g(x, t) = constf(t - xlv); where g(x, t) represents axonal activity, f(t) the
pool's activity, and v is the transport speed. Using the idea that when there is no
further input of radioactivity into the pool its activity declines exponentially due to
export of material to the axon, I generalized this concept to the case where activity
enters and leaves the pool simultaneously. The model contains two parameters: the
relative turnover rate of the pool, a, and T, an interval characteristic of the time of
synthesis. From this model, the experimental data is unfolded and yields values for
these parameters of a = 0.004 min1l and T = 60 min.

The phenomenon of fast axonal transport has been extensively examined in the sciatic
nerve of mammals (usually cats) by Ochs and his co-workers (Ochs et al., 1970; Ochs,
1972a). As shown in Fig. 1, the profile of activity along the nerve distal to the injected
dorsal root ganglion (L7) has several characteristic features: a peak (A) which coincides
with the position of the ganglion, a distal crest (B), and two sloping regions (C and D).
Based upon a model for the synthesis-flow process, I attempted an explanation for the
shape of this downflow profile, and, in addition, extracted numerical values estimating
the parameters of the model from the data. A qualitative picture describing these
events has already been proposed by Ochs (1972b). The two models overlap each other
and are complementary rather than alternative explanations of the phenomena they
describe.
The following assumptions were made: (a) synthesis is confined to the cell soma, (b)

no losses occur as material moves distally (corrections for this can easily be made), (c)
only fast flow will be considered, (d) although the sciatic nerve contains many fibers,
the model lumps them all together treating the nerve as one fiber and one cell body;
this simplification amounts to treating the average fiber. Fig. 2 provides a pictorial
framework for the model. The proteins that are exported come from a pool, which
contains a number, assumed to be constant at N, of protein molecules. These are con-
tinually replenished at a rate N as they leave to move axodistally. The turnover of the
pool can be described by a single number a = N/N = "relative turnover rate." When
some of the pool proteins are labeled, this information is contained in a function f(t)

BIOPHYSICAL JOURNAL VOLUME 16 1976 1125

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82237606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


106 r

A

105

104

j

E

D
c

o 2
U 10G

cns .c= ==~ c=>.periphery

101 L L L
30 15 0 15 30 45 60 75 90 106

(mm)

FIGURE I Example of a typical downflow profile. [3H]leucine was injected into the L7 dorsal
root ganglion (G). The sciatic nerve was removed after 5 h, divided into 3-mm pieces, and counted
in a liquid scintillation counter. The letters A-D are explained in the text. This figure was
adapted from Fig. 5 ofOchs et al. (1970) with the permission of the authors and publisher.

representing the fraction which are labeled: f(t) = N*/N, where N* is the number of
labeled molecules. f(t) changes for two reasons: (a) those proteins leaving carry away
some label, thus reducingf, and (b) incoming proteins bring in some label, thus increas-
ingf If after a certain time, no more labeled proteins enter the pool, the pool activity
will decline as time passed due to the continual exit of label. Iff is the value of the
pool fraction at that time, then this decline is given by

f(t) = foe-'.(1

PROTEIN IN(N)

POOL (N)

x -----*

PROTEIN OUT (N )

FIGURE 2 Schematic representation of the model. Proteins manufactured. within the somal
cytoplasm are transferred to the cytoplasmic pool (N molecules) at a rate N' and are exported
axodistally along the axon from the origin at the cell soma.
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As will be shown below, this simple time dependence can be used to generate the more
complex behavior off(t) expected when labeled proteins are simultaneously entering
and leaving the pool.

I turn first, however, to a consideration of the relationship between the downflow
profile, as exhibited in the axon, and the pool fractionf During an interval of time
At, the number of labeled molecules leaving the pool is AN* = f(t) AN = f(t)NAt.
This number occupies a linear distance along the axon given by Ax = v At, where v is
the speed of transport. Consider the profile of counts in the axon at an arbitrary time t,
after the ganglion has been injected. Let this profile be described by the function g(x, t)
so that the number of counts at the position (x, Ax) is given by G(x, t) = g(x, t) Ax.
This activity was exported from the pool at an earlier time t' =t - x/v and during an
interval At' = Ax/v. Therefore we may write:

G(x, t) = const AN* (t - x/v) = constf(t - xlv) N]At',
g(x, t) Ax = constf(t - xlv) NAx/v.

Since N and v are assumed to be constants, it can be seen that:

g(x,t) = constf(t - xlv). (2)

Therefore, the counts in the distal axon reflect the state of the pool fraction at earlier
times and can thus be used to examine events within the cell soma. Since, from this
viewpoint, the downflow serves merely to provide a transformation mechanism for
intrasomal events, we can concentrate only on the function f(t) and rely upon the
transformation equation 2 to predict the activity profile in the axon.
As pointed out above, the exponential decay (Eq. (1)), is the simplest behavior for

f(t). It corresponds to an instantaneous loading of the pool at time t = 0 to a level
f,. More complex functions f can be built by using the principle of superposition.
Consider a function h(r) describing the input of activity to the pool: AN(in) = NA T

and AN* (in) = h(r)AN = h(T)NAT. The contribution to f(t) of the portion of
entering activity represented by h(r) A XTis given by:

df(t) = ah(T)dre-a(1-T);t > T.

