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Abstract

Let E be a number field and G be a finite group. Let A be any OE-order of full rank in the group algebra
E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given
rank d over A. In the case that the Wedderburn decomposition E[G] ∼= ⊕

χ Mχ is explicitly computable
and each Mχ is in fact a matrix ring over a field, this leads to an algorithm that either gives elements
α1, . . . , αd ∈ X such that X =Aα1 ⊕ · · · ⊕Aαd or determines that no such elements exist.

Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield
of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in
this situation. For example, one can take X to be OL, the ring of algebraic integers of L, and A to be
the associated order A(E[G];OL) ⊆ E[G]. The application of the algorithm to this special situation is
implemented in Magma under certain extra hypotheses when K = E = Q.
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1. Introduction

Let E be a number field and G be a finite group. Let A be any OE-order of full rank in the
group algebra E[G] and X be a (left) A-lattice, i.e., a (left) A-module that is finitely generated
and torsion-free over OE . The first result of this paper is a necessary and sufficient condition for
X to be free of given rank d over A. In order to use this criterion for computational purposes, we
have to impose two hypotheses:

(H1) The Wedderburn decomposition E[G] ∼= ⊕
χ Mχ , where each Mχ is a matrix ring over a

division ring, is explicitly computable.
(H2) The Schur indices of all E-rational irreducible characters of G are equal to 1, i.e., each Mχ

above is in fact a matrix ring over a number field.

Under these hypotheses, we give an algorithm that either computes elements α1, . . . , αd ∈ X

such that X = Aα1 ⊕ · · · ⊕Aαd or determines that no such elements exist. More generally, the
group algebra E[G] can be replaced by any finite product of matrix rings over number fields
containing E, in which case G, and thus (H1) and (H2), play no role.

The main motivation for this work has its origins in the following special case. Let L/K be a
finite Galois extension of number fields with Galois group G such that E is a subfield of K and
put d = [K : E]. One can take X to be OL, the ring of algebraic integers of L, and A to be the
associated order

A
(
E[G];OL

) := {
x ∈ E[G] ∣∣ x(OL) ⊆ OL

}
.

The application of the algorithm to this special situation is implemented in Magma [BCP97]
under certain extra hypotheses when K = E = Q. The source code and input files are available
from http://www.mathematik.uni-kassel.de/~bley/pub.html. Other Galois modules to which the
algorithm can be applied include the G-stable ideals of OL and, in certain cases, the torsion-free
part of O×

L .
The algorithm can be thought of as a non-abelian, higher rank generalization of the one given

in [Ble97]; though stated for the Galois module structure of units, this can be adapted to general
modules for G abelian and d = 1 with relatively few changes. It is also worth noting that under
the same restrictions on G and d , the algorithm in [BE05] computes the Picard group Pic(A)

and solves the corresponding refined discrete logarithm problem, thus computing a generator if
it exists.

There is a considerable body of work related to the motivating special case of the Galois mod-
ule structure of rings of integers. We briefly mention just a few of these results, using the notation
above. The most progress has been made in the case that L/K is at most tamely ramified. In this
setting, it is well known that A = OE[G] and OL is locally free over OE[G] (see [Noe32]). The
algorithm in [BW] determines the class of OL in the locally free class group Cl(OE[G]), and
thus whether or not it is stably free (note that under hypothesis (H2) all stably free A-modules
are in fact free). Important work of Fröhlich and Taylor determines the class of OL in the locally
free class group Cl(Z[G]) in terms of Artin root numbers of irreducible complex symplectic
characters of G (see [Frö83]). Unfortunately, neither of these approaches lead to any description
of generators. However, explicit generators or algorithms to find them when K = E = Q and
G = A4, D2p (p odd prime), H8, H12, or H8 × C2 are given in [Cou06,Cou00,Mar69,CQ02]
and [Cou98].
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When no assumption regarding the ramification of L/K is made, the situation is somewhat
more difficult, not least because OL is not necessarily locally free over A. Perhaps the most
important result in this context is Leopoldt’s Theorem, which in the case that K = E = Q and G

is abelian shows that OL is always free over A and, in addition, explicitly constructs an element
α ∈ OL in terms of Gauss sums such that OL = Aα (see [Leo59]; Lettl gives a simplified proof
in [Let90]). In the setting K = E and L/Q abelian, progressively sharper generalizations of
Leopoldt’s Theorem (with explicit generators) are given in [CL93,Ble95,BL96,Joh].

In future work, we hope to eliminate hypothesis (H2). Finding an algorithm to explicitly
compute Wedderburn decompositions and thereby eliminate hypothesis (H1) is an independent
problem in its own right, on which some progress has been made by others. A more detailed
discussion of both hypotheses is given in Section 3.

2. A necessary and sufficient condition for freeness

Let E be a number field and G be a finite group. Let A be any OE-order of full rank in
the group algebra A := E[G], and let M be some maximal OE-order in A containing A. (In
fact, the results of this section still hold when the group algebra E[G] is replaced by any finite-
dimensional semisimple E-algebra.) For any non-commutative ring R, we shall henceforth take
“R-module” to mean “left R-module,” unless otherwise stated.

