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a b s t r a c t

In this paper, we consider the problem of scheduling n deteriorating jobswith release dates
on a single (batching) machine. Each job’s processing time is a simple linear function of its
starting time. The objective is to minimize the maximum lateness. When the machine can
process only one job at a time, we first show that the problem is NP-hard even if there
are only two distinct release dates. Then we present a 2-approximation algorithm for the
case where all jobs have negative due dates. Furthermore, we prove that the earliest due
date (EDD) rule provides an optimal solution to the case where all jobs have agreeable
release dates, due dates and deteriorating rates, and that the EDD rule gives theworst order
for the general case, respectively. When the machine can process up to b(b = ∞) jobs
simultaneously as a batch, i.e., the unbounded parallel-batch scheduling model, we show
that the problem is NP-hard and present one property of the optimal schedule for the case
where all jobs have agreeable release dates and due dates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Traditional scheduling problems assume that the processing times of jobs are constant. However, in the real world,
the processing times may change. Examples can be found in steel production and fire fighting, amongst others, where
any delay in processing a task may increase its completion time. The reader is referred to Kunnathur and Gupta [13] and
Sundararaghavan and Kunnathur [24] for other examples. This scheduling has been extensively studied in the last decade
(see [19,20,14,4,6,11,12], . . .).

Brucker et al. [1] defined that a parallel-batch machine is a machine that can process up to b jobs simultaneously as a
batch; the processing timeof the batch is equal to the longest timeof any job in the batch. All jobs contained in the samebatch
start and complete at the same time. Once processing of a batch is initiated, it cannot be interrupted and other jobs cannot
be introduced into the batch until processing is completed. Parallel-batch scheduling is motivated by burn-in operations in
semiconductormanufacturing, and it has two distinctmodels: the boundedmodel, inwhich the bound b for each batch size is
effective, i.e., b < n, and the unbounded model, in which there is effectively no limit on the size of batch, i.e., b = ∞ or b ≥ n,
where n denotes the number of jobs and b denotes the batch capacity. This processing system has been extensively studied
in the last decade (see [15,25,22,26,16,17,7], amongst others). All the above-mentioned results concerning parallel-batch
scheduling assume that the processing times are constant.

But job deterioration andparallel-batch processing coexist inmany realistic scheduling situations. Examples can be found
in steel production. Qi et al. [23] considered the unbounded parallel-batch scheduling problem with deteriorating jobs on a
single machine. Li et al. [18] and Miao et al. [21] also considered the parallel-batch scheduling of deteriorating jobs.
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In this paper,we study the scheduling of deteriorating jobswith release dates on a singlemachine and on a single batching
machine. The objective is to minimize the maximum lateness.

1.1. Problem description

The problem considered in this paper can be formally described as follows. We are given a set of independent and non-
preemptively deteriorating jobs J = {J1, . . . , Jn} that are to be scheduled on a single machine or an unbounded parallel-
batch machine. Each job Jj (j = 1, . . . , n) has a release date rj, a deteriorating rate αj > 0 and a due date dj. We assume, as
Mosheiov [19], that the actual processing time of job Jj is pj = αjt , where t ≥ rj is the starting time of Jj. Here, we assume
min{rj|j = 1, . . . , n} = t0 > 0 (when t0 = 0, the completion time of each job will be 0). The objective is to minimize the
maximum lateness Lmax = max{Lj|j = 1, . . . , n} = max{Cj − dj|j = 1, . . . , n}, where Cj denotes the completion time of
job Jj. For a given batch B, we denote its deteriorating rate and release date by α(B) and r(B), respectively, and C(B) denotes
the completion time. Then α(B) = max{αj|Jj ∈ B}, r(B) = max{rj|Jj ∈ B}, and C(B) = (1 + α(B))S(B), where S(B) is the
starting time of batch B. Using the 3-field notation of Graham et al. [9], we denote our problems as 1|rj, pj = αjt|Lmax and
1|p − batch, rj, pj = αjt, b = ∞|Lmax.

