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Abstract

In the heterocellular toad skin epithelium the h-adrenergic receptor agonist isoproterenol activates cyclic AMP-dependent Cl� channels

that are not located in the principal cells. With four experimental approaches, in the present study, we tested the hypothesis that the signalling

pathway targets cystic fibrosis transmembrane conductance regulator (CFTR)–chloride channels of mitochondria-rich cells. (i) Serosal

application of isoproterenol (log10EC50 =� 7.1F 0.2; Hill coefficient = 1.1F 0.2), as well as noradrenaline, activated an anion pathway with

an apical selectivity sequence, GCl>GBrzGNO3
>GI, comparable to the published selectivity sequence of cloned human CFTR expressed in

Xenopus oocytes. (ii) Known modulators of human CFTR, glibenclamide (200 Amol/l) and genistein (50 Amol/l), depressed and activated,

respectively, the receptor-stimulated GCl. Genistein did not modify the anion selectivity. (iii) Transcellular voltage clamp studies of single

isolated mitochondria-rich cells revealed functional h-adrenergic receptors on the basolateral membrane. With f 60,000 mitochondria-rich

cells per cm2, the saturating activation of 11.9F 1.6 nS/cell accounted for the measured isoproterenol-activated transepithelial conductance of

600–900 AS/cm2. In forskolin-stimulated cells, glibenclamide (200 Amol/l) reversibly inhibited the transcellular conductance by 9.6F 1.6

nS/cell. (iv) With primers constructed from cloned Xenopus CFTR and PCR amplification of reverse-transcribed mRNA from toad skin, full-

length Bufo CFTR cDNAwas generated. The derived protein of 1466 residues shows 86% homology with xCFTR and 89% homology with

hCFTR. All major functional sequences, that is, the R- and the NBF1- and NBF2-domains are well-conserved as are the predicted

transmembrane segments proposed to form the pore of the channel protein. These new results taken together with our previously identified

small-conductance CFTR-like Cl� channel in the apical membrane of the mitochondria-rich cells lead to the conclusion that the toad’s CFTR

gene codes for a functional Cl� channel in the apical plasma membrane of this minority cell type.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction on the basolateral membranes of the epithelium. This
The function and regulation of the cystic fibrosis trans-

membrane conductance regulator (CFTR) chloride channel

[1] have been studied extensively in mammalian epithelia

[2]. The protein is expressed in the apical membrane, and

following cyclic AMP-dependent phosphorylation of the R-

domain cytosolic ATP activates channel activity [3–5].

Phosphorylation by the protein kinase A (PKA) catalytic

subunit was indicated in studies of native cells [6] and

cultures expressing native [7,8] or cloned [9] human CFTR.

In vivo, the formation of the second messenger cyclic AMP

is controlled by, e.g., stimulation of h-adrenergic receptors
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scheme seems to be applicable to several mammalian

epithelia like ducts of sweat glands [8,10], upper airways

[11], intestine [12], ducts of the exocrine pancreas [13], and

male reproductive tracts [14]. Likewise, salt secretion by

epithelia of lower vertebrates such as shark rectal gland

[15,16], gills of marine teleosts [17,18] and frog subepider-

mal gland [19–21] depends on cyclic AMP-regulated

CFTR. The absorbing chloride cells and small intestine of

the freshwater-adapted euryhaline teleost, Fundulus hetero-

clitus, also expresses CFTR. However, in contrast to the

seawater-adapted Fundulus, the channel protein in the

freshwater-adapted fish is localized to the basolateral mem-

brane [18]. The purpose of the present study is to investigate

a previously identified h-adrenergic receptor-regulated chlo-

ride conductance of the skin of anuran Amphibia, which

was hypothesized to be located in mitochondria-rich cells of
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Table 1

Transepithelial bioelectric parameters of toad skin collagenase-isolated

epithelium exposed to NaCl Ringer’s solution on both sides

Vt (mV) Rt (KV�cm2) Isc (AA/cm
2) N

MeanF S.E. � 21.0F 1.5 1.191F 0.103 22.0F 1.9 49

Vt and Rt are the steady state ‘open-circuit’ transepithelial electrical

potential difference (inside solution grounded) and resistance, respectively.
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the NaCl- and fluid-absorbing epidermis [22]. This was

done by selectivity and pharmacological analysis of the

activated channel of the intact epithelium, by transcellular

voltage clamp of single isolated mitochondria-rich cells, and

by molecular biological characterization of the putative

channel protein. Some of the results have been referred to

in previous review articles [23,24].

