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ABSTRACT 

We study the connected regular graphs with four distinct eigenvalues. Properties 
and feasibility conditions of the eigenvalues are found. Several examples, constructions 
and characterizations are given, as well as some uniqueness and nonexistence results. 

1. INTRODUCTION 

Connected regular graphs having at most three distinct eigenvalues are 
very well classified by means of combinational properties: they are the 
complete and the strongly regular graphs. Distance-regular graphs of diame- 
ter d (or more generally, d-class association schemes) are generalizations of 
complete (d = 1) and strongly regular (d = 2) graphs from a combinatorial 
point of view. The adjacency matrices of these graphs have d + 1 distinct 
eigenvalues, but for d > 2 the converse is not true: not every regular graph 
with d + 1 distinct eigenvalues is distance-regular (or comes from a d-class 
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association scheme). 
In this paper, we shall take a closer look at the connected regular graphs 

with four distinct eigenvalues. Already for those graphs, many examples exist 
that are not distance-regular (or from 3-class association schemes). Still we 
can deduce some nice properties. An important observation is that these 
graphs are walk-regular, which implies rather strong conditions for the 
possible spectra. Furthermore, we shall give several constructions, some 
characterizations, and uniqueness and nonexistence results. Many’ of the 
constructions use strongly regular graphs. As general references for these 
graphs, we use the papers by Seidel [21] and Brouwer and van Lint [3]. As 
general reference for spectra of graphs, we use the book by Cvetkovic, Doob, 
and Sachs [6]. 

Throughout this paper, we shall denote by {[ hilrnl, [ ha]“z, . . . , [A,]‘+) the 
spectrum of a matrix with t distinct eigenvalues hi with multiplicities mj. If 
the matrix is the adjacency matrix of a connected k-regular graph, then A, 
denotes k, and has multiplicity m, = 1. 

2. PROPERTIES OF THE EIGENVALUES 

In this section, we shall derive some properties of the eigenvalues of 
graphs with four distinct eigenvalues. To obtain these we shall use some 
elementary lemmas about polynomials with rational or integral coefficients 
(for example see [lo]). 

By Z[ x] and Q[ X] we denote the rings of polynomials over the integers 
and rationals, respectively. 

LEMMA 2.1. Zf a manic polynomial p(x) E Z[ x] l&s a manic divisor 
q(x) E Q[x], then also q(r) E Z[x]. 

LEMMA 2.2. Zf a f 6, with a, b E Q, is an irrational root of a 
polynomial p(x) E Q[ xl, th en so is a T 6, with the same multiplicity. 

The characteristic polynomial c(x) of the adjacency matrix of a graph is 
manic and has integral coefficients. Using Lemmas 2.1 and 2.2, we now 
obtain the following results. 

COROLLARY 2.3. Every rational eigenvalue of a graph is integral. 

COROLLARY 2.4. Zf :(a f 6) is an irrational eigenvalue of a graph, for 
some a, b E Q, then so is $(a T &), with the same multiplicity, and 
a,b E Z. 
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The minimal polynomial of the adjacency matrix A of a graph is the 
unique manic polynomial m(x) = xt + m,_ 1 xt- ’ + **. + m, of minimal de- 
gree such that m(A) = 0. 

LEMMA 2.5. The minimal polynomial m of a graph has integral coefli- 
cients. 

Proof. The following short argument was pointed out by P. Rowlinson 
[personal communication]. The equation m(A) = 0 can be seen as a system 
of n2 (if n is the size of A) linear equations in the unknowns m,, with 
integral coefficients. Since the system has a unique solution, this solution 
must be rational. (The solution can be found by Gaussian Elimination, and 
during this algorithm all entries of the system remain rational.) So the 
minimal polynomial has rational coefficients, and since it divides the charac- 
teristic polynomial, we find m(r) E Z[ x]. W 

In the following, G will be a connected. k-regular graph on o vertices 
having spectrum {[k]‘, [ h21m2, [ h31m3, [ &]“Q}. Now Lemma 2.1 implies that 
the polynomials p and 4, defined by 

p(x) = (x - h,)(x - h3)(x - /I.+) = 2, 

q(x) = (x - *2) 

4x> 
mzqx - /gyX - Qm?-’ = m(x>’ 

have integral coefficients. We shall use these polynomials in the proof of the 
following theorem. 

THEOREM 2.6. Let G be a connected k-regular graph on v vertices with 
spectrum {[k]‘, [A,]“s, [ h3lm3, [hqlm4}, and let m = (v - 1)/S. Then m2 = 

m3 = m4 = m and k = m or k = 2m, or G has two or four integral eigen- 
values. Moreover, if G has exactly two integral eigenvalues, then the other 
two have the same mulitplicities and are of the form ;(a + a), with 
a, b E Z. 

Proof. Without loss of generality we may assume m2 < m3 < m4. If all 
three are equal, then they must be equal to m, and k + m(h, + A, + h4) = 
trace(A) = 0, where A is the adjacency matrix of G. Since p(x) E Z[ xl, we 
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have that A, + A, + A, E Z, so k is a multiple of m. Since TV = 3m + 1, it 
follows that k = m or k = 2m. 

If m2 = m3 < m4, then (X - hq)m4-‘nz = ~(x)/p(x)““-’ E Z[x], so 
A, E Z. Now it follows that (X - A,)( x - A,) E Z[ xl, so A, and A, are both 
integral or of the form f<u k a>, with a, b E Z. 

If m2 < m3, then (x - As)m~-m 2(x - Aq)m,-m2 = q(x)/p(x)““-’ E 
Z[ xl. Now it follows that A, and A, are both integral or of the form :(a 
k &>, with a, b E Z, and if A, and A, are irrational, then m3 = m4. In 
both cases, it follows that A, is integral. ??