1.2. Relevant previous work

Mosheiov [19] proved that the earliest due date (EDD) rule provides the optimal schedule for problem 1|pj = αjt|Lmax,
and Bachman and Janiak [2] proved that the EDD rule also provides the optimal schedule for problem 1|pj = aj + kajt|Lmax.
Bachman and Janiak [3] showed that the problem 1|pj = aj + αjt|Lmax is NP-hard, and Hsu and Lin [10] designed a
branch-and-bound algorithm for this problem. Cheng and Ding [5] designed an O(n6logn) algorithm for the special problem
1|pj = aj + αt|Lmax. Note that in these papers the jobs have identical release dates. Apart from these five publications, we
do not know about any others in which this scheduling model for the minimizing maximum lateness of deteriorating jobs
has been considered.

For the unbounded parallel-batch scheduling of minimizing the maximum lateness, Brucker et al. [1] designed an O(n2)
dynamic programming algorithm for problem 1|p − batch, b = ∞|Lmax; Cheng and Ding [6] proved that the parallel-batch
problem 1|p− batch, rj, b = ∞|Lmax is NP-hard, and they also considered some special cases. Note that the processing time
of each job is fixed in their problems.

Qi et al. [23] gave an O(n3) dynamic programming algorithm for 1|p− batch, rj = t0, pj = αjt, b = ∞|Lmax ≤ 0 in which
the jobs have identical release dates. Until now, this is the only paper considering the minimization problem of maximum
lateness for deteriorating jobs on a parallel-batch machine.

To the best of our knowledge, minimization problems of maximum lateness for deteriorating jobs with release dates on
a single machine and on a single batching machine have never been discussed.

1.3. Organization of the paper

In Section 2, we prove that the problem 1|rj, pj = αjt|Lmax is NP-hard even if there are only two distinct release dates, and
give a 2-approximation algorithm for the case where all jobs have negative due dates, and we also discuss the EDD rule. In
Section 3, we prove that the parallel-batch scheduling problem 1|p−batch, rj, pj = αjt, b = ∞|Lmax is NP-hard and present
one property of the optimal schedule for one special case. We conclude the paper and suggest some interesting topics for
future research in Section 4.

2. Problem 1|rj, pj = αjt|Lmax

2.1. NP-hardness proof

In this subsection, the first result derived is presented. The following lemma will be used in what follows.

Lemma 2.1.1 ([19]). For the single machine scheduling problem 1|pj = αjt|Cmax, if π = {J[1], J[2], . . . , J[n]}, the starting time of
job J[1] is t0; then the completion time of job Jj and the makespan are Cj = t0

j
i=1(1 + α[i]) and Cmax(π) = t0

n
j=1(1 + α[j]),

respectively.

Theorem 2.1.2. The problem 1|rj, pj = αjt|Lmax is NP-hard even if there are only two distinct release dates.

Proof. We use a reduction from the Subset-Product Problem, which is NP-hard (see [8]).
An instance I of the Subset-Product Problem is formulated as follows. Given positive integers x1, . . . , xm such thatm

j=1 xj = A2, does there exist a subset N1 of set N = {1, . . . ,m} such that


j∈N1
xj = A?

In the above instance, we can omit the element j ∈ N with xj = 1, because it will not affect the product of any subset.
Therefore, without loss of generality, we can assume that xj ≥ 2 for every j ∈ N .
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For any given instance I of the Subset-Product Problem, we construct a corresponding instance II of our problem as
follows.