Isc is the steady state short-circuit current (Vt = 0 mV). N= number of

preparations.
2. Materials and methods

2.1. Animals and preparations

Toads (Bufo bufo) were kept in an indoor (winter) or

outdoor terrarium with free access to a pool of tap water and

fed with mealworms ad lib. For increasing the yield of

mitochondria-rich cells in single-cell studies, toads were

kept for 1–2 weeks in running distilled water (20 jC). The
animals were killed by double pithing and the skin removed

by dissection. The epithelium was isolated by exposure of

the serosal side of the skin for 2 h at room temperature by a

Ringer’s solution containing collagenase at a concentration

of 2 mg/ml (Type 2, Worthington Chemical, NJ). Single

mitochondria-rich cells were obtained by trypsin treatment

of the isolated epithelium by a method modified from Refs.

[25,26]. For 1 h, the isolated epithelium was kept in

collagenase Ringer (2 mg/ml, C-9891, EC 3.4.24.3, Sigma,

St. Louis, MO, USA) and after washing in Ca2 +-free
Fig. 1. The protocol for studying the receptor-activated chloride

conductance of collagenase-isolated toad skin epithelium. When mounted

with NaCl–Ringer’s solution on both sides, the preparation exhibited a

spontaneous transepithelial potential difference, Vt =� 38 mV. Following

short-circuiting (arrows), for monitoring the conductance at intervals of 20

s, Vt was clamped to + 20 mV for 2 s. At the arrow indicated ‘KCl’ the

outside of the epithelium was superfused with a solution in which all of the

sodium ions were replaced by potassium ions, which reduced the short-

circuit current as well as the conductance. Adding isoproterenol to the

serosal solution stimulated the transepithelial conductance leaving Isc near

zero.
Ringer, it was bathed in Ca2 +-free trypsin Ringer (0.1 mg/

ml, T-4665, EC 3.4.21.4, Sigma) and centrifuged for 5 min

at 800–1200 rpm. The remaining epithelium was trans-

ferred to a fresh trypsin solution, while the isolated cells

were washed and stored in NaCl Ringer’s solution until use.

Rounds of 5 min trypsin treatment of the epithelium,

centrifugation, and wash were repeated until the major

fraction of the epithelial cells was isolated. In order to

protect the h-adrenergic receptors from exogenous enzymes,

in all steps of the isolation procedure, the solutions

contained 1 Amol/l of the receptor antagonist propranolol.

2.2. Experimental setups

For studies of mitochondria-rich cells in situ, the intact

epithelium was mounted in a Perspex chamber that could be

perfused continuously on the outside with well-aerated

Ringer’s solutions of different compositions as indicated

in the text. Isolated cells were transferred to a Perspex

chamber with a cover-glass bottom and volume of 300 Al.
By gravity force, the chamber was perfused at a rate of

f 85 Al/s with a well-aerated solution of desired composi-

tion. With the chamber mounted on the table of a Nikon

TMS inverted microscope (DFA A/S, Copenhagen, Den-

mark) the cells were viewed at �40 magnification. By

suction, the neck of a mitochondria-rich cell was positioned

in the tip of a patch clamp pipette (Vitrex, Modulohm A/S

Herlev, Denmark) fabricated on a two-step vertical puller

(Hans Ochotzki, Homburg, Germany) and polished (MF-90

Narishige, Tokyo, Japan) for obtaining a resistance of 1.2–

1.6 MV (measured with NaCl Ringer’s in bath and pipette).

2.3. Electrophysiological measurements

The transepithelial potential difference, Vt, was measured

via calomel electrodes matched to within 1 mV (K401,

Radiometer, Copenhagen). Current was passed across the

preparation via Ag/AgCl half-cells placed in the chambers. In
Table 2

Transepithelial electrical conductance of the isolated epithelium exposed to

NaCl–Ringer’s solution on the inside and a Na+-free Ringer’s solution on

the outside

Control Isoproterenol stimulated

Gt (AS/cm
2) Gt (AS/cm

2) Isc (AA/cm
2) N

MeanF S.E. 292F 51 1098F 63 0.3F 0.3 25



Fig. 2. Example of dose– response relationship of the isolated epithelium.

The conductance of the preparation is expressed relative to the saturating

conductance obtained with 10 Amol/l and with the baseline conductance

observed prior to addition of isoproterenol subtracted. The theoretical curve

is the best fit of Eq. (1) of the text to the experimental values with the errors

indicated of the estimates of the two free variables. The fit was generated by

the Simplex routine of Originn ver. 7. Seven preparations were investigated

with this protocol with the meanF S.E. indicated in the text.

