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Recombinant interleukin-I (rIL-I) is known to inhibit glucose-induced insulin secretion by islets of Langerhans, a novel 

target tissue of cytokine. We have investigated whether rIL-I pretreatment affects biochemical mechanisms known to 
be involved in the regulation of Ca 2’ homeostasis during glucose-induced insulin secretion. Glucose-induced Ca2+ uptake 
by intact islets through the plasma membrane was dramatically inhibited (96%) by rIL-I (2 nM). rIL-1, however, did 
not affect Ca2+ uptake by, or Ins I ,4,5-P,-induced Ca *+ efflux from, the endoplasmic reticulum in digitonin-permeabilized 
islets, although glucose-induced accumulation of inositol trisphosphates was inhibited (38%). These results suggest that 

perturbation of intracellular Ca 2+ homeostasis in islets is involved in inhibition of insulin secretion by rIL- I. 

Interleukin- I; CaZ+ uptake; Glucose; Inositol phosphate; (Pancreatic islet) 

1. INTRODUCTION 

The endocrine pancreas has recently been 
recognized to be a target tissue for interleukin-1 
(IL-l) [l-5]. Recombinant IL-l (rIL-1) exerts po- 
tent effects on glucose-induced insulin secretion by 
the @-cells of islets, the direction of which is deter- 
mined by the concentration of rIL-1 and the dura- 
tion of exposure [5]. Incubation of islets for 
several days with rIL-1 is believed to result in &cell 
death [6]. Nerup and co-workers [6] have therefore 
proposed that rIL-l-mediated &cell destruction 
may be an important pathogenic event in the 
development of insulin-dependent diabetes 
mellitus. The biochemical mechanisms underlying 
the cytotoxic effects of rIL-1 are unknown. 
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Moreover, it is difficult to assess the events involv- 
ed in ,&cell destruction once cytotoxicity has pro- 
gressed to an irreversible stage. We have therefore 
begun to examine the biochemical actions of rIL-1 
on P-cells at a time when suppression of insulin 
secretion is observed but before cytotoxicity has 
developed. An incubation period of 18 h was 
selected because at that time inhibition of glucose- 
induced insulin secretion is reversible upon 
removal of rIL-1, and the rIL-l-treated islets 
display no signs of cytotoxicity [3]. 

This experimental design has been employed to 
investigate the effects of rIL-1 on the biochemical 
mechanisms controlling Ca2+ homeostasis in islets 
[7-91. 

2. MATERIALS AND METHODS 

2.1. Islet isolation and culture 
Islets of Langerhans were isolated from 8-15 rats per experi- 

ment by collagenase digestion, followed by separation on a 
discontinuous Ficoll gradient [lo]. Isolated islets were cultured 
under an atmosphere of 95% sir/5% CO2 for 18 h at 37°C in 
2.5 ml complete tissue culture medium (CMRL-1066 containing 
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5 mM D-glucose, 1% L-glutamine, 10% heat-inactivated fetal 
bovine serum, 0.5% penicillin and 0.5% streptomycin) sup- 
plemented with 2 nM rIL-1 (a gift from Dr P.T. Lomedico, 
Hoffman LaRoche, Inc., Nutley, NJ) or the vehicle [3]. Islets 
were then washed extensively in fresh complete tissue culture 
medium prior to use. Protein content of rIL-l-treated islets was 
identical to control islets [0.87 f 0.04 (n = 34) yg protein/islet 
for control, 0.94 + 0.05 (n = 35) fig protein/islet for 
rIL-l-treated islets]. 