If p is a prime of OE and M is an OE-module, we write Mp := OE,p ⊗OE
M for the localiza-

tion of M at p. We say that M is locally free of rank d if for every p, we have Mp free over Ap of
rank d . For an A-lattice X, i.e., an A-module that is finitely generated and torsion-free over OE ,
we set MX := M⊗A X and usually identify MX with the sublattice {λx | λ ∈ M, x ∈ X} of
the E-vector space E ⊗OE

X. We define MpXp in the same way.
The main results of this paper are consequences of the following proposition.

Proposition 2.1. Let X be an A-lattice. Then X is free of rank d if and only if

(a) X is a locally free A-lattice of rank d , and
(b) there exist α1, . . . , αd ∈ X such that MX = Mα1 ⊕ · · · ⊕Mαd .

Further, when this is the case, X = Aα1 ⊕ · · · ⊕Aαd .

Proof. If X is a free A-lattice of rank d then (a) and (b) follow trivially.
Suppose conversely that (a) and (b) hold and let Y = Aα1 ⊕ · · · ⊕ Aαd ⊆ X. Both X and

Y are locally free A-lattices of rank d and so for each non-zero prime p of OE there ex-
ists an isomorphism fp :Yp −→ Xp of Ap-lattices which extends naturally to an isomorphism
fp :MpYp −→ MpXp of Mp-lattices. For each p we have

[Xp : Yp]OE,p
= [

fp(Yp) : Yp

]
OE,p

= detE(fp)OE,p,

where the two left-most terms are generalized module indices (see [FT91, II.4]). However,
MY = MX and so each fp :MpYp −→ MpXp = MpYp is in fact an Mp-automorphism and
therefore also an OE,p-automorphism. Hence detE(fp) ∈O×

E,p and so [Xp : Yp]OE,p
= OE,p for

each p. Together with the fact that Y ⊆ X, this shows that X = Y . �
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Let R be a ring with identity and denote by Rop the opposite ring. If M is a free R-module of
rank d , then a choice of basis for M induces an isomorphism EndR(M) ∼= Matd(R)op. Note that
for any subring of a left Noetherian ring, there is no distinction between left and right multiplica-
tive inverses or units (see [Rei75, Theorem 6.4]). Hence we have AutR(M) := EndR(M)× ∼=
GLd(R)op := (Matd(R)op)× as groups. Since GLd(R)op = GLd(R) as sets, we shall henceforth
drop the op notation.

Corollary 2.2. Let X be an A-lattice. Then X is free of rank d if and only if

(a) X is a locally free A-lattice of rank d ,
(b) there exist β1, . . . , βd ∈ MX such that MX = Mβ1 ⊕ · · · ⊕Mβd , and
(c) there exists λ ∈ GLd(M) such that each αi ∈ X where (α1, . . . , αd)T := λ(β1, . . . , βd)T.

Further, when this is the case, X = Aα1 ⊕ · · · ⊕Aαd .

Most of the following notation is adopted from [BB06]. Denote the center of a ring R by
Z(R). Set C := Z(A) and let OC be the integral closure of OE in C. Let e1, . . . , er be the
primitive idempotents of C and set Ai := Aei . Then

A = A1 ⊕ · · · ⊕ Ar (1)

is a decomposition of A into indecomposable ideals. Each Ai is an E-algebra with identity
element ei . By Wedderburn’s Theorem, the centers Ei := Z(Ai) are finite field extensions of E

via E −→ Ei , α 	−→ αei , and we have E-algebra isomorphisms Ai
∼= Matni

(Di) where Di is a
division ring with Z(Di) ∼= Ei . The decomposition (1) gives

C = E1 ⊕ · · · ⊕ Er, OC = OE1 ⊕ · · · ⊕OEr , and M = M1 ⊕ · · · ⊕Mr , (2)

where we have set Mi := Mei . This in turn induces decompositions

Matd(M) = Matd(M1) ⊕ · · · ⊕ Matd(Mr ) and (3)

GLd(M) = GLd(M1) × · · · × GLd(Mr ). (4)

For the rest of this section we suppose 1 � i � r and 1 � j � d .

Corollary 2.3. Let X be an A-lattice. Then X is free of rank d if and only if

(a) X is a locally free A-lattice of rank d ,
(b) for each i, there exist βi,1, . . . , βi,d such that MiX = Miβi,1 ⊕ · · · ⊕Miβi,d , and
(c) there exist λi ∈ GLd(Mi ) such that each αj ∈ X, where αj := ∑r

i=1 αi,j and
(αi,1, . . . , αi,d)T := λi(βi,1, . . . , βi,d )T.

Further, when this is the case, X = Aα1 ⊕ · · · ⊕Aαd .
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Let f be any full two-sided ideal of M contained in A. Then we have f ⊆ A ⊆ M ⊆ A.
Set M := M/f and A := A/f so that A ⊆ M are finite rings, and denote the canonical map
M −→ M by m 	−→ m. Note that we have decompositions

f = f1 ⊕ · · · ⊕ fr and M = M1 ⊕ · · · ⊕Mr , (5)

where each fi is a non-zero ideal of Mi and Mi := Mi/fi .
For each i, let Ui ⊂ GLd(Mi ) denote a set of representatives of the image of the natural

projection GLd(Mi ) −→ GLd(Mi ).

Corollary 2.4. Let X be an A-lattice. Suppose that

(a) X is a locally free A-lattice of rank d , and
(b) for each i, there exist βi,1, . . . , βi,d such that MiX = Miβi,1 ⊕ · · · ⊕Miβi,d .