Table 3

Conductance with gluconate outside (Gleak), receptor-activated chloride conductance (GCl), and relative selectivity of the receptor-activated conductance

Gleak (AS/cm
2) GCl (AS/cm

2) GBr/GCl GNO3
/GCl GI/GCl

1-iso MeanF S.E. 166F 22 598F 97 0.67F 0.04 n.d. 0.18F 0.03

N 6 6 6 – 6

2-iso MeanF S.E. 190F 18 898F 125 0.73F 0.01 0.64F 0.04 0.20F 0.01

N 9 9 9 9 9

3-iso MeanF S.E. 274F 46 870F 301 0.67F 0.05 0.62F 0.14 0.27F 0.02

N 5 5 5 5 5

noradr MeanF S.E. 161F 20 853F 138 0.64F 0.04 0.43F 0.09 0.17F 0.04

N 6 6 6 6 6

The numbers given in columns 4–7 are corrected for the estimated leak conductance according to Eq. (2) in the text.

Three series of experiments were conducted with 5 AM isoproterenol in the serosal bath (1-iso, 2-iso, and 3-iso, respectively). In the 1-iso group, 100 Amol/l

furosemide was contained in the serosal solution. In this one shift to nitrate solution was not included in the protocol (n.d. = not determined).

In the fourth series of experiments, 10 AM noradrenalin was added to the serosal bath (noradr).

In the 3-iso group, the conductance was measured by a transepithelial voltage pulse with amplitude, DVt =� 20 mV. In the other three groups, the conductance

was determined by DVt = + 20 mV as illustrated in Fig. 1.
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experiments in which the anion composition of the outside

solution was changed, a platinum wire replaced the Ag/AgCl

current electrode of the outside chamber. Voltage clamping at

Vt = 0 mV was performed by a VCC600 amplifier (Physio-

logical Instruments Inc., San Diego). The transepithelial

conductance was measured at intervals of 20 s by recording

the current response to a voltage pulse of 20 mVof amplitude

and 2-s duration. The amplifier was interfaced to a PowerLab/

8SP A/D converter and the digitized signals processed with

the Chart software (ADInstruments, Castle Hill, NSW, Aus-

tralia). Single-cell voltage clamp was performed with the

Axopatch-200B amplifier interfaced to a Digidata 1322A

using pClamp9 for recording and analysis (Axon Instru-

ments, Foster City, CA). Currents were low-pass filtered

(20 Hz corner frequency, Frequency Device, MA, USA)

and sampled at a rate of 50 Hz.

2.4. Cloning of toad CFTR

By sequence comparison of CFTR from different spe-

cies, three primers were generated using xCFTR cDNA [27]

as template. The primers (MWG-Biotech) were designed to

contain restriction endonuclease sites at their 5V-ends, en-
abling us to clone the fragments into a vector for sequenc-

ing. Total RNAwas isolated from belly skin of a toad using

a guanidine thiocyanate-phenol extraction kit from Ad-

vanced Biotechnologies, Ltd. OneStep RT-PCR (Qiagen)

was performed, the PCR products displayed on a 1%

agarose gel and bands were cut out and eluted. The

amplified products was then digested with restriction endo-

nucleases and cloned into the pEGFP-C2 vector (Clontech),

mini-prepped (Qiagen), and sequenced. Alignment of

bbCFTR with other CFTR’s was performed using Vector

NTI (Informax Inc.).

2.5. Composition of solutions and chemicals

The conventional amphibian Ringer’s solution had the

following composition (mM): 118.3 Na+, 1.9 K+, 1.0 Ca2 +,
0.5 mM Mg2 +, 115.8 Cl�, 5 acetate, 2.4 HCO3
�, pH = 8.1

when gassed with atmospheric air. This solution was used

on the serosal side in whole-tissue studies and as bath and

pipette solution in studies of single cells. For eliminating

currents through apical Na+ channels, Na+ in the outside

bathing solution was replaced by K+ in studies of intact

epithelia, and 100 Amol/l amiloride was added to the pipette

solution in single cell studies. In the anion selectivity study,

chloride from the above solution was replaced mole for

mole by bromide, nitrate, iodide and gluconate, respectively.