2.2. Cd’ uptake and Cd’ efflux by intact islets 
Ca*+ uptake by intact islets was assessed by measuring the 

%a’+ content of islets in a static incubation design (30 
islets/tube) using a dual-isotope technique with [3H]sucrose as 
the extracellular marker as described [11,12]. rlL-l-pretreated 
(2 nM for 18 h) and control islets were preincubated for 30 min 
at 37°C in 0.1 ml Hepes/Krebs buffer (25 mM Hepes, 115 mM 
NaCI, 5 mM KCI, 24 mM NaHCOr, 1 mM MgClz, 2.5 mM 
CaClz, pH 7.4) supplemented with 3 mM glucose and then in- 
cubated for 2, 5, and 60 min in 0.1 ml fresh Hepes/Krebs buf- 
fer containing %a*+ (2.5 mM, 12 mCi/mmol final specific 
activity) and [“HIsucrose (5 mM, 6 mCi/mmol final specific ac- 
tivity) and 3 or 28 mM glucose. Ca*+ efflux experiments were 
performed on rIL-l-pretreated and control islets labeled over- 
night with 45Ca2+ to isotopic equilibrium [13]. Radiolabeled 
islets were placed in a perifusion apparatus (450 islets/chamber) 
and perifused (1 ml/min) at 37°C with a modified Hepes/Krebs 
buffer supplemented with 3 or 28 mM glucose and which con- 
tained no added Ca*’ (final Ca*+ concentration = 0.003 mM) 
as in [12,13]. 

2.3. Inositol phosphate accumulation 
Isolated islets were labeled to isotopic equilibrium with 

[“Hlinositol. In brief, islets were incubated for 135 min at 37°C 
with 400 &i [‘Hlinositol in 0.1 ml Hepes/Krebs buffer sup- 
plemented with 28 mM glucose [IO, 141. Radiolabeled islets were 
then divided into two groups, each group being incubated for 
another 18 h at 37°C in 2.5 ml complete tissue culture medium 
supplemented with 50 ,uCi ]‘H]inositol and 2 nM rIL-1 or vehi- 
cle. Radiolabeled islets were washed 3 times in Hepes/Krebs 
buffer to remove unincorporated [3H]inositol, placed in silan- 
ized vials (400 islets/vial), preincubated for 30 min in 
Hepes/Krebs buffer with 3 mM glucose, and then incubated for 
another 30 min at 37°C in fresh Hepes/Krebs buffer with 3 or 
28 mM glucose. Inositol phosphates were extracted and 
separated by anion-exchange HPLC as in [10,14]. 

2.4. Caz’ fluxes in the endoplasmic reticulum of digitonin- 
permeabilized islets 

rIL-1 pretreated (2 nM for 18 h) and control islets were 
permeabilized with digitonin as reported in [ 121. Permeabilized 
islets (30/tube) were then incubated for 30 min in lOOr of 
Pipes buffer mimicking intracellular conditions (100 mM Pipes, 
100 mM KCl, 7 mM MgC12, + 5 mM ATP, 2.25 fig/ml 
ruthenium red, pH 7.0). The free Ca*+ concentration of this 
buffer was set at 0.2 PM by including EGTA at a concentration 
of 0.11 mM. The 45Ca2+ steady-state (30 min) content, the ef- 
flux of 45Ca2+ (10 min) induced by Ins 1,4,5-Pr (10pM). and 
the efflux of ?a*+ induced by A23187 (2 FM) from the en- 
doplasmic reticulum of digitonin-permeabilized islets were 
measured as in [ 121. 
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3. RESULTS 

3.1. Effect of rZL-Z on glucose-induced Cd’ 
uptake and Ca2’ effrux by intact islets 

Glucose-induced Ca2+ uptake by intact islets 
from the extracellular space was dramatically 
decreased in islets incubated for 18 h with 2 nM 
rIL-1. As shown in table 1, Ca2+ uptake in 
rIL-l-pretreated islets was inhibited by 69, 70 and 
96% at 2, 5 and 60 min incubation 0, < 0.01, p < 
0.05, p < 0.001, respectively) following incubation 
with 28 mM glucose. rIL-1 pretreatment (2 nM for 
18 h) had no effect on 45Ca2+ accumulation of 
islets incubated with a basal concentration of 
glucose (3 mM). 

In order to assess whether rIL-1 was exerting any 
effects on Ca 2+ efflux from islets, a perifusion ex- 
perimental design was employed. In the absence of 
extracellular Ca2+, glucose is known to reduce 
Ca2+ efflux from perifused control islets loaded to 
isotopic equilibrium with 45Ca2+ [a]. It was ob- 
served that rIL-1 pretreatment did not affect in- 
hibition of Ca2+ efflux by glucose in such a 
perifusion system in comparison with control islets 
indicating that the efflux of Ca2+ from intact islets 
was not affected by pretreatment with rIL-1 (not 
shown). 