• There are in total n = m + 1 jobs.
• The deteriorating rates, release dates and due dates of jobs are defined by rj = 1, αj = xj −1 and dj = A3 for 1 ≤ j ≤ m,

and rm+1 = A, αm+1 = A − 1 and dm+1 = A2.
• The threshold value is defined by G = 0.
It is clear that the reduction can be done in polynomial time, and it is easy to verify that αj > 0 for j = 1, . . . ,m + 1.
Now we prove that instance I has a solution if and only if instance II has a schedule π with Lmax(π) ≤ G.
To prove the necessity, suppose that instance I has a solution N1 ⊆ N such that


j∈N1

xj = A.
For convenience, denote by JN1 (JN\N1) the set of jobs corresponding to the elements of set N1 (N\N1). As a result, a

schedule π = {JN1 , Jm+1, JN\N1} satisfying the following conditions is obtained.
• Jobs in JN1 are scheduled from time t = 1 and completed at time A since rj = 1 for 1 ≤ j ≤ m and


j∈N1

(1 +

αj) =


j∈N1
xj = A. We denote the last job in JN1 as Jk. Then, from Lemma 2.1.1, the completion time of job Jk is

Ck = 1 ·


j∈N1
(1 + αj) =


j∈N1

xj = A.
• Schedule job Jm+1 from time t = A; this is feasible since rm+1 = A and the completion time of the last job in JN1 is Ck = A.
Therefore, Cm+1 = A · (1 + αm+1) = A2.
• Schedule jobs in JN\N1 from time t = Cm+1 = A2 without idle time on the machine. We denote the last job in JN\N1 as Jk′ .
Therefore, the completion time is Ck′ = Cm+1 ·


j∈N\N1

(1 + αj) = A2
·


j∈N\N1
xj = A3.

Note that dj = A3 (1 ≤ j ≤ m) and dm+1 = A2. Thus,

Lmax = max
1≤j≤m+1

{Cj − dj} = max{A3
− A3, A2

− A2
} = 0 = G.

Hence, instance II has a solution.
To prove the sufficiency, suppose that there is a schedule π satisfying Lmax(π) ≤ G = 0. We are ready to prove that

instance I has a solution.
First, job Jm+1 must start exactly at its release date rm+1 = A and finish at A2 in schedule π , since Lmax(π) ≤ G = 0.

Second, there are no idle intervals from time t = 1 to time t = A and from time t = A2 to time t = A3. Otherwise, there
must exist at least one job Jj with Cj > A3

= dj since
m

j=1(1 + αj) =
m

j=1 xj = A2, a contradiction.
Thus, there exist some jobs to be scheduled in the interval [1, A) without any idle time, i.e., there exists a set N1 ⊆ N

such that the completion time of the last job in JN1 is 1 ·


j∈N1
(1 + αj) =


j∈N1

xj = A. Thus, instance I has a solution. This
completes the proof. �

2.2. A 2-approximation algorithm of the case where all jobs have negative due dates

In this subsection, we assume that all due dates are negative. If the maximum lateness Lmax = maxj=1,...,n{Cj − dj} ≤ 0,
the optimization problem is not particularly amenable to obtaining near-optimal solutions. If there were a ρ-approximation
algorithm, then, for any input with optimal value 0, the algorithm must still find a schedule of objective function value at
most ρ · 0 = 0, and hence this would imply that P = NP. One easy workaround to this is to assume that all due dates are
negative. Thus, the case of negative due dates is rational. We shall give a 2-approximation algorithm for this special case.

Assume S ⊆ J and let r(S) = minj∈S{rj}, α(S) =


j∈S(1 + αj), and d(S) = maxj∈S{dj}. Let L∗
max denote the optimal value.

At each moment that the machine is idle, start processing next an available job with the earliest due date. This is known as
the EDD rule. Here, a job is available at time t if its release date is less than or equal to t .

Theorem 2.2.1. The EDD rule is a 2-approximation algorithm for the problem 1|rj, pj = bjt|Lmax with negative due dates.

Proof. Let π be a schedule constructed by applying the EDD rule. Let job Jj be a job of maximum lateness schedule π , i.e.,
Lmax(π) = Cj − dj.

We first provide a good lower bound on the optimal value for problem 1|rj, pj = bjt|Lmax as follows.