Amiloride, dibutyryl cyclic AMP, dimethylsulfoxide

(DMSO), furosemide, glibenclamide (Glybenclamide), gen-

istein, isoproterenol, noradrenalin (FArterenol), and DL-

propranolol were from Sigma-Aldrich. Isoproterenol solu-



Fig. 3. The anion selectivity sequence of the receptor-activated chloride conductance. (A) With Cl� in the external perfusate stimulation by 5 Amol/l

isoproterenol in the serosal bath increased the conductance from 180 to 1125 AS/cm2. The activated conductance depended on the anion of the external

perfusate as indicated. The conductance with NO3
� on the outside was taken as the value recorded prior to return to Cl�. With gluconate, return to Cl� resulted

in a transient conductance stimulation (see also B). Wash with agonist-free solution on the serosal side returned the conductance to its initial low value of about

200 AS/cm2. (B) A similar protocol was applied for the study of the transepithelial conductance with noradrenalin in the serosal bath.
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tions were made immediately before use, and glibenclamide

and furosemide solutions were made from stock solutions of

100 and 10 mmol/l DMSO, respectively.
3. Results

3.1. Conductance activation of the intact epithelium by

receptor stimulation

Routinely, the transport activity of the isolated epithelium

was analysed by monitoring the transepithelial potential

difference (Vt) and active sodium current with NaCl–Ring-

er’s solution on both sides. Fig. 1 shows the standard

protocol applied to a preparation with a steady state

Vt =� 38 mV and an active Na+-current, Iscc 40 AA/cm2.

Mean values for 49 isolated epithelia are given in Table 1.

For eliminating the active sodium current, about 1 h after
Fig. 4. Response of the h-adrenergic receptor-activated Cl� conductance to

modulators of the activity of CFTR Cl� channels. Genistein (50 Amol/l)

added to the external perfusion solution resulted in fast stimulation of the

conductance. Glibenclamide added to the serosal bath at concentration of

Amol/l slowly decreased the receptor-activated Cl� conductance.
mounting of the preparation in the perfusion chamber, the

external side was superfused with a KCl–Ringer’s solution,

and at steady state, 5 AM isoproterenol was added to the

serosal bath. Following receptor occupation, the transepi-

thelial conductance increased and attained a quasi-stationary

value in the course of 15–25 min. Application of the agonist

resulted in a significant conductance increase while the

short-circuit current was maintained at a value not signifi-

cantly different from zero (Fig. 1, Table 2). This provides

the evidence that the conductance increase is not caused by

stimulation of functional subepidermal glands, which would

generate a significant inward short-circuit current carried by

an active efflux of Cl� [28,29]. A similar conclusion was

reached in a study with the membrane-permeable dibutyryl

cyclic AMP analogue, which stimulated the conductance of

amiloride-treated preparations while the short-circuit current

remained zero (Isc = 0.1F 0.3 AA/cm2 with 500 AM db-

cyclic AMP [22]). It is also in agreement with a light

microscopic examination of the collagenase-isolated epithe-

lium, showing that the isolation protocol with collagenase

removes the subepidermal glands leaving their ducts closed
 

Fig. 5. Summary of the pharmacology of the h-adrenergic receptor-

activated Cl� conductance. MeanF S.E. are indicated with levels of

significance given for stimulation by isoproterenol, and subsequent

modulation of the conductance by glibenclamide or genistein, respectively.



Table 4

Anion selectivity sequence of the receptor-activated conductance following

stimulation by 50 Amol/l genistein added to the outer solution

Protocol (5 Amol/l isoproterenol + 50 Amol/l genistein)

Gleak

(AS/cm2)

GCl
a

(AS/cm2)

GBr/GCl GNO3
/GCl GI/GCl

MeanF S.E. 351F 69 1255F 347 0.70F 0.09 0.53F 0.14 0.18F 0.05

N 5 5 5 5 5

(conf. Fig. 4 and legend of Table 3).
a This is the quasi-stationary conductance. The peak Cl� conductance

averaged 1605F 342 AS/cm2 (N= 5).

Fig. 6. Recordings from isolated mitochondria-rich cells. (A) With the neck

of the cell positioned in the tip of a low resistance patch clamp electrode

(about 1 MV) and bath connected to ground, the pipette potential, Vp, is a

measure of the transcellular potential difference. The current responding to

a shift of Vp from + 50 to � 100 mV is composed of an instantaneous

ohmic component (Iohmic) and a more slowly developing dynamic

component (ICl) with the latter representing activation of the apical Cl�

conductance [26]. (B) An experiment with a similar protocol but with the

apical membrane of the mitochondria-rich cell exposed to bath. The

activation of ICl was fully reproducible and brief exposure to a Cl�-free

gluconate solution eliminated the non-linear component verifying that it is

carried by a flow of chloride ions from bath to pipette. (C) Apical

membrane facing pipette solution. The steady state ICl is strongly rectifying

illustrating a large flow of chloride ions in the direction from pipette to bath

for Vp < 0 mV (i.e., the physiological range of transepithelial potential

differences). MeanF S.E. of N= 10 cells.
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[30]. Finally, we will show (Table 3) that the activated

conductance is not affected by adding furosemide to the

serosal solution at a concentration which is known to block

subepidermal gland secretion.