Table 1 

Effect of rIL-1 pretreatment (18 h) on glucose-induced Ca*+ 
uptake by intact islets 

Incubation Glucose-induced Ca*+ uptake 
time (min) (pmol/islet) 

Control 2 nM rIL-1 

2 1.18 f 0.20 0.37 * 0.19b 
5 1.16 it 0.24 0.34 ? 0.27a 

60 3.36 it 0.70 0.14 f 0.64’ 

a p < 0.05 vs control 
b p < 0.01 vs control 
’ p < 0.001 vs control 

Glucose-induced Ca*+ uptake is calculated as the difference 
between the 45CaZ+ content obtained at 28 mM glucose minus 
that at 3 mM glucose for each experimental condition as 
described in section 2. Control Ca*+ content at 3 mM glucose 
was 0.8 i 0.2, 1.2 + 0.3 and 7.7 + 0.6 pmol/islet at 2, 5 and 
60 min. respectively. rIL-1 pretreatment had no effect on the 
Ca*+ content at 3 mM glucose (0.8 f 0.3, 1.2 + 0.3 and 7.3 f 
0.7 pmol/islet at 2, 5 and 60 min, respectively). Results are 
shown as means i SE of 24-38 observations per condition 

from 4-5 experiments 



Volume 248, number 1,2 FEBS LETTERS May 1989 

3.2. Effect of rIL-I on glucose-induced 
accumulation of inositol phosphates 

Islets were labeled to isotopic equilibrium (over- 
night incubation) with [3H]inositol in the presence 
or absence of 2 nM rIL-1. [3H]Inositol-prelabeled 
islets were then incubated for 30 min with 3 or 
28 mM glucose under conditions identical to those 
reported for insulin secretion studies [3]. In control 
islets, 28 mM glucose resulted in a significant in- 
crease (vs 3 mM glucose) in the accumulation of 
Ins Pi (24.9 + lO.l%, p < 0.05), Ins PZ (45.0 f 
11.9%, p < O.OOl), Ins 1,3,4-P3 (241.7 + 51.1%, 
p c O.OOl), Ins 1,4,5-P3 (64.5 rf: 19.8%,p c 0.02), 
and Ins 1,3,4,5-P4 (49.7 + 15.2%,p < 0.005) (table 
2). In rIL-l-pretreated islets, basal (3 mM glucose) 
accumulation of inositol phosphates was not 
significantly different from that of control islets. 
With rIL-l-pretreated islets however, accumula- 

Table 2 

Effect of rIL-1 (2 mM) pretreatment (18 h) on glucose-induced 
accumulation of inositol phosphates 

Incubation 
conditions 

[3H]Inositol phosphate accumulation 
(cpm) 

Ins 1,4,5-P3 Ins 1,3,4,5-P4 Ins 1,3,4-Pa 

3 mM glucose 129 f 19 201 f 17 68 + 4 
28 mM glucose 212 f 26 301 f 31 232 f 35 
3 mM glucose + 

2 nM rIL-1 
pretreatment 143 + 22 161 + 14 65 + 6 

28 mM glucose + 
2 nM rIL-1 pre- 
treatment 169 k 19 199 + 21 144 * 21 

% inhibition of 
28 mM glucose- 
induced accumula- 
tion due to rIL-1 20 f 9 34 f 7s 38 f 9a 

a p c 0.01 vs control 
b p < 0.05 vs control 

Isolated islets were prelabeled with [3H]inositol and incubated 
for 18 h in the presence or absence of 2 nM rIL-1 as described 
in section 2. Radiolabeled islets (300-350/tube) were 
preincubated for 30 min with 3 mM glucose and then incubated 
for another 30 min with 3 or 28 mM glucose. Inositol 
phosphates were extracted and analyzed by anion-exchange 
HPLC [10,14]. rIL-1 did not affect the incorporation of 
[‘Hlinositol into phospholipids and inositol phosphates 
(802554 f 52764 cpm [‘Hlinositol incorporated in controls vs 
819635 + 77113 cpm for rIL-l-treated islets). Results are 
shown as means + SE of 5 separate experiments, each involving 

duplicate determinations 

tion of inositol phosphates induced by 28 mM 
glucose was inhibited by 22% for Ins Pz (p < 0.02), 
38% for Ins 1,3,4-P3 @ < O.Ol), 20% for Ins 
1,4,5-P3 and 34% for Ins 1,3,4,5-P4 @ < 0.005) 
(table 2). rIL-1 pretreatment had no effect on the 
inositol phospholipid content of islets (not shown). 