By integrating over the variable T, we therefore arrive at a complete expression forf(t):

f(t) = ah(T) e-c(1-7) dT. (3)

A more revealing form can be obtained by factoring out a portion of the time de-
pendence in Eq. 3 and rewriting it as:

f(t) = e ac a hh(T)eaT dT = eal F(t)
0
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where

F(t) = ah(r)eal dr. (4)

In this form, the explicit dependence off(t) upon the exponential decay is displayed.
In the case that the function h(r) is essentially zero after a finite time T, the second
factor F(t) becomes a constant F(T) for values of t beyond T, and then the time
dependence off is identical to Eq. 1.
The early time dependence off is dominated by h(r). This function represents the

operation of a multiplicity of processes acting upon the injected radioactive precursor

(usually amino acid) up to the formation of labeled protein and its entrance into the
export pool. Despite this complexity it seems reasonable that, in general, h(r) begins
at a value of zero, rises to a peak, and then declines once again to zero, all within some

finite time period denoted by the number T. Therefore, the function f is in this model
described by only two parameters a and T; a describes that portion of Fig. 1 labeled C
and T the portion labeled D.
The determination of a value for a is aided by the relatively large separation of the

two times characteristic of the process. The slope at D is quite a bit steeper than the
one at C which corresponds to the fact that T < a'- '. Thus a can be estimated from
the data by laying a straight edge along the portion labeled C (Fig. 1) and measuring
the slope. Using this technique I have found values for a from several experimental
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FIGURE 3 The functionsfand h as defined in the text.
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curves. These are approximately a = 0.004 min'l (or a- = 250 min). An estimate
for T is somewhat more difficult due to the interaction between the buildup of pool
radioactivity and its export at the early times, and also because of the problem of de-
ciding how to define the limiting points on the downflow profile. However, a crude
estimate can be made from the "fall" time of this profile and this yields a value of
T - 90 min. If a suitable form for the function h(r) could be found from, for in-
stance, theoretical considerations about the initial intrasomal processes leading to the
formation of labeled molecules, this could be inserted into Eq. 4 and the result fitted to
the observed data. Such an effort would yield estimates for whatever parameters were
included in this formulation ofh(T). This mode of attack suffers from a lack of knowl-
edge on how to develop an expression for h.

Alternatively, instead of trying to find an analytical form for h(T) one can try the ap-
proach of unfolding the data and thereby arriving at a numerical form for h. This ap-
proach can be realized by differentiating Eq. 4 as follows. Let A represent an infinitesi-
mal increment in t.

f(t + A) =- J ah(T)ealdT = e-a' e- a

{jt ah(T)e"' dT + ah(T)eaT dr}

= e-at e- aah(T)ealdT + ah(t')eat'}

= e-aAIf(t) + h(t')aAJ; (t < t' < t + A)

h(t') = f(t + A)eaA - f(t)

Using Eq. 5 the raw data can be processed to obtain a numerical representation for
h(t). A typical result of this is shown in Fig. 3. In this figure, the functions f and h
have been transformed from their time-dependent forms into their space-dependent
forms through the application of Eq. 2. h(t) is seen to be a fairly sharply rising curve
reaching its maximum amplitude about 35 min (10 mm/0.26 mm/min) before f, and
then dropping down to zero somewhat more rapidly than it rose. The quantity T can
be defined as the width ofh at one-half its maximum value. This procedure leads to a
value: T = 60 min. This form, and nearly the same values for the parameters, were
found for several experiments differing only in the time elapsed between injection and
sacrifice (smallest time: 5 h, longest time: 10 h). Data from similar experiments carried
out using rats (I. Nadelhaft and F. Ronco, 1973, unpublished results) yielded com-
parable results but the data was not as suitable for analysis due to the relatively shorter
available length of nerve.
The analysis presented here is a phenomenological analysis of the broad features of
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the fast axoplasmic transport downflow profile. It conceives of the process as com-
prising two interconnected stages: (a) the manufacture of proteins and their storage in
an export pool within the cell soma, and (b) the movement of these proteins out of the
pool and distally along the axon.
The model does not attempt to account for the large amount of activity at the peak

(A) of Fig. 1. This is probably associated with materials that either remain within the
soma or are exported as the slowly flowing component. Since the slow component
moves at a rate of approximately 1 mm/day, even fast flow data representing incuba-
tion times as long as 10 h should be completely free from interference by slowly flowing
components. However, the slowly moving materials have been less thoroughly investi-
gated than the rapidly flowing ones and it is possible that the slow flow is actually com-
posed of a spectrum of several components each of which has a different speed. This
possibility could account for the relatively broad base around the peak (A). Diffusion
of precursor to non-neuronal cells local to the injection site can also contribute to a
broad peak.

Speculation concerning a multiplicity of transport speeds can also be raised with re-
gard to the fast-moving materials. Such a condition would have an effect on the ad-
vancing front of the downflow (D) in Fig. 1 and would tend to broaden it as the incuba-
tion time increased. Existing data suggest that this may be occurring to a small degree
but more refined experiments involving greater precision and longer times are needed
to clarify the question. In addition it is conceivable the speed of fast transport could
vary from one axon to another depending on the cell type and/or the axonal diameter.
These parameters are not sorted out in the gross experimental data that presently are
available, but here again refinements including autoradiographic techniques and single
cell injections may answer these questions.

I would like to thank Professors Allen Janis and Sidney Ochs for reading the manuscript and offering
helpful comments on it.

Receivedfor publication 26 April 1976.

REFERENCES

OCHS, S. 1972a. Rate of fast axoplasmic transport in mammalian nerve fibers. J. Physiol. (Lond.). 227:
627.

OCHS, S. 1972b. Fast transport of materials in mammalian nerve fibers. Science (Wash. D. C.). 176:252.
OCHS, S., M. I. SABRI, and N. RANISH. 1970. Somal site of synthesis of fast transported materials in mam-

malian nerve fibers. J. Neurobiol. 1:329.

1130 BIOPHYSICAL JOURNAL VOLUME 16 1976