Binding of the agonist to the h-adrenergic receptor

appears to be governed by second-order reaction kinetics

as revealed by a sigmoid relationship between the logarithm

of the isoproterenol concentration (log10[iso]) and the rela-

tive conductance activation with a Hill-slope near unity

(Fig. 2). The full curve in this figure is the best fit of Eq.

(1), in which the conductance at a given ligand concentra-

tion is expressed as a fraction of the fully stimulated

conductance, and the baseline conductance recorded prior

to addition of the agonist set to zero:

Fractional stimulation ¼ 1

1þ EC50

½iso�

� �p ð1Þ

Here [iso] is the concentration in mol/l, p the Hill coeffi-

cient, and EC50 the agonist concentration at which half of

the full response is recorded. For seven preparations, we

obtained log10EC50 =� 7.1F 0.2 and p = 1.1F 0.2 (mean

F S.E., N = 7).

3.2. Selectivity of the receptor-activated conductance of the

intact epithelium

The receptor-activated conductance was dependent on

the anion in the external perfusion solution (Fig. 3A).

Serosal application of noradrenalin resulted in a conduc-

tance activation of similar selectivity (Fig. 2B). In some

preparations, the activated conductance passed through a

peak value for partially decaying during the subsequent

period of several minutes. Examples of this type of ‘desen-

sitization’ are given in Figs. 1 and 3B. In other preparations,

a slow monotonous development of the conductance acti-

vation was recorded as illustrated in Fig. 3A. These types of

responses were recorded both with isoproterenol and nor-

adrenalin. With the conductance of the epithelium perfused

on the outside with gluconate–Ringer’s solution taken as

the conductance of the ‘leak’ of the preparation (Gleak), the

relative conductance sequence of the receptor-controlled
pathway (GA/GCl) can be estimated from the following

expression:

GA

GCl

¼ GA
V� Gleak

GCl
V� Gleak

ð2Þ

Here, GClV is the conductance recorded in the presence of Cl�

immediately prior to shift to another external anion (A) and

GAV the conductance recorded during exposure to A. Calcu-

lated in this way, we could take into account that some

preparations exhibited partial ‘desensitization’ as discussed

above. The results are compiled in Table 3, which indicate

similar anion-selectivity sequence with isoproterenol and

noradrenalin, GCl>GBrzGNO3
>GI. Thus, all four anions

tested permeate the receptor-controlled apical chloride chan-

nel. In the majority of experiments, the conductance was

determined by applying a voltage pulse every 20 s across

the epithelium of 2-s duration and 20 mVamplitude (serosal

side grounded, see Fig. 1). In the experiments denoted 3-iso

of Table 3, the pulse polarity was reversed. The results

indicate that the conductance sequence of the four anions

tested is independent of the direction of the transepithelial

voltage step.



Fig. 7. Demonstration of functional h-adrenergic receptors on the basolateral membrane of mitochondria-rich cells. Left hand panel. Brief superfusion of the

mitochondria-rich cell with a Ringer’s solution containing isoproterenol (black bars) resulted in reversible and reproducible transcellular conductance

transcellular conductance activated by the h-adrenergic receptor agonist.

Fig. 8. db-cyclic AMP (250 Amol/l) in bath stimulated the chloride currents

at all pipette potentials (� 100 mVVVpV 50 mV). The ICl/V relationships

were recorded from the same cell before and after the addition of cyclic

AMP to bath. It was assumed that the leakage conductance estimated prior

to cyclic AMP treatment was not affected by the stimulation of the cellular

conductance.
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3.3. Pharmacology of the receptor-activated conductance of

the intact epithelium

Heterologously expressed human CFTR-mediated whole

cell currents are reduced by the antidiabetic sulfonylurea

compound, glibenclamide [31]. In our preparation of an

anuran epithelium, the addition of this inhibitor at a con-

centration of 200 Amol/l in the serosal solution resulted in a

significant depression of the isoproterenol-activated trans-

epithelial conductance (Figs. 4 and 5). The isoflavone

genistein is a potent kinase inhibitor, which was shown to

enhance the cyclic AMP-activated CFTR-mediated Cl�

secretion in a mammalian cell culture [32,33]. The results

given in Figs. 4 and 5 show that 50 Amol/l genistein added

post-isoproterenol stimulated the transepithelial conduc-

tance to a value that is significantly above that of the

receptor-activated conductance. By comparing results listed

in Tables 3 and 4, it can be seen that the anion conductance

sequence of isoproterenol + genistein-stimulated prepara-

tions is similar to that of preparations stimulated by isopro-

terenol only.