Each of the three cases of Theorem 2.6 can occur. Small examples are 
given by the ‘i-cycle C7 with (approximated) spectrum 

{[2]‘, [1.247]‘, [ -0.44512, [ -1.802]“}, 

the 6-cycle C, with spectrum ([2]‘, [l]“, [ - l]“, [ -2]i}, and the complement 
of the union of two 5-cycles (ZC,)’ with spectrum 

([7]y+(-1 + dz)]4,[+l - dq]“A-31’). 

Another important property of connected regular graphs with four distinct 
eigenvalues, which we shall use in Section 4.6, is that the multiplicities of the 
eigenvalues follow from the eigenvalues and the number of vertices (cf. [6, p. 
1611). This follows from the following three equations, which uniquely 
determine m2, m3, and m4: 

1 + m2 + m3 + mq = u, 

k + m,A, + m3A3 + m,A, = 0, 

k” + rn2Ai + m,Ag + m4Ai = vk. 

The second equation follows from the trace of A, and the third from the 
trace of A”, where A is the adjacency matrix of the graph. 

Note that the eigenvalues alone do not determine the multiplicities. For 
example, the complement of the Cube has spectrum {[4]‘, [2]l, [013, [-213), 
while the line graph of the Cube has spectrum {[4]l, [213, [013, [ -215}. This 
example is the smallest of an infinite class given by Doob 17, 81. 
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3. WALK-REGULAR GRAPHS AND FEASIBILITY CONDITIONS 

A walk-regular is a graph G for which the number of walks of length r 
from a given vertex x to itself (closed walks) is independent of the choice of 
x, for all r (cf. [ll]). Since this number equals A:,, it is the same as saying 
that A’ has constant diagonal for all r, if A is the adjacency matrix of G. 
Note that a walk-regular graph is always regular. If G has o vertices and is 
connected k-regular with four distinct eigenvalues k, A,, A,, and A,, then 
(A - A,ZXA - h,ZXA - A,Z) = (l/uXk - A,Xk - A,& - Ad)]; i.e., 
h(A) = J, where h is the Hoffman polynomial and J is the all-one matrix (cf. 
[16]). Since A”, A, I, and J all have constant diagonal, we see that A’ has 
constant diagonal for every r. So G is walk-regular. 

3.1. Feasibility conditions 
If G is walk-regular on v vertices with degree k and spectrum 

I[A,l”Y [A21m2>. . . / [ &]“‘I}, the number of triangles through a given vertex x 
is independent of x, and equals 

Tr( A3) 
A = +A;, = ____ 

2v 
= -& ,i m,Af. 

1-l 

This expression gives a feasibility condition for the spectrum of G, since A 
should be a nonnegative integer. In general, it follows that 

0,. = i ,f: miAr. 
1=1 

is a nonnegative integer. Since the number of closed walks of odd length r is 
even, 0, should be even if r is odd. For even r, we can also sharpen the 
condition, since then the number of nontrivial closed walks (that is, those 
containing a cycle) is even. For example, if r = 4, the number of trivial 
closed walks through a given vertex (i.e., passing only one or two other 
vertices) equals 2 k2 - k, so 

B= 
0, - 2k’ + k 

2 

is a nonnegative integer, and it equals the number of quadrangles through a 
vertex. 
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In case we have four distinct eigenvalues, the following lemma will also be 
useful. 

LEMMA 3.1. Zf G is a connected k-regular graph with four distinct 
eigenvalues, such that the number of triangles through an edge is constant, 
then the number of quadrangles through an edge is also constant. 

Proof. Since G is connected and regular with four distinct eigenvalues, 
its adjacency matrix A satisfies the equation A3 + p, A2 + p, A + p, Z = p], 
for some p,, p,, p,, and p. Now Azy + p,h,, + pl = p, for any two 
adjacent x, y with A,, common neighbors. Since the number of triangles 
through an edge is constant, say h, we have A,, = A, and so the number of 
walks of length 3 from x to y is equal to A:y = p - p 1 - p, A. Since there 
are 2k - 1 walks which are trivial, the number of quadrangles containing 
edge tx, yl equals p - p, - p, h - 2k + 1, which is independent of the 
given edge. ??

Note that if 5 is the (constant) number of quadrangles through an edge, 
and if E is the number of quadrangles through a vertex, then & = 28/k. 

3.2. Simple eigenvalues 
If a walk-regular graph has a simple eigenvalue A z k, then we can say 

more on the structure of the graph. We shall prove that the graph admits a 
regular partition into halves with degrees (i(k + A), i(k - A)), that is, we 
can partition the vertices into two parts of equal size such that every vertex 
has i(k + A) neighbors in its own part and i(k - A) neighbors in the other 
part. As a consequence we obtain that k - A is even, a condition which was 
proven by Godsil and McKay [ll]. Th’ is condition eliminates, for example, the 
existence of a graph with spectrum {[I4]‘, [2]‘, [ - l]", [ - 13]‘}. We also find 
other divisibility conditions. 

LEMMA 3.2. Let B be a symmetric matrix of size v, having constant 
diagonal and constant row sums r, and spectrum {[r]‘, [s]l, [O]“-‘}, with 
s z 0; then v is even and ( possibly after permuting rows and columns) B can 
be written as 

‘rfs r-s 

B= 
-+ ~I$ ’ 

r-s r+s ’ 
71;” 

I 
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Proof. Consider the matrix M = B - (r/v)J; then M is symmetric, has 
constant diagonal, say x, row sums zero, and spectrum ([sl’, [Ol”-l). So, M 
has rank 1. By noticing that the determinant of all principal submatrices of 
size 2 must be zero, and using that M is symmetric and has constant 
diagonal, it follows that M only has entries +x. Since M has row sums zero, 
it follows that v is even and that we can write M as 

Now B has nontrivial eigenvalues r and vx, so s = vx, and the result follows. 
??

