increase in Ca²⁺ transient amplitude (84 ± 1.5 %; n=218) that reached steady-state approx. 3 hrs post-treatment. Con'T increased the activation of Akt as indicated by phosphorylation of Akt (p-Akt) on Ser473 at 15 min and remained elevated relative to non-treated VMs at 3 hrs. A faster migrating p-Akt immunoreactive band was also identified. This putative Akt-cleavage product was not seen with insulin (10 μM) stimulation of p-Akt and not prevented with inhibitors of caspase activity (Z-DEVD-FMK (40 μM), Boc-D-FMK (50 μM)). This activation was not myocyte specific and con’T treatment produced similar results in fibroblasts. The results demonstrate a paracrine mechanism of MSC’s on improved cardiomyocyte survival through activation the PI3K/Akt pathway that also triggers remodeling of EC coupling. Stimulation of Akt in fibroblasts presents an additional indirect means by which cardiac repair could be modulated following injury.

2840-Pos
Rac1-Induced Remodelling is Different in the Left and Right Atrium of RacET Mice
Peter Lipp1, Martin Oberhofer1, Qinghai Tian2, Jue Wang1, Karin Hammer2, Jan Reif1, Hans-Ruprecht Neuberger1, Lars Kaestner1.
1Molecular Cell Biology, Saarland University, Homburg/Saar, Germany, 2Department of Pharmacology; UC Davis, Davis, CA, USA, 3Cardiology Department; University Hospital, Homburg/Saar, Germany.
In human atrial fibillation (AF), increased levels of reactive oxygen species, increased activity of the NADPH oxidase and increased expression of the small GTPase Rac1 have been reported. In a RacET transgenic mouse, spontaneous AF occurs at ages >12 weeks. Here, we characterise atrial remodelling processes that take place in calcium handling and ion current. We used 4-6 months old male mice and age-matched control mice. Echocardiography indicated mildly enlarged left atria while the right atria displayed several fold dilatation. The analysis of whole cell calcium transients revealed that although both cell types displayed reduced calcium transient amplitudes, basal calcium concentration was significantly increased only in cells of the right atrium. Post-rest behaviour was unchanged. While in the left atrium (LA) caffeine responses were unchanged in amplitude but SERCA activity was down by almost 50%, cells from the right atrium (RA) showed significantly decreased caffeine signals (by 40%) and increased Na/Ca exchanger with an unchanged SERCA pump activity. Calcium sparks also displayed striking differences. While in LA their amplitude was reduced, recovery was slowed down and spatial spread was only slightly decreased (by 10%), cells from LA showed an increased amplitude (by 40%), faster recovery (up 20%) and a decreased spatial spread (down by >25 %). Action potentials recorded from LA and RA cells showed a slightly more negative resting membrane potentials in the myocytes from RacET with otherwise unchanged properties. From these data we conclude that Rac1 overexpression and the accompanying increased oxygen related load results in atrial remodelling that is significantly different between the left and the right atrium.
Supported by DFG (SFB530, Gra1315/20, Kli196/1), BIR, MBMF

2841-Pos
Increased Susceptibility to Ventricular Arrhythmias Relates to Diastolic Ca²⁺ Leak in Rats with Metabolic Syndrome
Morten A. Hoydal, Anne B. Johnsen, Marcia Alvez, Guri Kaurstad, Natalie Rolin, Ulrik Wisloff.
Norwegian University of Science and Technology, Trondheim, Norway.
Introduction: Rats genetically selected and bred for low aerobic capacity (LCR) develop characteristics resembling to the metabolic syndrome and animals with heart failure. Rats selected for high aerobic capacity (HCR) develop athletic characteristics. We hypothesized that LCR rats are more susceptible for ventricular arrhythmias and that this relates to increased diastolic SR Ca²⁺ leak.
Methods: We included 10 LCR and 10 HCR rats. We assessed susceptibility to ventricular fibrillation by burst pacing in Langendorff perfused hearts. In isolated cardiomyocytes we measured Ca²⁺-handling with FURA2/AM and action potent by di-8-ANEPPS on an inverted epi-fluorescence microscope.
Results: LCR rats were more susceptible for ventricular fibrillation and monophasic action potential at the left ventricle was prolonged. Prolongation of the action potential was confirmed in single di-8-ANEPPS loaded cardiomyocytes. Cardiomyocyte function was significantly depressed in LCR rats compared to HCR; fractional shortening was 37% lower and time to 50% relengthening was 53% longer. Ca²⁺-handling was impaired by elevated diastolic Ca²⁺, reduced Ca²⁺ amplitude and prolonged time to 50% Ca²⁺ decay. SR Ca²⁺ content was 21% lower and fractional Ca²⁺ release was 10% lower in LCR. During caffeine induced Ca²⁺ transient, we found no difference in Ca²⁺ decay between the two groups, reflecting unaltered NCX function; nor did we find any changes in the plasma membrane Ca²⁺, assessed by caffeine induced transients in a 0Na⁺/ 0Ca⁺ solution. Diastolic Ca²⁺ removal is mainly attributed to reduced SERCA function by 15% in LCR rats. By measuring diastolic Ca²⁺ in quiescent myocytes with and without tetracaine we found 46% increased SR Ca²⁺ leak LCR rats.
Conclusion: Impaired Ca²⁺ handling and increased diastolic SR Ca²⁺ leak together with prolonged action potential duration may explain increased susceptibility to ventricular arrhythmias in LCR rats with metabolic syndrome.