3.4. Studies on single mitochondria-rich cells

For investigating the cellular locus of the receptor-con-

trolled Cl� conductance, we extended the analysis to single

cells. The majority of mitochondria-rich cells has a flask-

like or slender cylindrical shape, which is maintained

following isolation while principal cells become spherical

[25]. With low-resistance patch clamp glass electrodes and a

small negative pressure, the ‘neck’ of a mitochondria-rich

cell can be manipulated into the tip of the electrode. In this

configuration, cell currents can be studied by transcellular

voltage clamping [26]. Fig. 6A shows that the voltage clamp

current can be resolved in a linear (ohmic) and a non-linear

(time-dependent) component. In the previous study, the

evidence was presented that the latter is carried by Cl�

[26]. This hypothesis shall be verified below. Accordingly,

the non-linear current is denoted, ICl. In the example shown

in Fig. 6A, a shift of the transcellular electrical potential

difference (Vp) from + 50 to � 100 mV resulted in a

chloride current of ICl =� 2.3 nA. In two experiments, we

were able to position a mitochondria-rich cell with the apical

membrane in the bath. Similar results were obtained with

activation. Right hand panel. Also in cells clamped at � 100 mV was the
these two cells and results from one of the cells are shown in

Fig. 6B. Like in Fig. 6A, the transcellular conductance was

activated at � 100 mV from a holding potential of 50 mV

(signs referring to apical side). For this cell, ICl =� 3.4 nA.

Notably, brief exposure of the apical plasma membrane to a

Cl�-free solution (gluconate substitution, Fig. 6B) revers-

ibly eliminated the non-linear component, which provides

direct evidence that it is carried predominantly by a flux of

Cl� from the apical to the basolateral side of the mitochon-

dria-rich cell. In the present study, at � 100 mV, the Cl�

currents ranged from � 1.2 to � 8.5 nA/cell (ICl =� 4.5F
0.9 nA/cell, meanF S.E., N = 10, Vp =� 100 mV), which is

within the range of currents reported in our previous study

of 31 mitochondria-rich cells [26]. The voltage dependence

of ICl obtained in the present study of cells from animals

kept in distilled water (Section 2) are summarized in Fig.

6C. The chloride currents exhibit a strongly outwardly

rectifying ICl/V relationship with vanishing currents for

Vz 25 mV. A similar relationship characterizes the Cl�

currents of the intact epithelium (recently reviewed in Ref.



Fig. 9. (A) Examples of time course of glibenclamide-induced reversible conductance inhibition of single mitochondria-rich cells. The cells were exposed to 10

Amol/l forskolin throughout, and during the period indicated by the horizontal bar, 200 Amol/l glibenclamide was present in the forskolin containing perfusate.

The two experiments shown were performed with the cell clamped at Vp = 50 mV and � 100 mV, respectively. The recording shown in the upper panel

indicates conductance activation prior to glibenclamide inhibition (arrow). (B) Glibenclamide caused a conductance decrease of, DGGlib =� 9.6F 1.6 nS

(n= 11, N = 6 cells). Following superfusion with glibenclamide-free Ringer’s solution, the conductance returned to a value that was 1.4F 1.0 nS above the

conductance recorded prior to adding glibenclamide.

Fig. 10. bbCFTR expression in toad skin. Total RNA from toad skin was

reverse-transcribed, and the resulting cDNA was PCR-amplified using

primers spanning Xenopus CFTR (see Section 2). The three bands

correspond to the 5V, middle, and 3V end of bbCFTR, respectively.
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[24]) and of single cells isolated from toads in ion balance

[26].

With Cl� currents deactivated at Vp= + 50 mV, isoproter-

enol stimulated the transcellular conductance (Fig. 7, left

hand panel). A similar response was seen in cells clamped at

� 100 mV (Fig. 7, right hand panel). In one cell, the

response to different agonist concentrations, 10, 50, and

100 nM, was studied. With these three different concen-

trations, quantitatively similar effects were obtained,

DGIso = 7.2, 7.7, and 7.0 nS/cell, respectively (Vp= + 50

mV). This indicates that 50 nM isoproterenol represents a

saturating concentration. In 16 experiments with five cells,

the isoproterenol-induced conductance, DGIso, ranged from

7 to 29 nS/cell with an average of 11.9F 1.6 nS/cell

(meanF S.E., n = 16). Addition of the membrane-permeable

form of cyclic AMP to the bathing solution also stimulated

the chloride currents at all potentials. This is shown in Fig.

8 depicting ICl/V relationships for a cell before and after

cyclic AMP treatment.

The cyclic AMP-activated currents were inhibited by gli-

benclamide at both negative and positive pipette potentials.