THEOREM 3.3. let G be a connected walk-regular graph on v vertices 
and degree k, having distinct eigenvalues k, h,, h,, . . . , A,, of which an 
eigenvalue unequal to k, say Aj, has multiplicity 1. Then v is even and G 
admits a regular partition into halves with degrees (i(k + hj>, i(k - hi)). 
Moreover, v is a divisor of 

fJftk - 4) + flf('j - Ai) and fJf (k - Ai) - II (Aj - 4). 
i#j 

Proof. Let b(x) = I-Ii, j(x - Ai), and let B = b(A); then it follows 
from Lemma 3.2 (B has constant diagonal since G is walk-regular) that v is 
even and 

1 r+s r-s \ 

B= 
-yItu TJ$ 

r-s r+s ’ 
011” ol;c 

where r = n(k - Ai) and s = n(Aj - Ai). 
i#j i+j 

Now (1, -l)T IS an eigenvector of B with eigenvalue s, and since this 
eigenvalue is simple, and A and B commute, it .follows that (1, - lJT is also 
an eigenvector of A, and the corresponding eigenvalue must then be Aj. This 
implies that if we partition A the same way as we partitioned B, with 

A= 
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then Ai,1 = A,,1 = i(k + Aj)l and A,,1 = AT,1 = i(k - hj)l. Since hj 
must be an integer, and b(x) = m(x>/( x - k)( x - Aj>, where m(x) is the 
minimal polynomial of G, it follows from Lemma 2.1 that b has integral 
coefficients, and so B is an integral matrix. But then v 1 T + s and v ( r - s. 

COROLLARY 3.4. Zf G is a connected walk-regular graph with degree k, 
and h is a simple eigenvalue, then k - h is even. 

As a consequence of the divisibility conditions in Theorem 3.3, we derive 
that there are no graphs with spectrum {[8]‘, [2]‘, [ -2]‘, [ -41’) (on 18 
vertices), or {[13]l, [5]l, [l]=, [ - 51s) (on 32 vertices). These spectra satisfy all 
previously mentioned conditions. 

4. EXAMPLES, CONSTRUCTIONS AND CHARACTERIZATIONS 

4.1. Distance-regular graphs and association schemes 
Distance-regular graphs (see [l]) and, more generally, association schemes 

will give us several examples of graphs with four distinct eigenvalues. The 
graphs can be obtained by taking the union of some classes (or just one class) 
as adjacency relation. In general, graphs from d-class association schemes 
have d + 1 eigenvalues, but sometimes some eigenvalues coincide. So most 
examples come from 3-class association schemes (see [IS]), such as the 
Johnson scheme J(n, 3) and the Hamming scheme H(3,q). 

An example coming from a 5-class association scheme is obtained by 
taking distance 3 and 5 in the dodecahedron as adjacency relation. The 
resulting graph has spectrum {[7]‘, [2]“, [ r 115, [ - 31’). 

In general, distance-regularity is not determined by the spectrum of the 
graph. Haemers [13] proved that it is, provided that some additional condi- 
tions are satisfied. Haemers and Spence [15] found (almost) all graphs with 
the spectrum of a distance-regular graph with at most 30 vertices. Most of 
these graphs have four distinct eigenvalues. 

4.1.1. Pseudocyclic association schemes. A d-class association scheme 
is said to be pseudocyclic if there are d eigenvalues with the same multiplic- 
ity. If the number of vertices y is a prime power and 4 = 1 (mod d), then 
the cyclotomic scheme, which has the d-th power cyclotomic classes of 
GF(q) as classes, is an example. For cl = 3 (and 4 > 41, this graph has four 
distinct eigenvalues and is obtained by making two elements of GF(q) 
adjacent if their difference is a cube. The smallest example is the 7-cycle CT. 
If the number of vertices is not a prime power, then only three pseudocyclic 



REGULAR GRAPHS WITH FOUR EIGENVALUES 147 

3-class association schemes are known. On 28 vertices, Mathon [19] found 
one, and Hollmann [18] proved that there are precisely two. Furthermore, 
Hollmann [17] found one on 496 points. 

4.1.2. Bipartite graphs. Examples of bipartite graphs with four distinct 
eigenvalues are the incidence graphs of symmetric 2-(u, k, A) designs. It is 
proven by Cvetkovi& Doob, and Sachs [6, p. 1661 that these are the only 
examples, i.e., a connected bipartite regular graph with four distinct eigenval- 
ues must be the incidence graph of a symmetric 2-(0, k, A) design. Moreover, 
it is distance-regular and its spectrum is 

([k]‘,[&?]“-‘,[-{m]‘-‘J-k]‘). 

4.2. The complement of the union of strongly regular graphs 
If G has tu vertices and spectrum {[k]‘, [r]‘f, [s]‘g}, and is the union of t 

strongly regular graphs (all with the same spectrum and hence the same 
parameters), then the complement of G is a connected regular graph with 
spectrum 

{[to - k - I]‘, [-s - lit”, [ -r - llff, [ -k - 1]‘-‘}, 

so it has four distinct eigenvalues (if t > 1). 
Note that if a connected regular graph has four distinct eigenvalues, then 

its complement is also connected and regular with four distinct eigenvalues, 
or it is disconnected, and then it is the union of strongly regular graphs, all 
having the same spectrum. 