Claim 2.2.2. L∗
max ≥ r(S)α(S) − d(S) for each subset S ⊆ J .

Proof of Claim 2.2.2. Consider any optimal schedule π∗,and view this simply as a schedule for jobs in the subset S. Let job
Ji be the last job in S to be processed in π∗. We have that the completion time of Ji holds Ci ≥ r(S)α(S) since none of the
jobs in S can be processed before r(S). Note that the due date of job Ji di ≤ d(S). Thus, the lateness of job Ji in this schedule
holds Li ≥ r(S)α(S) − d(S). Thus, L∗

max ≥ r(S)α(S) − d(S). �

Find the earliest point in time t0 ≤ Cj such that the machine was processing without any idle time for the entire period
[t0, Cj). Let S be the set of jobs processed in the interval [t0, Cj). We know that, just prior to t0, none of these jobs in S were
available by our choice of time t0. Thus, r(S) = t0. Furthermore, we have that α(S) =

Cj
t0

=
Cj
r(S) since only jobs in S are

processed throughout interval [t0, Cj). Thus, Cj = r(S)α(S). Since d(S) < 0, we can apply Claim 2.2.2 to get that

L∗

max ≥ r(S)α(S) − d(S) ≥ r(S)α(S) = Cj. (1)
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On the other hand, by applying Claim 2.2.2 with S = {Jj},

L∗

max ≥ rj(1 + αj) − dj ≥ −dj. (2)

Adding the above two inequalities (1) and (2), we have that

2L∗

max ≥ Cj − dj = Lmax(π),

i.e.,

Lmax(π)

L∗
max

≤ 2.

This completes the proof. �

2.3. An optimal algorithm of one special case

The special case where all jobs have agreeable release dates, due dates and deteriorating rates is considered in this
subsection. We assume that the jobs are indexed in such a way that r1 ≤ r2 ≤ · · · ≤ rn, d1 ≤ d2 ≤ · · · ≤ dn and
α1 ≤ α2 ≤ · · · ≤ αn. Note that the above order obeys the EDD rule.

Theorem 2.3.1. The EDD rule provides an optimal schedule for problem 1|rj, pj = bjt|Lmax with agreeable release dates, due
dates and deteriorating rates.

Proof. Let π be any optimal schedule for problem 1|rj, pj = αjt|Lmax with agreeable release dates, due dates and deterio-
rating rates. Suppose that there are two adjoint jobs Jj and Jj+1 such that job Jj+1 is processed before job Jj but dj+1 ≥ dj in
schedule π . We have that rj+1 ≥ rj and αj+1 ≥ αj since the release dates, due dates and deteriorating rates are assumed to
be agreeable; this implies that there is no idle time between jobs Jj and Jj+1. For convenience, let t0 be the starting time of job
Jj+1 in scheduleπ . Then, the lateness values of jobs Jj+1 and Jj are Lj+1 = t0(1+αj+1)−dj+1 and Lj = t0(1+αj+1)(1+αj)−dj,
respectively.

We get a new schedule π ′ by swapping jobs Jj and Jj+1; meanwhile, we have L′

j = t ′0(1 + αj+1) − dj and L′

j+1 =

t ′0(1 + αj+1)(1 + αj) − dj+1, respectively, where t ′0 denotes the starting time of job Jj in schedule π ′. It may be that t ′0 ≤ t0
since rj+1 ≥ rj. Note that αj+1 ≥ αj and dj+1 ≥ dj. Therefore, we have L′

j ≤ Lj, L′

j+1 ≤ Lj and Lj+1 ≤ Lj, and the lateness of
other jobs does not increase. From this, we have that the swap does not increase the value of themaximum lateness. A finite
number of repetitions of this procedure yields an optimal schedule of the required form. This completes the proof. �

2.4. EDD rule in the general case

In this subsection, we show that the EDD rule is a bad algorithm for problem 1|rj, pj = αjt|Lmax. Let LEDDmax and L∗
max be the

maximum lateness using the EDD rule and an optimal algorithm for problem 1|rj, pj = αjt|Lmax, respectively.