Then X is free of rank d over A if and only if

(c) there exist λi ∈ Ui such that each αj ∈ X, where αj := ∑r
i=1 αi,j and (αi,1, . . . , αi,d )T :=

λi(βi,1, . . . , βi,d )T.

Further, when this is the case, X = Aα1 ⊕ · · · ⊕Aαd .

Proof. If condition (c) holds, then the result follows immediately from Corollary 2.3.
Suppose conversely that X is free of rank d over A. Then by Corollary 2.3 there exist λi ∈

GLd(Mi ) such that each αj ∈ X where the αj ’s are defined as above. However, as f is a two-
sided ideal of A, we have

r⊕
i=1

(
λi + Matd(fi )

)
(βi,1, . . . , βi,d )T ⊆

r⊕
i=1

λi(βi,1, . . . , βi,d )T +
r⊕

i=1

Matd(fi )(MiX)d

= (α1, . . . , αd)T +
r⊕

i=1

Matd(fi )(MiX)d ⊆ Xd.

Thus we can suppose without loss of generality that λi ∈ Ui for each i. �
Let L/K be a Galois extension of number fields with Galois group G such that E is a subfield

of K . Let d = [K : E] and write OL for the ring of integers of L. One of the main applications of
Corollary 2.4 is to determine whether the ring of integers OL is free of rank d over the associated
order A = A(E[G];OL) := {x ∈ E[G] | x(OL) ⊆ OL}.

In the case that G is abelian and E = K , the maximal order M is unique and everything can
be made completely explicit in terms of the absolutely irreducible characters of G. We refer the
reader to [Ble97, Section 2.2]. The combination of Theorem 2.8 and Lemma 2.9 of [Ble97] is
essentially equivalent to Corollary 2.4 given here specialized to the abelian case.

We also remark that in the case that E = K and L/K is an at most tamely ramified Kummer
extension with G cyclic, results of Ichimura (see [Ich04, Theorem 2]) are, though not exactly the
same, very similar to Corollary 2.4 when applied to this special situation.
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3. The algorithm

Let E be a number field and G be a finite group. Let A be any OE-order of full rank in the
group algebra E[G] and let X be an A-lattice. In this section, we give an algorithm based on
Corollary 2.4 that either computes elements α1, . . . , αd ∈ OL such that X = Aα1 ⊕ · · · ⊕ Aαd ,
or determines that no such elements exist. In other words, the algorithm determines whether X

is free over A, and if so, computes explicit generators.
We require the hypotheses (H1) and (H2) formulated in the introduction, which we now recall

and briefly remark upon. Note that the algorithm still works if the group algebra E[G] is replaced
by any finite product of matrix rings over number fields containing E, in which case G, and thus
(H1) and (H2), play no role.

(H1) The Wedderburn decomposition E[G] ∼= ⊕
χ Mχ , where each Mχ is a matrix ring over a

division ring, is explicitly computable.
If G is abelian the Wedderburn decomposition can be explicitly computed from the char-
acter table. For G non-abelian, many decompositions can be found in the literature or
computed “by hand.” Note that this problem is equivalent to explicitly finding all irre-
ducible E[G]-modules up to isomorphism. An effective method that dates back to Schur
to solve this important computational task in the case where G is soluble is likely to be
implemented in Magma v2.14.

(H2) The Schur indices of all E-rational irreducible characters of G are equal to 1, i.e., each Mχ

above is in fact a matrix ring over a number field.
This holds, for example, whenever
(a) G is abelian, dihedral or symmetric;
(b) G is a p-group where p is an odd prime; or
(c) E contains a primitive mth root of unity, where m is the exponent of G.
A full discussion of Schur indices is given in [Isa94, Chapter 10]. An algorithm of Nebe
and Unger to compute the Schur index will be implemented in Magma v2.14 (a paper on
this work is in preparation).

Before we sketch the individual steps of the algorithm, we briefly digress to describe the
presentation of our data. We always assume that OE[G]-modules X are given by an OE-pseudo-
basis as described, for example, in [Coh00, Definition 1.4.1]. To be more precise, we assume that
V := E ⊗OE

X is given by an E-basis v1, . . . , vm together with matrices A(σ) ∈ GLm(E) for
each σ ∈ G describing the action of G,

⎛
⎝

v1
...

vm

⎞
⎠

σ

= A(σ)

⎛
⎝

v1
...

vm

⎞
⎠ .

Then X = a1w1 ⊕ · · · ⊕ amwm, where each ai is a fractional ideal of OE and each wi ∈ V .
Similarly, A = b1λ1 ⊕ · · · ⊕ bnλn with fractional OE-ideals bi and λi ∈ E[G].

Algorithm 3.1. Input: A and X as above.

(1) Compute d := dimE(E ⊗OE
X)/|G| and check that d ∈ N.

(2) Compute a maximal OE-order M in E[G] containing A.
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(3) Compute the central primitive idempotents ei and the components Mi := Mei .
(4) Compute the conductor c of A in M and the components ci := cei .

Then compute the ideals gi := ci ∩OEi
and fi := giMi for each i.