4.3. Product constructions 
If G is a graph with adjacency matrix A, then we denote by G @ J,, the 

graph with adjacency matrix A @ I,,, and by Go],, we denote the graph 
with adjacency matrix ( A + I) 0 1, - I. If G is connected and regular, then 
so are G @J,, and GO],. Note that (G @JJ,)’ = GCOJnr where G” is the 
complement of G. 

If G has 0 vertices and spectrum {[k]‘, [r]f, [Olm, [s]g}, where m is 
possibly zero, then G Q J,, has on vertices and spectrum 

{[kn]‘, [rnlf, [O]m+cn--c, [snIg}. 
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Similarly, if G has u vertices and spectrum {[k]‘, [t-If, [ - l]“, [ s]g), where 
m is possibly zero, then G@Jn has WI vertices and spectrum 

{[kn + n - l]l, [f+n + 72 - llf, [ -l]m+an-L:, [sn + 12 - l]“}. 

So, if we have a strongly regular graph or a connected regular graph with four 
distinct eigenvalues of which one is 0 or - 1, then this construction produces 
a bigger graph with four distinct eigenvalues. The following theorem is a 
characterization of C, @ Jn, from which its uniqueness and the uniqueness of 
its complement C, OJn follows. 

THEOREM 4.1. Let G be a connected regular graph with four distinct 
eigenvalues and adjacency matrix A. Zf rank(A) < 5 and G has no triangles 
(A = 0), then G is isomorphic to C, @ Jn for some n. 

Proof. Let G have v vertices and degree k. First we shall prove that G 
has diameter 2. Suppose G has diameter 3 and take two vertices x, y at 
distance 3. Let A be partitioned according to G(x) U { y) and the remaining 
vertices. Then 

0 
A= 

Since ranks A) < 5, it follows that rank(N) < 2. Now write 

Since the all-one vector is in the column space of N (N has constant row 
sums k), rank( N’) < ranks N ), so ranks N,) < 1. But then N, = (Jk, k- 1 O), 
and we have a subgraph KkB k, so it follows that G is disconnected, which is a 
contradiction. So G has diameter 2. 

Next let A be partitioned according to G(x) and the remaining vertices. 
Then 

A= 
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with rank(N) < 2. If rank(N) = 1, then N = lk, k, and so G is a bipartite 
complete graph K,, k, but then G only has three distinct eigenvalues. So 
ranks N) = 2. Now write 

N = 

ln.3k-a ]n,o-&k On.c-2k 

Ik-n,3k-u ok-n,o-2k Ik-n,c-2k 

for some n. Note that since rank(N) = 2, we have that all parts in N are 
nonempty. Since G has no triangles, it follows from Lemma 3.1 that the 
number of quadrangles 6 through an edge is constant. If we count the 
number of quadrangles through x (which corresponds to one of the first 
3k - v columns of N) and a vertex y which corresponds to one of the first 
n rows of N (X and y are adjacent), then we see that 

t= (n - l)(k - 1) + (k - n)(3k - c - 1) 

= (k - 1)” + (k - n)(2k - v). 

On the other hand, if we count the number of quadrangles through x and a 
vertex z which corresponds to one of the last k - n rows of N, then we see 
that 

[=(k-n- l)(k- 1) +n(3k-U- 1) =(k- 1)2+n(2k-v). 

So n = ik and since A has rank at most 5 and zero diagonal, it follows that 
A is the adjacency matrix of C, 8 I,,. ??

COROLLARY 4.2. For any n, C, 8 J,, and C,@J, are uniquely deter- 
mined by their spectra. 

By lG(l, 1 - 1,l - 2) we denote the incidence graph of the unique 
(trivial) 2-(E, 1 - 1,l - 2) design. It can be obtained by removing a complete 
matching from the complete bipartite graph K,, 1, and is the complement of 
the 2 X 2 grid. 

THEOREM 4.3. For each 1 and n, the graph ZG( 1, 1 - 1,l - 2>0], is 
uniquely determined by its spectrum. 
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Proof. Note that for 1 = 1 or 2, the statement is trivial, So suppose 
I > 2. Let G be a graph with adjacency matrix A and spectrum 

I[ nl - I]‘, [2n - l]‘-‘, [ -1]2n’-1-1, [ -n(l - 2) - I]‘). 

Now let B = (A - (2n - 1)ZXA f I>; then we can partition A and B 
according to Theorem 3.3 such that 

where A,, and A,, have row sums n - 1 and A,, has row sums nl - n. If 
two vertices x and y from the same part of the partition are adjacent, then it 
follows that A&,. = n(E - 2) + 2n - 2 = k - 1, so x and y have the same 
neighbors. So x has n - 1 neighbors, which have the same neighbors as x, 
so G = H @In, for some graph H. Since H must have the same spectrum as 
ZG(Z, 2 - 1,l - 21, and this graph is uniquely determined by its spectrum, G 
is isomorphic to ZG(Z, 2 - 1, Z - Z>OJ,. ??

If A is the adjacency matrix of a conference graph G, that is, a strongly 
regular graph which has parameters (v = 4~ + 1, k = 2~~ p - 1, ~1, and 

spectrum {[k]‘, [i(-1 + &Ilk, [i(-1 - 6>1”}, then the graph with 
adjacency matrix 

A Z 
Z J-Z-A 

has spectrum 

([k + l]‘,[k - I]‘, [g(- 1 + &z-z)]‘“, [i(-1 - m)]2k). 

We shall call this graph the twisted double of G. We shall prove that this is 
the only way to construct a graph with this spectrum. 