Theorem 2.4.1. LEDDmax
L∗max

can be arbitrarily large.

Proof. Consider the problem with the following instance.
(r1, d1, α1, ) = (n2

+ 1, 1, n − 1).
(r2, d2, α2, ) = (n, 2, n).

Using the EDD rule, we may have that job J1 followed by job J2 is processed from time t = r1 = n2
+ 1 with maximum

lateness LEDDmax = max{L1, L2} = max{n3
+ n − 1, n4

+ n2
− 2} = n4

+ n2
− 2. However, in the optimal solution, job J2

should be processed from time t = r2 = n and job J1 should be processed from time t = n2
+ 1; the optimal value is

L∗
max = max{L1, L2} = max{n3

+ n − 1, n2
− 2} = n3

+ n − 1. It can be seen that LEDDmax
L∗max

=
n4+n2−2
n3+n−1

can be arbitrarily large as
n approaches infinity. This completes the proof. �

3. Problem 1|p − batch, rj, pj = αjt, b = ∞|Lmax

In this section, we discuss unbounded parallel-batch scheduling.

3.1. NP-hardness proof

Theorem 3.1.1. The problem 1|p − batch, rj, pj = αjt, b = ∞|Lmax is NP-hard.
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Proof. We use a reduction from the Subset-Product Problem. Let I ′ be an instance of the Subset-Product Problem. And we
can assume that xj ≥ 2 for every j ∈ N . For the given instance I ′, we construct a corresponding instance II ′ of problem
1|p − batch, rj, pj = αjt, b = ∞|Lmax as follows.

We define Th = 2A
m

i=h+1 Ti and T = 2(A
m

h=1 Th)
2, and assume that the parameter Ti > 2 (i = 1, . . . ,m). The number

of jobs is n = 3m + 1 and there are four types (i), (ii), (iii), (iv) of job, as follows.
(i) Let J3m+1 be a job with r3m+1 = A

m
h=1 Th, α3m+1 = 1 and d3m+1 = 2A

m
h=1 Th.

(ii) The parameters of job J1 are r1 = 1, α1 = T1 − 1 and d1 =
T
T1
. For 2 ≤ j ≤ m, rj =

j−1
h=1 Th, αj = Tj − 1 and dj =

Tj
h=1 Th

.

(iii) The parameters of job Jm+1 are rm+1 = T1, αm+1 = Tm − 1 and dm+1 = T . For 2 ≤ j ≤ m, rm+j =
j

h=1 Th, αm+j = Tj − 1
and dm+j =

Tj−1
h=1 Th

.

(iv) The parameters of job J2m+1 are r2m+1 = 1, α2m+1 = T1x1 − 1 and d2m+1 = T . For 2 ≤ j ≤ m, r2m+j =
j−1

h=1 Th,
α2m+j = Tjxj − 1 and d2m+j =

Tj−1
h=1 Th

.

The threshold value is defined by G′
= 0.

It is clear that the reduction can be done in polynomial time, and it is easy to verify that the deteriorating rate αj > 1 for
j = 1, . . . , 3m and α3m+1 = 1.

We will prove that instance I ′ has a solution if and only if instance II ′ has a schedule π with Lmax(π) ≤ G′.
To prove the necessity, suppose that the Subset-Product Problem has a solution. Without loss of generality, we assume

that N1 = {1, . . . , k}; then N\N1 = {k + 1, . . . ,m} and


j∈N1
xj =

k
j=1 xj = A =

m
j=k+1 xj.

Now, we construct the following schedule π :
J1 · · · Jk Jk+1 · · · JmJ3m+1 J2m · · · Jm+k+1Jm+k · · · Jm+1
J2m+1 · · · J2m+k J3m · · · J2m+k+1 ,
where the two jobs in the same column are processed as a batch.

