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ABSTRACT
Ground level ozone (GLO) is produced by a complex chain of atmospheric chemical reactions that depend on
precursor emissions from natural and anthropogenic sources. GLO concentration in a particular location is also
governed by local weather and climatic factors. In this work an attempt was made to explore a Partial Least Squares
Path Modeling (PLS–PM) approach to quantify the inter–relationship between local conditions (weather parameters
and primary air pollution) and GLO concentrations. PLS path modeling algorithm was introduced and applied to GLO
concentration analyses at Gulfport, Mississippi, USA. In the present analysis, three latent variables were selected: PRC
(photochemical reaction catalyst), MP (meteorological factor), and OPP (other primary air pollutants). The three latent
variables included 14 indicators for the analysis; with PRC having two (extraterrestrial radiation on horizontal surface,
and extraterrestrial radiation normal to the sun), MP having nine (temperature, dew point, relative humidity, pressure,
visibility, maximum wind speed, average wind speed, precipitation, and wind direction) and OPP having three (NO2,
PM2.5, and SO2) parameters. The resulting model revealed that PRC had significant direct impact on GLO concentration
but very small overall effect. This is because PRC had significant indirect negative impact on GLO via MP. Thus, when
both direct and indirect effects were taken into account, PRC emerged as having the weakest effect on GLO. The third
variable (OPP) also had a positive impact on GLO concentration.
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1. Introduction

Ground–level or tropospheric ozone (O3) is listed as one of the
criteria pollutants by many countries and organizations like World
Health Organization (WHO) and United States Environmental
Protection Agency (U.S. EPA). It is a major constituent of photo
chemical smog, an air pollution event that often occurs in mega
cities. O3 has been proved to have adverse effects on human
health, especially to the respiratory system (Lippmann, 1993). It
can also adversely affect crops and forest ecosystems (Bascom et
al., 1996, Lippmann, 2009). The adverse effects of O3 can be
minimized by proper identification and reduction of its precursors.

Numerous studies on the evolution of tropospheric O3
changes and the associated radiation forcing have been carried out
using various chemical transport or climate models (Hauglustaine
et al., 1994; Roelofs et al., 1997; Brasseur et al., 1998; Stevenson et
al., 1998; Forster, 1999; Mickley et al., 1999; Berntsen et al., 2000;
Grenfell et al., 2001; Hauglustaine and Brasseur, 2001). However,
there is often a significant difference between the models in their
predictions of ozone change (Houghton et al., 2001).

Variations in ozone concentration are controlled by a number
of processes including photochemistry, physical and chemical
process removal. Ozone is produced in the troposphere by
photochemical oxidation of CO, methane and non–methane
volatile organic compounds (NMVOCs) by the hydroxyl radical (OH)
in the presence of reactive nitrogen oxides (NOX=NO+NO2).
NMVOCs, CO and NOX have large combustion sources.

Changes in climatic conditions also affect ozone concentration
by perturbing ventilation rates (wind speed, mixing depth, convec
tion and frontal passages), precipitation scavenging, dry depo
sition, chemical production and loss rates, natural emissions, and
background concentrations. Temperature can serve as a proxy for
other meteorological conditions, such as stagnation events, condu
cive for formation of elevated levels of ozone. Many model–based
studies have revealed that temperature is the most important
meteorological variable affecting ozone concentrations in polluted
regions (Morris et al., 1989; Aw and Kleeman, 2003; Sanchez–
Ccoyllo et al., 2006; Steiner et al., 2006; Dawson et al., 2007).