THEOREM 4.4. Let v = 4/1 + 1 and k = 2,x. Then G is a graph with 

spectrum ([k + l]‘, [k - I]~, [k< - 1 + 4X)]2k, [i<- 1 - dFZ)]2k) if 
and only if G is the twisted double of a conference graph on v vertices. 
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Proof. Let A be the adjacency matrix of G and let B be as in the proof 
of Theorem 3.3, then we find that 

B=A*+A-(p+l)Z= 

and that we can write A (A,, has row and column sums 1) as 

and so B = 

This implies that A:, + A,, - ,uZ = PJ and A,, -t A,, + Z = J, so A,, is 
the adjacency matrix of a strongly regular graph with parameters (v = 
~Z_L + 1, k = 21.~, p - 1, ~1, and A,, is the adjacency matrix of its comple- 
ment. ??

A;, + A,, - FZ 

A,, + 4, + Z 

Since the conference graphs on 9, 13, and 17 vertices are unique, also 
their twisted doubles are uniquely determined by their spectra. Since there is 
no conference graph on 21 vertices, there is also no graph on 42 vertices with 
spectrum ([ill’, [9]l, [2120, [ -3120}. 

There are 15 conference graphs on 25 vertices, of which only one is 
isomorphic to its complement (cf. [20]). S’ mce complementary graphs rise to 
the same twisted double, it follows that there are precisely 8 graphs on 50 
vertices with spectrum {[13]‘, [ll]‘, {i( - 1 + &)]24, [i( - 1 - fi)]24}. 

Let G and G’ be graphs with adjacency matrices A and A’, and 
eigenvalues hi, i = 1,2, . . . , 0, and hi, i = 1,2, . . . , u ‘, respectively. Then 
the graph with adjacency matrix A @’ I,, + I, @ A’ has eigenvalues Ai + Ai, 
i = 1,2,. . .) II, j = 1,2,. . . ,u’. We shall denote this graph, which is some- 
times called the sum [6] or the Cartesian product of G and G’, by G @ G’. 

If G is a strongly regular graph with spectrum ([k]l, [r]f, [s]g}, and G’ is 
the complete graph on m vertices, then G @ G’ is a graph with spectrum 

{[k + m - I]‘, [k - I]“‘-’ , [r + m - llf, [r - l]fcn’m’), 

[s + m - l]“, [s - l]“‘“‘-I’). 

So we get a graph with four distinct eigenvalues if m = k - r = r - s. 
Examples are G @ K,, where G is the complete bipartite graph Km, ,,, or the 
lattice graph OA(m, 2) ( see Section 4.5.3 for a definition), and G @ K,, 
where G is the Clebsch or the Shrikhande graph. 
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Also K, @ K, (m > n > 2) is a graph with four distinct eigenvalues: it is 
the same graph as the line graph of the complete bipartite graph K,, n (see 
Section 4.4). 

4.4. Line graphs and other graphs with least eigenvalue -2 
If G is a strongly regular graph (k + 2) or a bipartite regular graph with 

four distinct eigenvalues (the incidence graph of a symmetric e-design, cf. 
Section 4.1.2), then its line graph L(G) h as f our distinct eigenvalues. If G is 
strongly regular with v vertices and spectrum {[k]l, [r]f, [s]g}, then it is well 
known that L(G) has $k vertices and spectrum 

{[2k - 2]‘, [r + k - 21f, [s + k - 2]“, [ -2]:“k-U}. 

If G is the incidence graph of a symmetric a-design, with o vertices and 
spectrum {[kll, [rlf, [ -r]f, [-kl’], th en L(G) has &k vertices and spectrum 

{[2k - 2]l, [r + k - 21f, [-r + k - 2]j, [ -2]lak-0+1}. 

Also the line graph of the complete bipartite graph K,, n has four distinct 
eigenvalues (if m > n > 2): its spectrum is 

{[m + n - 2]‘, [m - 21n-r, [n - 21mU1, [ -2]mn-s*~n+1}. 

Now these graphs provide almost all connected regular graphs with four 
distinct eigenvalues and least eigenvalue at least -2. It was proven by Doob 
and Cvetkovib [9] that a regular connected graph with least eigenvalue greater 
than -2 is K, or Czn+r for some n > 1. So the only one with four distinct 
eigenvalues is C,. Bussemaker, Cvetkovid, and Seidel [4] found all connected 
regular graphs with least eigenvalue -2, which are neither line graphs, nor 
cocktail-party graphs. Among them are 12 graphs with four distinct eigen- 
values: 

BCS,: one graph on 12 vertices with spectrum {[41’, w, [013, [ -2151, 
BCS7,: one graph on 18 vertices with spectrum I[71’, [412, [IIS, [- .5Ph 
BCS,,,-BCS,,,: eight graphs on 24 vertices with spectrum {[lOI’ [414 El3 [-21’9, , > 3 
BCS,,,: one graph on 18 vertices with spectrum ([lOI’ [412 w l-21”) 
BCS,,,: one graph on 24 vertices with spectrum ([141’: r414: [21( 1-219: 

Cocktail-party graphs are strongly regular, so we are left with line graphs. 
Now Doob [S] showed that if G has four distinct eigenvalues, least eigen- 
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value - 2, and is the line graph of, say, H, then H is a strongly regular graph, 
or the incidence graph of a symmetric 2-design, or a complete bipartite graph 
K m,nr with m > n >, 2. 