(5) For each i, compute βi,1, . . . , βi,d such that MiX = Miβi,1 ⊕ · · · ⊕Miβi,d .
(6) Check that X is locally free of rank d over A.
(7) For each i, compute a set of representatives Ui ⊂ GLd(Mi ) of the image of the natural

projection map GLd(Mi ) −→ GLd(Mi ), where Mi := Mi/fi .
(8) Find a tuple (λi) ∈ ∏r

i=1 Ui such that each αj ∈ X, where αj := ∑r
i=1 αi,j and

(αi,1, . . . , αi,d )T := λi(βi,1, . . . , βi,d )T. For such a tuple, X = Aα1 ⊕ · · · ⊕Aαd .

Before commenting on the individual steps, we remark that steps (1) to (4) can be done in full
generality without assuming hypotheses (H1) or (H2).

(1) If we replace E[G] by some finite product of matrix rings over number fields A, then we
define d := dimE(E ⊗OE

X)/dimE(A).
(2) An algorithm for computing M is described in [Fri00, Kapitel 3 and 4].
(3) Each central primitive idempotent corresponds to an irreducible E-character χi and we have

ei = ni|G|
∑

g∈G χi(g
−1)g with ni = χi(1).

(4) In practice, we compute some multiple of the conductor. For example, one can use the
method outlined in [BB06, 3.2(f) and (g)]. Also see [BB06, Remark 3.3].

(5) This step is described in Section 5.
(6) Successful completion of step (5) shows that MX is a free M-module of rank d . Therefore

X is locally free of rank d over A except possibly at the (finite number of) primes of OE

dividing the generalized module index [M : A]OE
. An algorithm to compute local basis

elements (and thus to check local freeness) at these primes is given in [BW, Section 4.2].
Note that in the motivating case X = OL for some number field L (see introduction), MX is
always locally free over M and so checking local freeness can be performed independently
of step (5) and therefore without hypotheses (H1) or (H2). (To see this, note that MX is
projective over M by [Rei75, Theorem 21.4], and L is free over K[G] and thus E[G] by
the Normal Basis Theorem.)

(7) This step is described in Section 6.
(8) The number of tests for this step can be greatly reduced by using a method analogous to the

one outlined [Ble97, Section 2]. We briefly describe this approach in Section 7. However,
even with this improvement, the enumeration is the most time-consuming part of the whole
algorithm.

4. Computing associated orders

Let X be a finitely generated OE[G]-module in the free E[G]-space V := E ⊗OE
X. In this

section, we shall assume that an E[G]-basis v1, . . . , vd of V is known. The aim is to compute
the order

A(X) = A
(
E[G];X) := {

λ ∈ E[G] ∣∣ λX ⊆ X
}
.

We describe an algorithm which combines and contains all of the methods of [Ble97], [Bur00,
Appendix] and [BE05, Lemma 3.1].
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For further applications, such as the computation of conductors, we consider a more general
problem and describe an algorithm to compute

A(X,Y ) = A
(
E[G];X,Y

) := {
λ ∈ E[G] ∣∣ λX ⊆ Y

}
,

where Y ⊆ V is another full OE[G]-submodule. Without loss of generality we may assume that
X,Y ⊆ E[G]d .

We denote by t :E[G]×E[G] −→ E any symmetric, non-degenerate E-bilinear pairing. For
computational purposes we usually use the trace pairing which is characterized by

t (g,h) =
{

1 if gh = 1,

0 otherwise,
for g,h ∈ G.

We let s :E[G]d × E[G]d −→ E be the d-fold orthogonal sum of t . For any OE[G]-module
M in E[G]d , respectively E[G], we identify the linear dual M∗ := HomOE

(M,OE) with
{λ ∈ E[G]d | s(λ,M) ⊆ OE}, respectively {λ ∈ E[G] | t (λ,M) ⊆ OE}. If M is given by a
pseudo-basis (μk, ck)k , then M∗ is easy to compute. Indeed, if {μ∗

k} is the dual basis of {μk}
with respect to s, respectively t , then (μ∗

k, c
−1
k )k is a pseudo-basis of M∗. It is clear that the dual

basis {μ∗
k} can be computed by means of straightforward linear algebra.

We now define an E[G]-module homomorphism

(·,·) :E[G]d × E[G]d −→ E[G],
(μ, ν) 	−→

∑
g∈G

s(gμ,ν)g−1.

This homomorphism satisfies

t
(
(μ, ν), δ

) = s(ν, δμ) = s(νδ,μ) (6)

for μ,ν ∈ E[G]d and δ ∈ E[G].

Lemma 4.1. Let V be a free E[G]-space of rank d and let X,Y be two full OE[G]-submodules
of V . Then (X,Y ∗) = A(X,Y )∗.

Proof. Using (6), this is essentially the same as the proof of [BB96, Lemma 4.2]. �
Remark 4.2. The main application is the following. Let L/K be a finite Galois extension of
number fields with Galois group G such that E is a subfield of K and put d = [K : E]. Let I

be an ambiguous (i.e. G-stable) ideal of the ring of integers OL and define the associated order
to be A(E[G]; I ) := {x ∈ E[G] | x(I) ⊆ I }. In [Gir99], an algorithm to compute a normal basis
element for L over K (i.e. a generator for L as a K[G]-module) is given, and from this it is easy
to determine an E[G]-basis of L. (It is also often easy to do this by trial and error.) Hence we
can apply the above method to compute the associated order and then, assuming hypotheses (H1)
and (H2), find generators using Algorithm 3.1.
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Remark 4.3. The method of this section together with Algorithm 3.1 can also be used to inves-
tigate the Galois module structure of units as in [Ble97]. For a number field L, write UL for the
units of OL and μ(L) for the subgroup of roots of unity. Set X := UL/μ(L) and write A for the
semisimple algebra which acts naturally on Q ⊗Z X. The following cases can be considered:

(a) L/Q a totally real Galois extension, A = Q[G]/(∑g∈G g);
(b) L/Q a CM Galois extension with complex conjugation τ , A = Q[G]/(τ − 1,

∑
g∈G g);

(c) L/K a Galois extension of a quadratic imaginary field K , A = Q[G]/(∑g∈G g).