Atmospheric humidity, which is projected to increase overall
in a warmer world, leads to increased ozone in high NOX areas and
decreased ozone in low NOX areas. The correlation of ozone with
relative humidity was studied by Camalier et al. (2007) who
observed a good correlation. The observed correlation of ozone
with solar radiation seen in some studies could reflect in part the
association of clear sky with high temperatures (Ordonez et al.,
2005). Wind can also be important in controlling ozone levels, as
precursor species are dispersed and diluted, typically reducing the
ozone forming reactions. Wind can also disperse ground level
ozone that has already formed, reducing the amount of, and
exposure time to, elevated ozone levels in local generation areas; it
can also add to another downwind region that may or may not
already have local ozone levels approaching critical health risk
levels. Weaker wind speeds in polluted regions cause ozone to
increase, as would be expected simply from a longer reaction time
and increased aerodynamic resistance to dry deposition (Baertsch–
Ritter et al., 2004; Sanchez–Ccoyllo et al., 2006; Dawson et al.,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82237394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Gorai et al. – Atmospheric Pollution Research (APR) 390

2007). Precipitation is generally not important for removing
ground level ozone as it is not water soluble.

It is imperative to accurately find the sources contributing to
O3 concentration in order to take corrective policy measures to
reduce the ground level O3 concentration. Since it is a secondary
pollutant and is not directly emitted from any source, it is not
possible to make source apportionment to develop cleaner
technologies. It is formed as a result of complex photochemical
reactions in the troposphere. Although VOCs and NOX have been
confirmed as the key precursors of O3, the development of an
effective strategy for reducing O3 pollution in megacities is still
problematic, due to the non–linear dependency of O3 concen
tration on different factors. So it is of great importance to evaluate
how different precursors/factors contribute to the high ozone
concentration. Hence, it is of utmost importance to keep an
account and control on the various precursors/factors leading to
the formation of the ground level ozone in the city so that suitable
measures can be taken to prevent the involvement and adverse
effects of the different variables. In this work a path analysis was
developed to describe the contributions of different variables to
the formation of ground level ozone. Path analysis, which is a
causal modeling approach for exploring the correlations within a
defined network, was performed to compare and describe the
cause–effect relationships between ground level ozone,
endogenous variables and exogenous variables. The model
development and performance test was carried out using “plspm”
package of r software (http://cran.r–project.org/web/packages/
plspm/index.html).

2. Structural Equation Model (SEM)

SEM model facilitates the estimation of causal relationships,
defined according to a theoretical model, linking two or more
latent complex concepts (i.e. the composite indicators), each
measured through a number of observable indicators. The basic
idea is that complexity inside a system can be studied taking into
account a whole of causal relationships among latent concepts,
called Latent Variables (LV), each measured by several observed
indicators usually defined as Manifest Variables (MV). Moreover,
path models are a logical extension of regression models as they
involve the analysis of simultaneous multiple regression equations.
More specifically, a path model is a relational model with direct
and indirect effects among observed variables.

SEM has the ability to assess latent variables at the observa
tion level (outer or measurement model) and to test relationships
between latent variables on the theoretical level (inner or
structural model) (Bollen, 1989). Most of the researchers generally
analyzed two types of SEM methods: covariance–based techniques
(CB–SEM) (Joreskog, 1978; Joreskog, 1993) and variance based
partial least squares (PLS–PM) (Wold, 1982; Wold, 1985;
Lohmoller, 1989). Although both methods share the same roots
(Joreskog and Wold, 1982), the present research has focused
primarily on a so–called component–based estimation method
PLS–PM, because of the key role that is played by the estimation of
the LVs in the model. In fact, the main aim of component–based
methods is to provide an estimate of each LV in such a way that
they are the most correlated with one another and the most
representative of each corresponding block of manifest variables.
This is of main importance in building system of composite
indicators. As a matter of fact, according to PLS–PM approach,
each composite indicator is obtained in order to be the most
representative of each corresponding indicator and the most
correlated with the others linked composite indicators.

PLS–PM maximizes the explained variance of the endogenous
latent variables by estimating partial model relationships in an
iterative sequence of ordinary least squares (OLS) regressions. An
important characteristic of PLS–PM is that it estimates latent
variable scores as exact linear combinations of their associated

manifest variables (Fornell and Bookstein, 1982) and treats them
as perfect substitutes for the manifest variables. The scores thus
capture the variance that is useful for explaining the endogenous
latent variable(s). Estimating models via a series of OLS regressions
implies that PLS–PM relaxes the assumption of multivariate
normality needed for maximum likelihood–based SEM estimations
(Fornell and Bookstein, 1982; Wold, 1982; Lohmoller, 1989; Hwang
et al., 2010). Furthermore, since PLS–PM is based on a series of
OLS regressions, it has minimum demands regarding sample size
and generally achieves high levels of statistical power (Reinartz et
al., 2009). Furthermore, PLS–PM is not constrained by identifi
cation concerns, even if models become complex, a situation that
typically restricts CB–SEM usage (Hair et al., 2011).