Obviously, there are 2m + 1 batches in schedule π .
From the construction of instance II ′, we have that schedule π is a feasible schedule with the following results.
C(B1) = C1 = C2m+1 = T1x1. Therefore, C1 < T

T1
= d1 and C2m+1 < T = d2m+1 since T = 2(A

m
h=1 Th)

2. That
is, L1 < 0 and L2m+1 < 0. Similarly, we have Lj < 0 for j = 1, . . . ,m, 2m + 1, . . . , 2m + k. Meanwhile, we have
C(Bm) = A

m
h=1 Th = r3m+1.

C(Bm+1) = C3m+1 = C(Bm)(1 + α3m+1) = 2A
m

h=1

Th = d3m+1.

Therefore, L3m+1 = 0. Similarly, we have Lj < 0 for j = 2m, . . .m + k + 2, 3m, . . . , 2m + k + 2, and Lj = 0 for
j = m + k + 1, . . .m + 1, 2m + k + 1.

From the above discussion, we have that the lateness of all jobs is less than or equal to zero; that is, Lmax =

max1≤j≤3m+1{Lj} = 0 = G′.
To prove the sufficiency, suppose that there is a scheduleπ that satisfies Lmax(π) ≤ G′

= 0. Then, the following conditions
hold.
• Job J3m+1 must be scheduled only in the interval [r3m+1, d3m+1] alone in schedule π . Otherwise, the schedule will not be
feasible with L3m+1 > 0 since α3m+1 = 1 and αj > 1 for 1 ≤ j ≤ 3m. This is a contradiction.
• For j = 1, . . .m, job Jj must be scheduled before job J3m+1. Otherwise,

d3m+1(1 + αj)

dj
=

2ATj
m

h=1
Th

T
m

h=1
Th

=

2A · 2ATj+1 · · · Tm


m

h=1
Th

2

T

>

4

A

m
h=1

Th

2

T
= 2 > 1,

a contradiction.
• For j = 1, . . .m, job Jj must start before rj+1. Otherwise,

Cj ≥ rj+1(1 + αj) = Tj
j

h=1

Th = 2A
m

h=1

Th > r3m+1,

a contradiction.
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• For j = 1, . . .m, job Jm+j must be scheduled after job J3m+1. Otherwise,

Cm+j ≥ rm+j(1 + αm+j) = Tj
j

h=1

Th

= 2A
m

h=1

Th > r3m+1,

a contradiction.
• For j = 1, . . .m, job Jm+j must be completed after dm+j+1. Otherwise,

dm+j+1

1 + αm+j
=

T

Tj
j

h=1
Th

=
T

2A
m

h=1
Th

= A
m

h=1

Th < d3m+1,

a contradiction.
• For each j = 1, . . .m, if job J2m+j is scheduled before job J3m+1, then it must be in the same batch as job Jj since rj = r2m+j

and rj(1+αj) = TjTjxj
j−1

h=1 Th = 2Axj
m

h=1 Th > r3m+1; if job J2m+j is scheduled after job J3m+1, then it must be in the same
batch as job Jm+j since dm+j = d2m+j and

dm+j

(1 + αm+j)(1 + α2m+j)
=

T

TjTjxj
j−1
h=1

Th

=
T

2Axj
m

h=1
Th

=

A
m

h=1
Th

xj
< d3m+1.