Note that by [Was97, Lemma 5.27] the module Q ⊗Z X is free over A, so that MX is always
locally free over M. Hence checking local freeness can be performed without the assumption of
hypotheses (H1) and (H2).

Remark 4.4. It is always possible to compute an E[G]-basis V = E ⊗OE
X under hypotheses

(H1) and (H2) by using a weaker version of Proposition 5.3 in which the ring of integers and its
ideals are replaced by the appropriate number field.

5. Modules over maximal orders in matrix rings over number fields

Let n ∈ N, let F be a number field and let O = OF denote the ring of integers of F .

Proposition 5.1. For each ideal a of O, let

Λa,n =

⎛
⎜⎜⎝
O · · · O a−1

...
. . .

...
...

O · · · O a−1

a · · · a O

⎞
⎟⎟⎠

denote the ring of all n × n matrices (xij ) where x11 ranges over all elements of O, . . . , x1n

ranges over all elements of a−1, and so on. (For n = 1, we take Λa,n = O.) Then Λa,n is a
maximal O-order in Matn(F ) and every maximal O-order in Matn(F ) is isomorphic to one of
this form, for some ideal a of O.

Proof. This is a special case of [Rei75, Corollary 27.6]. �
Even though we can compute maximal orders (using [Fri00, Kapitel 3 and 4]), we do not

automatically get them in the above “nice form.” We may assume that a maximal O-order Λ ⊂
Matn(F ) is given as an O-module by an O-pseudo basis. We briefly describe how to find an
isomorphism that transforms Λ into the “nice form” described in Proposition 5.1.

Let Z ⊆ Fn denote the O-module generated by all first columns of Λ. Let

Z = Oz1 ⊕ · · · ⊕Ozn−1 ⊕ azn, zi ∈ Fn,

be the Steinitz form of Z for some ideal a of O. (The Steinitz form of a torsion-free, finitely
generated module over a Dedekind domain is the form given in [FT91, Theorem 13(b)].)

Lemma 5.2. Let S = (z1, . . . , zn) ∈ GLn(F ) be the matrix with columns z1, . . . , zn. Then Λ =
SΛa,nS

−1.
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Proof. It is easy to see that Λ = {λ ∈ Matn(F ) | λZ ⊆ Z}. With a slight abuse of notation we
may write Z = (z1, . . . , zn)(O, . . . ,O,a)T = S(O, . . . ,O,a)T and deduce

λZ ⊆ Z ⇐⇒ λS(O, . . . ,O,a)T ⊆ S(O, . . . ,O,a)T

⇐⇒ SS−1λS(O, . . . ,O,a)T ⊆ S(O, . . . ,O,a)T

⇐⇒ S−1λS(O, . . . ,O,a)T ⊆ (O, . . . ,O,a)T

⇐⇒ S−1λS ⊆ Λa,n. �
Replacing Λ by S−1ΛS and a Λ-module X by S−1X we may without loss of generality

assume that our maximal order is in the above “nice form.” We fix some maximal O-order Λ =
Λa,n in Matn(F ) for the rest of this section and now turn to the problem of determining whether a
Λ-module X is free of finite rank, and if so, whether generators can be computed. Let ekl denote
the matrix (xij ) ∈ Λ ⊂ Matn(F ) with xij = 0 for (i, j) �= (k, l) and xkl = 1.

Proposition 5.3. Let X be a Λ-module. Then X is free of rank d over Λ, if and only if there exist
ω1,1, . . . ,ω1,n, . . . ,ωd,1, . . . ,ωd,n such that

e11X = Oω1,1 ⊕ · · · ⊕Oω1,n−1 ⊕ a−1ω1,n ⊕ · · · ⊕Oωd,1 ⊕ · · · ⊕Oωd,n−1 ⊕ a−1ωd,n.

Further, when this is the case, X = Λω1 ⊕ · · · ⊕ Λωd where ωj := e11ωj,1 + · · · + en1ωj,n,
j = 1, . . . , d .

Proof. Suppose that X is free of rank d over Λ. Then e11 “cuts out the first row of each Λ” in
X ∼= ⊕d

i=1 Λ and so e11X is of the desired form.
Now suppose conversely that there exist ω1,1, . . . ,ω1,n, . . . ,ωd,1, . . . ,ωd,n such that

e11X = Oω1,1 ⊕ · · · ⊕Oω1,n−1 ⊕ a−1ω1,n ⊕ · · · ⊕Oωd,1 ⊕ · · · ⊕Oωd,n−1 ⊕ a−1ωd,n

and define ωj = e11ωj,1 + · · · + en,1ωj,n for j = 1, . . . , d .
For i �= n and all j , we have ωj,i ∈ e11X ⊂ X and so ei1ωj,i ∈ X. Furthermore, en1 ∈ Λa−1

and ωj,n ∈ ae11X ⊆ aX for all j , so en1ωj,n ∈ X. Therefore ωj ∈ X for all j and so
Λω1 ⊕ · · · ⊕ Λωd ⊆ X.