Furthermore, it is known (cf. 16, p. 1751) that L(K,, ,,) is not character- 
ized by its spectrum if and only if (m, n) = {6,3} or 

{m, n) = {2t2 + t,2t2 - t} 

and there exists a symmetric Hadamard matrix with constant diagonal of 
order 4t2. In the first case, there is one cospectral graph: BCS,,. 

If G is the line graph of the incidence graph of a symmetric 2-(0, k, A) 
design, then the only possible cospectral graph is the line graph of the 
incidence graph of other symmetric 2-(0, k, A) designs, unless (v, k, A) = 
(4,3,2.) In that case, there is one exception: BCS,. 

Note that the complement of a connected regular with least eigenvalue 
-2 is a graph with second largest eigenvalue 1. 

4.5. @her graphs from strongly regular graphs 
In the previous sections, we already used strongly regular graphs to 

construct other graphs. In this section, we shall construct graphs from 
strongly regular graphs having certain properties, like having large cliques or 
cocliques, having a spread, or a regular partition into halves. 

4.5.1. Hoffinan cocliques and cliques. If G is a nonbipartite strongly 
regular graph on 0 vertices, with spectrum {[k]‘, [r]f, [s]g}, and C is a 
coclique of size c meeting the Delsarte (Hoffman) bound, i.e., c = 
-zjs/(k - s), then the induced subgraph G \ C is a regular, connected 
graph with spectrum 

{[k + s]l, [rlfPC+‘, [r + s]‘-‘, [s]~-‘}, 

so it has four distinct eigenvalues if c < g. This is an easy consequence of a 
theorem by Haemers and Higman [14] on strongly regular decompositions of 
strongly regular graphs. Note that by looking at the complement of the graph, 
a similar construction works for cliques instead of cocliques. 

For example, by removing a 3-clique (a line) in the generalized quad- 
rangle GQ(2,2), we obtain a graph with spectrum ([5]l, [116, [ - l]‘, [ -313}. If 
we remove a 6-coclique from a strongly regular graph with parameters 
(26, 10, 3, 4) (these exist), then we get a graph with spectrum 
{[71’, Dl”, I- 115, [ - 319. 
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4.5.2. Spreads. If G admits a spread, that is, a partition of the vertices 
into cliques of size I - k/s (i.e., meeting the Hoffman bound), then by 
removing the spread, that is, the edges in these cliques, we obtain a graph 
with spectrum 

ir I k f-(k/pX-s-1) 
k + k ‘, [r + l](k/*X-s-1), r + _ 

s 
[ 1 s 

Note that these graphs come from 3-class association schemes. For 
example, if we remove a spread from the generalized quadrangle GQ(2,4), 
we get a distance-regular graph with spectrum {[8]‘, [2]“, [ - l]‘, [ - Q}. 

4.5.3. Se&l switching. Let G be a strongly regular graph on v ver- 
tices admitting a regular partition into halves with degrees 

(+(k + a), +(k - s)), 

so its adjacency matrix A can be written as 

A= 

where all parts have equal size and A,,, A,, have row sums i(k + s). Now 
the graph with adjacency matrix 

has spectrum 

This operation on G is called Seidel switching. Note that we can interchange 
the role of r and s. It follows from Theorem 3.3 that this is the only way to 
construct a graph with this spectrum. 

([s + +v]‘,[r]‘,[~]~-~,[k - +v]‘]. 

THEOREM 4.5 Zf G is an (s + iv)-regular graph with four distinct 1 - 
eigenvalues on v vertices and with spectrum 

([s + $]‘,[r]i,[s]g-‘, [k - $v]‘), 
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with this spectrum is the lattice graph OA(n, 2). Furthermore, we must have 
a regular partition into halves with degrees (i(3n - 4), in). Now there is (up 
to isomorphism) exactly one way to do this: take a spread and split it into two 
equal parts. ??

This partition can also be used for the graphs OA(n, m> for “arbitrary” m. 
This graph is obtained from an orthogonal array, that is, an m x n2 matrix M 

such that for any two rows a, b, we have that ((Mai, Mbi) ( i = 1,. . . , n2} = 
{(i,j> I i,j = l,..., n}. The graph has vertices 1,2,. . . , n2, and two vertices 
o, w are adjacent if Mi, = Mi, for some i. This graph is strongly regular 
with spectrum {[ mn - ml’, [n - m]m(n-l), [ -m](n-lXn-m+l)}. If we now 
take for one part of the partition the set (iI M,{ = 1, . . . , in}, then we have a 
regular partition into halves with degrees 

(n - 1 + (m - l)(+n - l),+(m - 1)n). 

Thus we obtain a graph with spectrum 

0 in2 + n _ m]l, [n _m]m(n-l)-l, [ _m](“-‘Xn-m+l), [mn - +fl” -ml’). 

Another family of graphs can be obtained from the triangular graphs 
I, for n = I (mod4). The triangular graph T(n) is the graph on the 
$(n - 1) unordered pairs taken from the n symbols 1,2, . . . , n, where 
two pairs are adjacent if they have a symbol in common. Its spectrum is 
{[2n - 4]l, [n - d]“-l, [ -2]“(“-3)/2}. For each n = 1 (mod41, we now get a 
regular partition into halves with degrees (n - 3, n - 1) by taking for one 
part the pairs {i, j}, i z j, with 

i=l ,..., *(n-l), j=2 ,..., +(n-l)+l, or 

i = f(n - 1) + l,...,i(n - l), 

j = +(n - 1) + 2,...,3(n - 1)/4 + 1, or 

i = +(n - 1) + l,..., n - 1, j = 3( n - 1)/4 + 2,. . . , n. 