2842-Pos
Effects of Membrane Calcium Flux Localizations and Realistic T-Tubule Geometry on Cardiac Excitation-Contraction Coupling
Yuhui Cheng1, Zeyun Yu1,2, Masahiko Hoshijima1, Michael Holst1, Andrew McCulloch1, Andrew McCammon1, Anushka Michailova1,2,3.
1University of California San Diego, La Jolla, CA, USA, 2University of Wisconsin, Milwaukee, WI, USA.
The sub-cellular anatomy and ionic flux distributions are considered important in calcium (Ca) regulation and their variations over time may hold clues to the progression of heart diseases. To investigate how these coupled processes may affect the cardiac cell function we developed 3D continuum model of Ca-signaling, buffering and diffusion in rat ventricular myocytes. The model geometry was derived from high definition light and electron microscopy images in rodent cardiac cells through a process called tomographic reconstruction [1, 2]. The current model includes: the 3D geometry of a single t-tubule and its surrounding half-sarcromeres; spatially distributed Ca handling proteins along the t-tubule and surface membrane; stationary and mobile Ca buffers (ATP, calmodulin, fluo-3, troponin C). A finite element software package SMOL-SubCell was used to model the PDE system on cluster of computers [3]. In agreement with experiment [4,5], model predicts that the Ca t-tubule anatomy and the heterogeneous distribution of Ca fluxes along the cell membrane might be important mechanisms for maintaining uniform Ca concentration in presence of 100 microM fluo-3 and sarcoplasmic reticulum inhibited. In the absence of fluo-3, model predicts that the overall Ca distribution can not be maintained uniform when the membrane Ca fluxes were heterogeneously distributed.

Supported by NBCR (NIH grant 2 P41 RR08605), NIH GM31749, NSF MCB-0506593, MCA055013, Howard Hughes Medical Institute, SDSC, Accylents, inc., W. M. Keck foundation.
*Corresponding author: gmhaylvo@ucsd.edu

2843-Pos
The Generation of a Novel Animal Model of Inducible Hypertrophy: Over-expression of NCX1 in the Murine Heart Using the Doxycycline-Dependent Promoter
Yuki Katanosaka1, Keichihiro Iwasaki1, Satoshi Mohri1,2, Keiji Naruse1,2.
1Okayama Univ, Okayama, Japan, 2Kawasaki Medical School, Kurashiki, Japan.
The Na⁺/Ca²⁺ exchanger (NCX1) is essential regulator of Ca²⁺ homeostasis in cardiomyocytes. In normal cardiac muscle, the primary role of NCX1 is to extrude cytoplasmic Ca²⁺ during myocyte repolarization and diastole. In hypertrophic and failing hearts, sarcomelial NCX1 expression has often been shown to be elevated, which could be compensatory for the reduced ability of the sarcoplasmic reticulum to maintain low diastolic [Ca²⁺], under these pathological conditions. However, whether increased NCX1 expression invariably leads to enhanced function under disease conditions is not clear. In this study, we have produced a line of the transgenic mice in which expression of the canine cardiac NCX1 transgene was induced using the doxycycline (DOX) dependent promoter. After the injection of 100 μL of DOX (2 mg/mL in normal saline solution) into the abdominal cavity per 1 day during 2 weeks, the expression of canine NCX1 protein in the hearts of the DOX-treated transgenic mice was 3-fold higher, but the protein levels involved in excitation-contraction coupling, sarcoplasmic reticulum Ca²⁺-ATPase, phosphorylamban, ryanodine receptor, and L-type Ca²⁺ channel were unchanged compared with those of wild-type (WT) and the non-induced transgenic mice. The total heart-to-body weight ratio was increased by 45% in the DOX-treated transgenic mice compared with WT or non-induced mice. The DOX-treated transgenic mice developed cardiac hypertrophy accompanied by elevation of multiple hypertrophic markers, but no other signs of other typical heart failures. We suggest that the over-expression of NCX1 is sufficient to develop cardiac hypertrophy and these mice would be useful as the animal model to study on the pathological role of NCX1 in cardiac hypertrophy and progression of cardiac dysfunction on heart failure.