Note that X = e11X ⊕ · · · ⊕ ennX since e11 + · · · + enn is the n × n identity matrix. Further-
more, for all j, k we have

e1kωj = e1k(e11ωj,1 + · · · + en1ωj,n) = e1kek1ωj,k = e11ωj,k = ωj,k.

Therefore, since Oe1k ⊆ Λ for k �= n and a−1e1n ⊆ Λ, we have

e11X = Oω1,1 ⊕ · · · ⊕Oω1,n−1 ⊕ a−1ω1,n ⊕ · · · ⊕Oωd,1 ⊕ · · · ⊕Oωd,n−1 ⊕ a−1ωd,n

= Oe11ω1 ⊕ · · · ⊕Oe1(n−1)ω1 ⊕ a−1e1nω1 ⊕ · · ·
⊕Oe11ωd ⊕ · · · ⊕Oe1(n−1)ωd ⊕ a−1e1nωd

⊆ Λω1 ⊕ · · · ⊕ Λωd.
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Finally, observe that

eiiX = ei1e11e1iX ⊆ ei1e11X ⊆ ei1(Λω1 ⊕ · · · ⊕ Λωd)

⊆ Λω1 ⊕ · · · ⊕ Λωd for i �= n, and

ennX = en1e11e1nX = (aen1)e11
(
a−1e1n

)
X ⊆ (aen1)e11X

⊆ (aen1)(Λω1 ⊕ · · · ⊕ Λωd) ⊆ Λω1 ⊕ · · · ⊕ Λωd,

so therefore X = e11X ⊕ · · · ⊕ ennX ⊆ Λω1 ⊕ · · · ⊕ Λωd . �
Corollary 5.4. Let X be a Λ-module. Then X is free of rank d over Λ if and only if e11X is of
rank dn and Steinitz class [a−d ] as an O-module.

We now give a description of Step (5) of Algorithm 3.1. Fix i, set Λ = S−1MiS and replace
X by S−1X, where S is as in Lemma 5.2. It is straightforward to see that it suffices to determine
elements ω1,1, . . . ,ωd,n satisfying the equation of Proposition 5.3. First, compute a Steinitz form
for e11X, i.e., find bj ∈ e11X and an ideal b of O such that

e11X = Ob1 ⊕ · · · ⊕Obdn−1 ⊕ bbdn

(one can use the Magma function SteinitzForm) and check that [b] = [a−d ] in Cl(O). Let
Y = Obd(n−1)+1 ⊕ · · · ⊕ Obnd−1 ⊕ bbdn and compute aY . This is a free O-module of rank d

and so we can compute an O-basis, c1, . . . , cd , which is also an “a−1 basis” of Y . Now we can
take ωj,n = cj for j = 1, . . . , d , and {ωj,k | k �= n} = {b1, . . . , bd(n−1)}.

6. Enumerating units

Let d,n ∈ N, let F be a number field and let O = OF denote the ring of integers of F .
Let Λ be some maximal O-order of Matn(F ). By Lemma 5.2 we may assume that Λ is of the
“nice form” Λa,n. Let g be some non-zero ideal of OF and let f := gΛ. Throughout this section,
we identify Matd(Λ) with a subring of Matdn(F ) in the obvious way. We wish to compute a
set of representatives U ⊂ GLd(Λ) of the image of the natural projection map π : GLd(Λ) −→
GLd(Λ) where Λ = Λ/f.

Definition 6.1. Let i, j ∈ {1, . . . , nd} with i �= j and let

x ∈
⎧⎨
⎩
O/g, if i, j � n or i, j | n,

a−1/ga−1, if i � n and j | n,

a/ga, if j � n and i | n.

Then the elementary matrix Eij (x) is the matrix in GLd(Λ) that has 1 in every diagonal entry, has
x in the (i, j)-entry and is zero elsewhere. Let E(Λ) denote the subgroup of GLd(Λ) generated
by all elementary matrices and define E(Λ) analogously. Note π(E(Λ)) = E(Λ).

Proposition 6.2. Let ε :O×
F −→ (OF /g)× be the natural projection map and let V be the sub-

group of matrices (xij ) ∈ GLd(Λ) with x11 ∈ ε(O×
F ), xii = 1 for i �= 1, and xij = 0 for i �= j .

Then π(GLd(Λ)) is generated by E(Λ) and V .
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Proof. Let R := O/g and consider the R-modules X := ⊕d
i=1 Rn and Y := ⊕d

i=1(R
n−1 ⊕

a/ga). We choose ξ ∈ F× and an integral ideal b such that

a = ξb, b + g = O.

Let b ∈ b and y ∈ g such that b + y = 1. Then we have an isomorphism O/g −→ a/ag of R-
modules defined by z + g 	−→ zbξ + ag. The inverse is given by z + ag 	−→ ξ−1z + g.

This induces an isomorphism ϕ :X −→ Y , and as a consequence we obtain an isomorphism

ψ : GLnd(R) −→ GLd(Λ),

A = (Aij )1�i,j�d 	−→ (Φ2AijΦ1)1�i,j�d

where Aij ∈ Matn(O),

Φ1 =

⎛
⎜⎜⎝

1
. . .