As shown in Fig. 9A, in cells pretreated with 10 Amol/l

forskolin, brief exposure of 200 Amol/l glibenclamide re-

versibly reduced the transcellular conductance. In some

cells, a small conductance stimulation preceded the conduc-

tance inhibition (arrow Fig. 9A). Results of 11 experiments

with six cells are summarized in Fig. 9B, showing that, on

average, glibenclamide reduced the transcellular conduc-

tance by 10 nS, which was recovered following wash with

glibenclamide-free saline. Thus, glibenclamide is a revers-

ible inhibitor of the targeted ion channel.

3.5. Toad skin CFTR

By RT-PCR we generated full-length cDNA of bbCFTR

by homology cloning using three pairs of sequence-specific
primers each spanning about 1500 bp of the cloned xCFTR

cDNA. The three bands of the reverse-transcribed and

amplified messages (Fig. 10) were ligated into a vector for

manual sequencing. The derived amino acid sequence is

given in Fig. 11. The bbCFTR encodes a 1466 amino acid

protein with homology at protein level of 86% with xCFTR

and 89% of hCFTR, respectively. With residue numbers

referring to the bbCFTR protein, both the R-domain (588–

864) and the NBF1 (434–587) and NBF2 (1227–1394)

domains are well-conserved. The predicted transmembrane

segments (underscored in Fig. 11) indicate conserved amino
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Fig. 11. bbCFTR homology alignment. Alignment of the amino acid sequences of B. bufo CFTR (bb), human CFTR (hCFTR) and Xenopus (xCFTR).

Alignment was performed using Vector NTI (blosum62mt2 score matrix). Identical amino acids (aa) are with a red font colour. Non-similar aa are with a black

font colour. Conservative aa are boxed in turquoise with blue font colour. Block of similar aa are boxed in green with a black font colour. Weakly similar aa are

with dark-green font colour. Putative transmembrane regions are underlined. Boxes drawn with full line indicate Walker A motifs, the box drawn with dashed

line indicates the Walker B motif, and the box drawn with blue edge indicates the ABC transporter signature. The residue numbers given above the sequences

refer to the consensus sequence. The residue number given in parenthesis prior to each sequence line is the number of the first residue of the line.
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acids in regions assumed to form the pore of the channel

protein (see Section 4.1).
4. Discussion

4.1. Expression of functional CFTR in the skin epithelium

In a previous study, we obtained the evidence that

isoproterenol acts via a forskolin-activated adenylate cyclase

and cyclic AMP [22]. For probing the molecular identity of

the receptor-activated cyclic AMP-dependent conductance,

in the present study of the intact isolated epithelium, we

applied three different experimental protocols.
Firstly, the selectivity study (Fig. 3, Table 3) indicated

that the population of channels, which is activated by

receptor occupation, exhibits an anion conductance se-

quence comparable to the cloned human CFTR expressed

in Xenopus oocytes, which conducts chloride, bromide, and

iodide as well as nitrate in the following order of efficiency,

GCl>GBrzGNO3
>GI [34–37]. Two cell line studies reported

a bromide conductance of human CFTR that is similar to

that of chloride [38,39], and in one study, the nitrate

conductance was similar to chloride [38]. Thus, there is an

unexplained quantitative variation of this feature of the

CFTR channel that may be ascribed to different experimen-

tal protocols. There is, however, unanimous agreement

among all of the reported results, including those of our
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own study, that the three halide ions as well as nitrate

conducts significant currents through the cyclic AMP-de-

pendent population of channels. Our results agree with those

of Nagel and Van Driessche [40], who studied the power

density spectrum of forskolin-activated current fluctuations

in the skin of B. viridis. They concluded that the population

of forskolin-activated channels exhibits a voltage-indepen-

dent ratio of the open/close probability, and conducts

chloride as well as nitrate.

Secondly, we investigated the pharmacology of the

receptor-activated conductance by using known CFTR

modulators. Chloride conductance inhibition by sulfonylur-

eas is generally taken as an indication of CFTR channel-

mediated membrane currents [41]. In a concentration-de-

pendent manner, this reversible inhibitor decreases the open

state probability of the cloned human CFTR channel when

studied in a cell-free system [42]. The open state probability

of native anuran CFTR residing in the apical membrane of

the subepidermal glands is also reversibly depressed by

application of glibenclamide on the cytosolic side of inside–

out patches [21]. The finding that glibenclamide significant-

ly reduces the receptor-activated Cl� conductance of the

gland-free preparation (Figs. 4 and 5) provides compelling

evidence for functional expression of anuran CFTR in the

absorbing epidermal epithelium. The kinase inhibitor gen-

istein enhanced the isoproterenol-activated conductance

(Figs. 4 and 5). This is compatible with a modulator, which

acts by increasing the open probability of CFTR channels in

the plasma membrane. The molecular mechanism of inter-

action of genistein with CFTR is still subject to discussion

[38]. Recent evidence suggests that this isoflavone com-

pound may enhance the single channel open state probabil-

ity of human CFTR by binding at NBF2 [43]. The present

finding that the genistein-activated conductance has a se-

lectivity sequence similar to that of CFTR (Table 4) pro-

vides additional evidence for functional expression of CFTR

in the apical plasma membrane of the toad skin epithelium.