Denote by JN1 the set of jobs corresponding to elements of set N1 ⊆ N , and jobs in JN1 are scheduled before job J3m+1. We
have


j∈N1

(1 + αj)

j∈N1

(1 + αj) =

m
j=1

Tj

j∈N1

xj ≤ r3m+1 = A
m
j=1

Tj;

then,


j∈N1
xj ≤ A. On the other hand,


j∈N\N1

(1 + α2m+j)


j∈N\N1

(1 + αm+j) =

m
j=1

Tj


j∈N\N1

xj

≤
T

d3m+1

=

2


A

m
j=1

Tj

2

2A
m
j=1

Tj

= A
m
j=1

Tj;

then,


j∈N\N1
xj ≤ A.
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Note that


j∈N1
xj


j∈N\N1
xj = A2. Thus,


j∈N1

xj = A, i.e., instance I ′ of the Subset-Product Problem has a solution. This
completes the proof. �

3.2. Agreeable due dates and release dates

In this subsection, the due dates and release dates of jobs are assumed to be agreeable. Thus, the jobs can be re-indexed
such that r1 ≤ r2 ≤ · · · ≤ rn and d1 ≤ d2 ≤ · · · ≤ dn.

Theorem 3.2.1. For problem 1|p − batch, rj, pj = αjt, b = ∞|Lmax with agreeable due dates and release dates, there exists an
optimal batch sequence BS = {B1, B2, . . . , Bk} such that, for every two batches Bk1 and Bk2 with k1 < k2, max{ri : Ji ∈ Bk1} <
min{rj : Jj ∈ Bk2}.

Proof. Let π = {BS, ST } be an optimal schedule for problem 1|B, rj, pj = αjt|Lmax with agreeable due dates and release
dates, where BS = {B1, B2, . . . , Bk} and ST = {S(B1), S(B2), . . . , S(Bk)}. Suppose that there are two batches Bk1 and Bk2 with
k1 < k2 such that max{ri : Ji ∈ Bk1} ≥ min{rj : Jj ∈ Bk2} = rj0 . Then, there exists job Ji ∈ Bk1 such that ri ≥ rj0 , and then
di ≥ dj0 since the case has agreeable due dates and release dates. Let α(Bk1) and α(Bk2) denote the deteriorating rates of
batches Bk1 and Bk2 , respectively.
Case 1. α(Bk1) ≥ α(Bk2).

We get a new schedule π ′ bymoving job Jj0 from batch Bk2 to batch Bk1 . Note that the deteriorating rate of batch Bk1 does
not change and the deteriorating rate of batch Bk2 does not increase. Therefore, we have that L′

j0
= S(Bk1)(1+b(Bk1))−dj0 ≤

S(Bk2)(1 + α(Bk2)) − dj0 = Lj0 and the lateness of other jobs does not increase.
Case 2. α(Bk1) < α(Bk2).

We get a new schedule π ′ by moving job Ji from batch Bk1 to batch Bk2 . Note that the deteriorating rate of batch Bk2 does
not change and the deteriorating rate of batch Bk1 does not increase. Let S

′(Bk2) be the starting time of batch Bk2 in schedule
π ′; then S ′(Bk2) ≤ S(Bk2). Therefore, we have that Li = S(Bk1)(1 + α(Bk1)) − di < S(Bk2)(1 + α(Bk2)) − dj = Lj0 since
di ≥ dj0 , and L′

i = S ′(Bk2)(1 + α(Bk2)) − di ≤ L′

j0
= S ′(Bk2)(1 + α(Bk2)) − dj0 ≤ Lj0 . The lateness of other jobs does not

increase. Clearly, schedule π ′ is still an optimal batch sequence. Continuing this procedure, we eventually obtain an optimal
batch sequence with the required form. This completes the proof. �

4. Conclusion

In this paper, we consider the scheduling of simple deteriorating jobs with release dates on a singlemachine tominimize
the maximum lateness. We prove that the problem 1|rj, pj = αjt|Lmax is NP-hard, give a 2-approximation algorithm for the
case where all jobs have negative due dates, and discuss the EDD rule. And we prove that the batch-scheduling problem
1|p − batch, rj, pj = αjt, b = ∞|Lmax is NP-hard, and present one property of the optimal schedule for one special case.

For future research, it is worth considering other objectives. Furthermore, one may continue our research with the same
objective, but focus on the polynomial time approximation scheme (PTAS) or fully polynomial time approximation scheme
(FPTAS) for our two NP-hard problems.
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