1
ξ−1

⎞
⎟⎟⎠ and Φ2 =

⎛
⎜⎜⎝

1
. . .

1
bξ

⎞
⎟⎟⎠ .

One easily verifies that ψ(End(R)) = E(Λ) where End(R) denotes the group generated by
elementary matrices of Matnd(R). From [Bas68, Corollary (9.3), p. 267] we deduce SLnd(R) =
End(R). Hence we have a commutative diagram with exact rows

1 SLnd(R)

�ψ

GLnd(R)
det

ψ �

R×

=

1

1 E(Λ) GLd(Λ)
det′

R× 1

where det′ := det ◦ ψ−1. The diagram

GLd(Λ)
det

π

O×

ε

1

1 E(Λ) GLd(Λ)
det′

R× 1

also has exact rows and a straightforward computation shows that it commutes. This immediately
implies the assertions of the proposition. �

We now give a description of step (7) of Algorithm 3.1. Fix i, and set n = ni , Λ = S−1MiS

with S as in Lemma 5.2, g = gi , F = Ei and U = Ui . Using, for example, [Coh93, Algo-
rithm 6.5.8], compute a generating set {a1, . . . , as} for O×

F . Then {ε(a1), . . . , ε(as)} is a generat-
ing set for ε(O×

F ) and using the obvious isomorphism we have a generating set for V . The group
E(Λ) is generated by the elementary matrices Eij (bijk) for i, j ∈ {1, . . . , n}, i �= j , where for
fixed i, j , {bijk} is a Z-spanning set for O/g, a/ga or a−1/ga−1, as appropriate. Such spanning
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sets can be computed using Hermite Normal Form techniques described, for example, in [Coh93,
Chapter 2.4]. By Proposition 6.2, we now have an explicit generating set for π(GLd(Λ)), and so
it is straightforward to compute the desired set of representatives U = Ui .

7. Reducing the number of final tests

The final number of tests in step (8) of Algorithm 3.1 can be enormous. For example, if G � S4
(the symmetric group with 24 elements) and A = Z[G], then a computation shows that there are
approximately 4.4 × 1018 tuples (λi) ∈ ∏r

i=1 Ui , which need to be tested. In this section, we
describe an ad hoc method analogous to the one outlined in [Ble97, Section 2] to reduce the
number of tests required.

However, even with this improvement, the number of tests which need to be performed is
still very large. Despite this, somewhat surprisingly, we can find generating elements in many
S4-examples. It would be interesting to have an explanation, possibly probabilistic or heuristic in
nature, for this phenomenon.

The improvement is based on the following simple observation. Let

MX = a1v1 ⊕ · · · ⊕ amvm,

X = b1w1 ⊕ · · · ⊕ bmwm,

be OE-pseudo-basis representations of MX and X. Let A ∈ GLm(E) be the transformation
matrix such that

⎛
⎝

w1
...

wm

⎞
⎠ = A

⎛
⎝

v1
...

vm

⎞
⎠ .

We now apply the Hermite Normal Form algorithm in Dedekind domains (see [Coh00, Algo-
rithm 1.4.7]) to the matrix A and the list of ideals (b1, . . . ,bm), though we reduce rows rather
than columns. We obtain a matrix U ∈ GLm(E) and a list of ideals (c1, . . . , cm) such that the
matrix H = UA is upper triangular with 1 on each diagonal entry. Moreover,

c1h1 ⊕ · · · ⊕ cmhm = b1a1 ⊕ · · · ⊕ bmam,

where h1, . . . , hm denote the rows of H and a1, . . . , am denote the rows of A. This immediately
implies that U(w1, . . . ,wm)T together with the list of ideals (c1, . . . , cm) is also a pseudo-basis
for X.

Now suppose that the vector (x1, . . . , xm) ∈ Em defines an element x = ∑m
i=1 xivi ∈ MX.

Then we have

x ∈ X ⇐⇒ (x1, . . . , xm)H−1 ∈ (c1, . . . , cm). (7)

Since H−1 is upper triangular, this leads to a much more efficient enumeration. In addition,
in many cases the coefficients x1, . . . , xm can be easily computed by a clever choice of basis
v1, . . . , vm. To illustrate this, we conclude this section with a brief discussion of the case where
G � Sn, E = Q and X ⊆ E[G] is locally free of rank 1.
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Let

Φ : Q[G] −→
r⊕

i=1

Matni
(Q)

be the explicitly computable isomorphism that gives the Wedderburn decomposition of Q[G]. Let
M ⊆ Q[G] be the maximal order such that Φ(M) = ⊕r

i=1 Matni
(Z). For reasons of efficiency,

we choose to work with matrices and henceforth consider MX as a module over
⊕r

i=1 Matni
(Z)

via the isomorphism Φ−1. Let B = (B1, . . . ,Br) denote a
⊕r

i=1 Matni
(Z)-basis of MX. Let

ei,kl = (. . . , ekl, . . .) ∈ ⊕r
j=1 Matnj

(Z), i = 1, . . . , r , 1 � k, l � ni , denote the tuple of matrices
with the matrix ekl in the ith position and the zero matrix everywhere else. Then the set {ei,klB}
forms a Z-basis of MX.

