On Stability of Symplectic Maps

MARK LEVI *

Department of Mathematics, Duke University,
Durham, North Carolina 27706

Received April 12, 1982

The aim of this short note is to give a simple geometrical proof of a result due to Cushman and Kelley [4] giving a characterization of strongly stable symplectic maps. The original proof relied on the use of normal forms.

The following is a slight reformulation of the main result of [4].

THEOREM. An infinitesimally stable symplectic matrix A is strongly stable iff its centralizer $C(A)$ (in the set $\text{sp}(n)$ defined below) consists of stable matrices.

We recall first some definitions (see [3–7, 9, 10, 12]). Any $2n \times 2n$ matrix of the form

$$A = JH, \quad J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \quad H^T = H$$

is called infinitesimally symplectic; let $\text{sp}(n)$ be the set of such matrices. Any matrix A is called stable iff $\|e^{At}\|$ is bounded for all (positive and negative) t. Matrix $A = JH \in \text{sp}(n)$ is called strongly stable if any matrix $B = JK$ with $K = K^T$ sufficiently close to H is stable.

Centralizer $C(A)$ of a matrix A is, by definition, the set of all matrices in $\text{sp}(n)$ commuting with A.

Before proceeding with the proof, we will need one perturbation result [4, 1].

LEMMA. Any matrix $B \in \text{sp}(n)$ sufficiently close to a stable matrix $A \in \text{sp}(n)$ can be expressed as

$$B = S^{-1}(A + C)S \quad \text{with} \quad C \in C(A), \quad S = e^T, \quad T \in \text{sp}(n).$$

* Supported in part by the NSF Grant MCS-8212681. Present address: Department of Mathematics, Boston University, Boston, Massachusetts 02215.

' Definitions follow the statement of this theorem.
Proof of the Theorem (followed by the proof of the lemma). 1. Assume that \(C(A) \) consists of stable matrices. Any \(B \in \text{sp}(n) \) close to \(A \) can be written as
\[
B = S^{-1}(A + C) S, \quad C \in C(A),
\]
according to the above lemma. Therefore, \(B \) is stable, being similar to stable matrix \(A + C \in C(A) \); strong stability of \(A \) is proven.

2. Conversely, assume that \(A \) is strongly stable; choose any \(B \in C(A) \) and show its stability. For \(\epsilon \) small enough we have, for some \(c > 0 \),
\[
\|e^{-\epsilon t}\|, \quad \|e^{(A + \epsilon B)t}\| < c \text{ for all } t,
\]
since \(A \) is strongly stable. Using the fact that \(A \) and \(B \) commute (\(B \in C(A) \)), we have
\[
\|e^{\epsilon Bt}\| = \|e^{-A\epsilon} e^{(A + \epsilon B)t}\| < c^2,
\]
which proves stability of \(B \). Q.E.D.

Proof of the Lemma. Introduce a map
\[
M : \text{ran } \text{ad}_A \oplus \ker \text{ad}_A \rightarrow \text{sp}(n),
\]
given by
\[
M(T, C) = e^{-\tau}(A + C) e^	au;
\]
here \(\text{ad}_A X = [A, X] \). Wishing to apply the implicit function theorem to \(M \) near \(T = C = 0 \), we calculate its derivative:
\[
DM(0, 0)(T, C) = -[A, T] + C \in \text{ran } \text{ad}_A \oplus \ker \text{ad}_A = \text{sp}(n).
\]
The last equality follows from the fact that \(\text{ad}_A \) is semisimple (i.e., diagonalizable), which in turn is the consequence of stability (and thus diagonalizability) of \(A \).

This shows that \(DM(0, 0) \) maps \(\text{ran } \text{ad}_A \oplus \ker \text{ad}_A \) onto itself; by the implicit function theorem for any \(B \in \text{sp}(n) \) there exists \(T \in \text{ran } \text{ad}_A \), \(C \in \ker \text{ad}_A = C(A) \) with
\[
B = M(C, T) = e^{-\tau}(A + C) e^\tau = S^{-1}(A + C) S. \quad \text{Q.E.D.}
\]

References