For n = 1 (mod4), we thus obtain a graph with spectrum 

([$(n - 1) - 2]‘, [n - 41nm1, [ -2]tn(n-3)-1, [2n - fn(n - 1) - 4]l). 
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Note that (in general) there are more ways to obtain such partitions, and so 
possibly different graphs with this spectrum. The following lemma shows that 
we need the restriction n = 1 (mod4), and gives a property of the partitions. 

LEMMA 4.7. Zf the triangular graph T(n) admits a regular partition into 
halves V, and V,, with degrees (n - 3, n - l), then n = 1 (mod 4) and for 
eachi = l,... , n we have that I(j # i I {i, j} E %‘,}I = i(n - 1). 

Proof. First, note that the number of vertices in(n - 1) should be 
even, so that n = 0 or 1 (mod4). Now fK i, and let m = I{j # i I Ii, j} E Vi}/. 
If {i, j} E V,, then we must have that 

I{h # i, j I Ih, j} E V,}l + I{h z i, j I {i, h} E v,}I = n - 3, 

so IKh #j I {h, jl E Vi11 = n - 1 - m. If {i, j) E V,, then we must have that 

I{h # i,j I {h,j} E V,}l +I{h z i,j I {i, h} E V,)( = n - 1, 

and then also I{h # j I {h, j) E V,}l = n - 1 - m. Now it follows that 

m + (n - l)(n - 1 -m) = t I{h #j I (h, j) E v,}I 
j=l 

= 2lV,I = fn(n - l), 

which implies that m = i(n - 11, and since this must be an integer, we must 
have n = 1 (mod4). ??

Since the triangular graph T(n) is uniquely determined by its spectrum 
unless n = 8, Theorem 4.5 and Lemma 4.7 imply the following result. 

THEOREM 4.8. For each n = 0 (mod4), n # 8, there is no graph with 
spectrum 

([Sn(n - 1) - 2]‘, [n - 41n-‘, [-2]1”(“d3)-1, [2n - fn(n - 1) - 4]l). 

The next lemma shows that the “other” regular partition into halves is not 
possible, which together with Theorem 4.5 proves Theorem 4.10. 
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LEMMA 4.9. For each n z 4, the triangular graph T(n) does not admit 
a regular partition into halves with degrees (3n/2 - 4, in>. 

Proof. Suppose we have such a partition with halves Vi and V,. Note 
that now both n and &(n - 1) must be even, so n E 0 (mod 4). So we may 
suppose that n > 8. Now fix i and let m = I{j # i I {i, j} E V,}l. Without loss 
of generality, we may assume that m > 0. Then we find that if Ii, j) E VI, 
then 

]{h Z j I {h, j} E V,}l = 3n/2 - 2 - m. 

If {i, j} E V,, then we must have that 

J{h + j I {h, j} E I’,}/ = in - m. 

This implies that m < in unless there is no j with {i, j} E VP. So m < $n or 
m = n - 1. Now let j be such that {i, j} E Vi, and 

m’ =({h +j I {h,j} E V,)l; 

then also m’ < in or m’ = n - 1. Without loss of generality, we may 
assume that m > m’, and since m + m’ = 3n/2 - 2, we must have m = n 
- 1 and m’ = kn - 1. Since m’ > 3, there is an h # i, j such that {i, j) E V, 
and {j, h] E V,. Now let m” = ({g # h I {h, g} E V,}/; then 
m + m” = 3n/2 -2 = m’ + m”, so m = m’, which is a contradiction. ??

THEOREM 4.10. For each n # 4, there is no graph with spectrum 
{[+n(n - 1) + n - 4]], [ n _ 4]“-2, [-2]i~~(~l-3), [zn -~$,(, _ 1) _ 411). 

For all parameter sets of strongly regular graphs on at most 63 vertices, 
except for T(9) and OA(6,2), we shall now give an example of how we can 
obtain a graph with four distinct eigenvalues, using Seidel switching. The only 
graphs we have to consider are the strongly regular graphs on 40 vertices with 
spectrum ([12]r, [2]‘“, [ - 4]‘“}, the H o ff man-Singleton graph, which is the 
unique graph on 50 vertices with spectrum ([7]‘, [21’s, [ -3]“], and the 
Gewirtz graph, which is the unique graph on 56 vertices with spectrum 
{[lo]‘, [2]““, [ - 41Z0}. 

Now there is one generalized quadrangle GQ(3,3) (a strongly regular 
graph on 40 vertices) with a spread, and by splitting it into two equal parts, 
we have a regular partition into halves with degrees (7,5X Thus we obtain a 
graph with spectrum {[22]‘, [2]““, [ - 4]ls, [ - 8]‘]. 
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Haemers [12, ex. 6.2.21 constructed a strongly regular graph on 40 vertices 
admitting a regular partition into halves with degrees (4,8). This yields a 
graph with spectrum {[ 16]l, [21z4, [ - 4]14, [ - B]‘}. 

Since it is possible to partition the vertices of the Hoffman-Singleton 
graph into two halves such that the induced subgraphs on each of the halves 
is the union of five pentagons (cf. [3]), we have a regular partition into two 
halves with degrees (2,5), and so we can construct a graph with spectrum 
{[22]‘, [21’s, [ -3]“, [ - 1819. 

Since it is possible to split the Gewirtz graph into two Coxeter graphs (cf. 
[2]), we have a regular partition into two halves with degrees (3,7), and so we 
obtain with spectrum {[24]‘, [2]35, [ - 4]‘“, [ - 181’). 

The Gewirtz graph also contains a regular graph on 28 vertices of degree 
6 (cf. [2]>, and so we have a regular partition into two halves with degrees 
(6,4). Thus we obtain a graph with spectrum {[30]‘, [2]34, [ -4]“‘, [ - 181’). 