Our third approach was to apply a molecular biological

method for identifying the isoproterenol activated anion

channel. Using RT-PCR technique, we identified the mes-

sage of the toad CFTR gene in the skin (Fig. 10). The

primary structure of the protein derived from the cloned

cDNA showed a high degree of identity with human CFTR

and Xenopus CFTR. The functional groups involved in

regulation of the opening of the channel, NBF1, NBF2 and

the R-domain [1], are all well-conserved. Of special note, the

predicted residues of the putative pore region of the human

channel protein, which have been hypothesized to confer the

discrimination between anions, e.g., R334, F337, T338, and

S341 [34,44–47], are also conserved in bbCFTR (R330,

F333, T334, and S337, respectively, Fig. 11), which is

compatible with our selectivity analysis above (Tables 3

and 4). Another residue in this region that has been studied

by point mutation is K335 of hCFTR, corresponding to R331

of bbCFTR (Fig. 11). Mutation of the basic lysine at this

position of hCFTR expressed in HeLa cells to the acidic
residue, glutamic acid, resulted in a sequence selectivity shift

from GClfGBr>GI>GF (wild-type) to GBrfGI>GCI>GF

(K335E) [38]. Our analysis of the cyclic AMP-activated

apical conductance of the toad skin epithelium would sug-

gest that replacement at this position by natural mutation of

lysine by another basic residue, arginine (R331 of Fig. 11),

does not have a similar pronounced effect on the halide

conductance selectivity (Tables 3 and 4).

4.2. Expression of CFTR in the apical membrane of

mitochondria-rich cells

In a previous study with double-barreled Cl�-selective

microelectrodes, we showed that isoproterenol, as well as

exogenously applied cyclic AMP, evoke a Cl� conductance,

which is not located in the principal cells of the epithelium

[22]. With this technique applied to another heterocellular

epithelium, the collecting duct of rat kidney, Schlatter et al.

[48] arrived at a similar conclusion. The studies presented

here of single isolated mitochondria-rich cells provide the

evidence that the targeted CFTR Cl� channels are in this

cell type. We showed that mitochondria-rich cells express

functional h-adrenergic receptors on their basolateral mem-

brane (Fig. 7). Similar to the intact epithelium [22,24],

isoproterenol stimulated the current through single cells at

both positive and negative transcellular potential differences

(Fig. 7). With a receptor-activated conductance of about 12

nS/cell (Section 3.4) and f 60,000 mitochondria-rich cells/

cm2 [49] our single cell recordings account for a tissue

conductance of f 700 AS/cm2. This number is within the

range of receptor-activated GCl of intact epithelia (600–900

AS/cm2, Table 3). Furthermore, the cyclic AMP-activated

transcellular conductance was inhibited by glibenclamide

(Fig. 9), similar to the chloride conductance of the intact

epithelium (Figs. 4 and 5). The inhibition was reversible like

the glibenclamide inhibition of the native anuran CFTR Cl�

channel in a cell-free system [20].

Following isolation, the cells became more sensitive to

isoproterenol (Sections 3.1 and 3.4). We have no explana-

tion for this. One reason might be the delayed exposure to

isoproterenol of mitochondria-rich cells in situ. As the

ligand would have to diffuse from the serosal bath through

the unstirred layer on the serosal side and the labyrinth of

intercellular spaces of three to four layers of principal cells,

targeted receptors may desensitize before concentration

equilibration is reached. Another explanation may be that

the exposure of propranolol for several hours (Section 2)

increased their sensitivity to the ligand.

In a patch clamp study, our group identified a f 7 pS

CFTR-like Cl� channel in cell-attached and inside–out

apical membrane patches of mitochondria-rich cells [50].

The frequency of observing this channel almost doubled

after adding forskolin to the cell preparation. Furthermore,

in an immuno-histochemical study with monoclonal anti-

bodies raised against human CFTR, it was shown that

epitopes of the highly conserved regions of the R-domain
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and C-terminus are expressed exclusively in mitochondria-

rich cells [23,24].

In conclusion, our studies show that the toad’s CFTR

gene codes for a Cl� channel in the apical membrane of the

mitochondria-rich cells of the heterocellular epithelium.
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