Now let (λ1, . . . , λr) ∈ ∏
i Ui . Then the coefficients (xi,kl)i,k,l of (λ1B1, . . . , λrBr) with re-

spect to the basis {ei,klB} are given by the coefficients of the matrices λi because

λiBi =
( ∑

1�k,l�ni

λi,klekl

)
Bi =

∑
1�k,l�ni

λi,kl(eklBi).

8. Implementation and computational results

In this section, we describe the cases for which Algorithm 3.1 has been implemented in
Magma [BCP97]. The source code and input files are available from http://www.mathematik.
uni-kassel.de/~bley/pub.html.

Let L/K be a finite Galois extension of number fields with Galois group G such that E is
a subfield of K and put d = [K : E]. As discussed in Section 4, Algorithm 3.1 can be applied
in this situation with X = OL and A = A(E[G];OL). However, for the sake of simplicity, all
aspects of the implementation in Magma are restricted to the case K = E = Q.

Let AL/Q = A(Q[G];OL). We have the following:

(a) For any finite Galois extension L/Q, we can compute the associated order AL/Q and check
that OL is locally free over AL/Q, provided that Magma can compute the ring of integers
OL and that the Magma function AutomorphismGroup(L) works. Of course, this can
be improved if theoretical information for either the ring of integers or the Galois group is
available.

(b) For G = A4, S4,Dn or G abelian, we can explicitly compute the Wedderburn decomposition
of Q[G] so that hypothesis (H1) is satisfied (here Dn is the dihedral group of order 2n).

(c) We can compute generators αi such that MiOL = Miαi whenever G = A4, S4, Dn or G

abelian. This works very well for small n and small abelian groups. For example, we suc-
cessfully ran many experiments with dihedral groups Dn and n � 10. Note, however, that
our implementation requires that all the fields Ei have class number 1.

(d) We can compute a generator α such that OL = AL/Qα whenever G = A4, Dn with n small
or G a small abelian group. For dihedral groups “small” means something like n � 10, for
abelian groups experiments show that we can easily deal with groups of order � 20. For
S4-extensions the number of checks required in the final enumeration is simply too large to
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be done in a naive way. Indeed, there are five Wedderburn components of Q[S4] and if L/Q
is tame, then the numbers of elements in the sets Ui (notation as in Proposition 2.4) are

|U1| = 2, |U2| = 2, |U3| = 2304, |U4| = 22 020 096, |U5| = 22 020 096.

Note that these numbers are smaller if L/Q is wildly ramified.
The authors implemented the reduction method outlined in Section 7 and, to their surprise,
were able to compute a generator in all of the examples tested for which OL is locally free
over its associated order. (The fact that a generator exists in this situation is not surprising—
see discussion below). As already mentioned, it would be very interesting to have some
explanation for this unexpected phenomenon. Furthermore, OL failed to be locally free over
its associated order in all the computed S4 examples for which L/Q is wildly ramified at both
2 and 3, though no examples of this were found when only one prime is wildly ramified.

(e) The algorithm as implemented in Magma is not deterministic, i.e., the program will produce
different generators for the same extension when run at different times. The relevant steps,
where different choices may finally lead to different generators, are the choice of a normal
basis element for L/Q and the order of the final enumeration.

The authors computed generators for more than 140 extensions L/Q with Galois group A4

taken from the tables of [KM]. This might lead one to speculate, for example, that every such
extension has the property that OL is free over AL/Q. In principle, one can prove or disprove this
assertion in the following way.

It is well known that the locally free class group Cl(Z[A4]) is trivial (see [Cou06], for ex-
ample), and from this it is straightforward to show that Cl(A) is also trivial for any order A
with Z[A4] ⊆ A ⊆ Q[A4]. Since Q[A4] satisfies the Eichler condition relative to Z (see [Rei75,
Definitions 34.3 and 38.1]), a result of Jacobinski shows that if an A-module has trivial class
in Cl(A), then it is in fact free over A (see [Rei75, Theorem 38.2], for example). Hence we are
reduced to establishing whether OL is locally free over AL/Q for every A4-extension L/Q. The
authors thank the referee for the following observation: as the ramification filtrations for primes
above 2 or 3 are very restricted, it seems plausible that one could in fact determine all possible
associated orders and local Galois module structures by hand (as far as the authors and the referee
are aware, no-one has actually done this). One might also be able to carry out a complete analysis
for S4-extensions of Q, where again it is known that the locally free class group is trivial (see
[RU74]) and Q[S4] satisfies the Eichler condition relative to Z. (However, unlike the A4 case,
there are many known examples of S4-extensions for which local freeness fails—see (d) above.)

In fact, for any number field K and any finite group G, it is possible to check in a finite
amount of time whether every extension L/K with Galois group G has the property that OL

is locally free over AL/K := A(K[G];L). By Noether’s Theorem (see [Noe32]), we have local
freeness at all primes of OK that are at most tamely ramified in L/K . Therefore, it suffices to
check all extensions of p-adic fields Kp with Galois group H , where p ranges over all primes
of OK dividing the order of G and H ranges over all solvable subgroups of G. Enumerating all
such extensions is possible using the algorithm of [PR01] (this gives generating polynomials for
all extensions of a p-adic field Kp of given degree and discriminant), and local freeness can be
checked using the method outlined in [BW, Section 4.2].
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