4.5.4. Subconstituents. Let G be a strongly regular graph with parame- 
ters (v, k, A, II) and spectrum {[k]‘, [r]f, [s]g). For any vertex x, we denote 
by G(x) the induced subgraph on the set of neighbors of x. By G,(x) we 
denote the induced subgraph on the vertices which are not adjacent to x. 
These (regular) graphs are called subconstituents of G with respect to x. 

Cameron, Goethals, and Seidel [5] proved that there is a one-one 
correspondence between the restricted eigenvalues e {r, s) of the subcon- 
stituents of G, such that corresponding eigenvalues have the same restricted 
multiplicity, and add up to r + s. Here we call an eigenvalue restricted if it 
has an eigenvector orthogonal to the all-one vector. Its restricted multiplicity 
is the dimension of its eigenspace, which is orthogonal to the all-one vector. 

This implies that if A = 0, so G(x) is a graph without edges, and hence 
has spectrum ([Olk); th en G,(x) is a (k - p&regular graph with restricted 
eigenvalues r + s, and possibly T and s, with multiplicities k - 1, and say 
m, and my, respectively. Since p = -(r + s), we find that 111, =f + k and 
m,s = g - k, so G,(x) has spectrum ([k + r + s]‘, [ r]Jpli, [ r + .s]“- ‘, [s]“-~). 
For example, the Gewirtz graph is a strongly regular graph with A = 0 and 
spectrum {[lo]‘, [2]““, [ - 4]“), so Gewirtz,(x) is a graph with spectrum 
{[S]‘, [2]““, [ -2]“, [ -41”). Also the H o man-Singleton graph Ho-Si is a ff - 
strongly regular graph with A = 0, and its spectrum is {[7]‘, [2]“s, [ - 3]“‘), so 
Ho-Si,(x) is a graph with spectrum {[6]‘, [2]“, [ - l]“, [ - 3]14). 

If A = r and G(x) is the union of (r + l&cliques, so it has spectrmn 
{[ ,]k/(r+ “, [ _ l]rk/(r+ 1)); th en G,(x) is a (k - pu)-regular graph with re- 
stricted eigenvalues r + s + 1, and possibly r and ,E, with multiplicities 
rk/(r + 0, and say m, and m,, respectively. Since Al. = -s, we find 
that ~1,. =f - k and nl,5 = g - rk/(r + 1) - 1, so G,(x) has spectrum 
([k + s]‘, [T-I/-“, [r + s + l]rk/(r+‘), [.s]~-‘~/(~+‘)~~‘). Examples of such 
graphs can be found when G is the graph of a generalized quadrangle. 
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4.6. Covers 

EDWIN R. VAN DAM 

In this section, we shall construct n-covers of C, @ Jnr C,@], = K,,, 
C,O Jn, C,@J,, and Cube @I,,, having four distinct eigenvalues. 

Let C be the n X n circulant matrix defined by Cij = 1 if j = i + 1 

(mod n), and Cij = 0 otherwise. Then let A and B be the n2 X n2 matrices 
defined by 

’ I Z . . . z ’ 
c c c 

A = . . *” . and 

cn-I cn-1 ... c”-l/ 

/ Z C . . . C”-1’ 

B = “:-l .I *.. : 
c * 

\ c . . . cn-’ z 1 

Furthermore, let D = (Jn - Z,) @ 1,. Then the graphs with adjacency 
matrices 

‘D A 0 0 A’ 

AT D A .O 0 

B,= 0 AT D A 0 

0 0 AT D A 

A 0 0 AT D 

\ 

I 

are n-covers of C, @ Jn, C,@],, and C, oJ”, respectively. 
The graphs with adjacency matrices 

‘D 0 0 0 A1 Al 

0 D 0 A 0 D-II 
0 0 fT A DfI 0 
0 A? D 0 0 
A 0 D+I 0 D 0 

,A D+I 0 0 0 D I 
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D 0 0 0 0 D+l B B \ 
0 D 0 0 Dfl 0 B B 
0 0 D 0 B B 0 D-+-I 
0 0 0 D B B Ds-1 0 
0 D+I B B D 0 0 0 

D+I 0 B B 0 D 0 0 
B B 0 D+I 0 0 D 0 
B B D+l 0 0 0 0 D , 

are n-covers of C, @jn and Cube @I,,, respectively. 
A, has spectrum, {[2n]‘, [r~]~%-~, [O]a(n-1)2, [ -r~]~~-‘]. The crucial step to 

show this is that A,( At - n2Z) = 2nj (the multiplicities follow from the 
eigenvalues). For n = 2, we get the line graph of the cube, and for n = 3, 
we get a graph, which is cospectral (but not isomorphic) with the cubic lattice 
graph H(3,3). 

B, has spectrum ([3n - l]‘, [ - 1]3n2-6n+5, [ - 1 + $10 + 6)]3n-3]. The 
crucial step here is that (Ba + Zx( B, + 1)’ - n( B, + I) - n2Z) = 5nJ. For 
n = 2, we get the icosahedron. 

Similarly, we find that B, has spectrum 

( [3n - 111, [ -1]~+ran+5, [ - 1 + $L(l * 6)]+3)> 

B, has spectrum {[3n - Ill, [2n - 114”-‘, [ - l]hn’-‘sn+‘, [ -n - l]2’L-1}, and 
B, has spectrum {[4n - l]l, [2n - 1]6”-3, [ - 1]8n2-8n+3, [ -2n - l]‘“-‘). 

I wish to thank W. H. Haemms for several suggestions and remarks on 
this paper. 
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