3.3. Effect of rIL-I on Cd’ fluxes in the 
endoplasmic reticulum of permeabilized islets 

Islets were pretreated for 18 h with 2 nM rIL-1 
or with vehicle (control) and then permeabilized 
with digitonin to measure Ca2+ handling by the en- 
doplasmic reticulum in situ. rIL-1 had no effect on 
the ATP-dependent Ca2+ steady-state content of 
the endoplasmic reticulum (0.38 f 0.02 pmol/islet 
in control vs 0.39 f 0.02 pmol/islet in 
rIL-l-pretreated islets; n = 22-24). Ins 1,4,5-P3 
(10 FM) mobilized 45Ca2” equally well from the en- 
doplasmic reticulum of control (0.17 + 0.03 pmol 
Ca2+/islet) and from rIL-l-pretreated (0.21 + 
0.03 pmol Ca2+/islet) islets. Similarly, the Ca2+ 
ionophore A23187 mobilized the same amount of 
Ca2+ from the endoplasmic reticulum of control 
islets (0.19 + 0.02 pmol/islet) and from 
rIL-l-pretreated islets (0.18 +- 0.03 pmol/islet). 
These observations indicate that rIL-1 pretreat- 
ment for 18 h does not influence the ability of the 
endoplasmic reticulum to accumulate Ca2+ in the 
presence of ATP or to release Ca2+ in response to 
Ins 1,4,5-P3 or the Ca2+ ionophore A23187. 

4. DISCUSSION 

Glucose-induced Ca2+ uptake by the &cells was 
profoundly inhibited following rIL-1 pretreatment 
for 18 h. Basal Ca2+ uptake (in the presence of 
3 mM glucose) was not affected. The lack of effect 
under basal conditions suggests that the integrity 
of the P-cell plasma membrane remained intact. 
Glucose stimulation of the normal &cell results in 
plasma membrane depolarization, which is be- 
lieved to be mediated by ATP-sensitive, voltage- 
independent K+ channels [15]. Plasma membrane 
depolarization opens voltage-dependent Ca2+ 
channels which leads to an influx of extracellular 
Ca2+ [S]. It is currently believed that glucose- 
induced Ca2+ uptake, as measured in this study, 
represents the influx of Ca2+ through the voltage- 
dependent Ca2+ channels [8]. Such uptake is in- 
hibited by Ca2+ channel blockers, and voltage- 
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dependent inward Ca’+ currents have been directly 
recorded in islet cells (review 181). Inhibition of 
Ca2+ uptake by rIL-1 may be due to a decrease in 
ATP concentrations which would prevent mem- 
brane depolarization mediated by ATP-induced 
closure of the K+ channels. rIL-1 has been shown 
to inhibit glucose oxidation in islets [4]. We are 
currently assessing ATP levels in rIL-l-treated 
islets. 

The effect of rIL-I on Ca2+ entry through the 
plasma membrane is apparently selective because 
rIL-1 did not influence Ca*+ handling by the en- 
doplasmic reticulum. The participation of the en- 
doplasmic reticulum in the control of islet cytosolic 
Ca2+ concentration is thought to be essential in 
glucose-induced insulin secretion [9]. rIL-1 in- 
fluenced neither Ca2+ uptake by the endoplasmic 
reticulum nor Ca2+ efflux induced by the second 
messenger Ins 1,4,5-Ps. These observations in- 
dicate that the endoplasmic reticulum itself func- 
tions normally after 18 h of exposure to rIL-1 even 
though glucose-stimulated inositol trisphosphate 
accumulation is perturbed. 

In conclusion, we have shown that rIL-1 inhibits 
glucose-stimulated voltage-dependent entry of 
Ca2+ which suggests that perturbation of in- 
tracellular Ca2+ homeostasis may be involved in 
rIL-1 inhibition of insulin secretion. 
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