3. PLS Path Model

PLS path models are formally defined by two sets of linear
equations: the inner model and the outer model. The inner model
specifies the relationships between unobserved or latent variables,
whereas the outer model specifies the relationships between a
latent variable and its observed or manifest variables. A PLS path
model is described by two models: (1) a measurement model
relating the MVs to their own LV and (2) a structural model relating
some endogenous LVs to other exogenous or endogenous LVs. The
measurement model is also called the outer model and the
structural model the inner model. Thus, the endogenous LVs can
be seen not only as composite indicators, due to their relations
with the corresponding indicators, but also as complex indicators,
due to their causal relations with other composite indicators.

3.1. The measurement model

This represents the relationships between a latent variable
and its block of manifest variables. There are two main measure
ment options for the outer model: reflective blocks and formative
blocks. In reflective mode, the latent variables are considered as
the cause of the manifest variables whereas in the formative
mode, the manifest variables are considered to be the cause of the
latent variables. In the present work, the model is constructed in
formative mode. The outer model/measurement model relation
ship is also considered to be linear. In mathematical notation, the
relationship can be represented as given in Equation (1):

(Formative mode) (1)

The coefficients jk are called loadings, 0j is just the intercept
term, and the ej terms account for the residuals.

3.2. The structural model

The structural model represents to linear equations relating
the LVs between them (the structural or inner model). Mathemat
ically this can be represented as given in Equation (2):

(2)

The subscript i of LVi refer to all the latent variables that are
supposed to predict LVj. The coefficients ji are the path coefficients
and they represent the “strength and direction" of the relations
between the response LVj and the predictors LVi. 0j is just the
intercept term, and the ej term accounts for the residuals errors.

4. Materials and Method

4.1. Study area

In the present work, the study area is Gulfport, Mississippi,
USA. Gulfport is the second largest city in Mississippi after the
state capital Jackson. It is the largest of the two principal cities of



Gorai et al. – Atmospheric Pollution Research (APR) 391

the Gulfport–Biloxi, Mississippi Metropolitan Statistical Area, which
is included in the Gulfport–Biloxi–Pascagoula, Mississippi Com
bined Statistical Area. Gulfport is located at 30°24'6" N,
89°4'34" W. According to the 2010 census, the city of Gulfport had
a total population of 69 220. The population density was 1 191.4
people per square mile (459.9 per square km). Gulfport has a
humid subtropical climate, which is strongly moderated by the Gulf
of Mexico. Winters are short and generally warm, cold spells do
occur, but seldom last long. Summers are generally long, hot and
humid, though the city's proximity to the Gulf prevents extreme
summer highs, as seen farther inland. Gulfport is subject to
extreme weather, most notably tropical storm activity through the
Gulf of Mexico. The monitoring station is shown in Figure 1.

Air Pollution Monitoring Station in Mississippi State

Figure 1. Air pollution monitoring stations.

4.2. Data collection and analysis

Table 1 provides a basic description of the model’s variables,
showing the latent exogenous variables (LEXV): PRC, MP, and OPP
and latent endogenous variables (LENV): GLO from the PLS path
model, and illustrates the potential determinants (MVs) used in the
analysis. Factors that potentially influenced the ground level ozone
concentration were selected from previous literature. Ozone is a
secondary pollutant and there are many precursors like NOX, VOCs
etc. for the formation of this gaseous pollutant. Two indicators are
used to measure the photochemical reaction catalyst (PRC).
Indicator SR1 represents extraterrestrial radiation on horizontal
surface in W/m2, and SR2 represents extraterrestrial radiation
normal to the sun in W/m2. Nine indicators are used to measure
meteorological factors (MP). These are TEMP (temperature in °F),
DP (dew point temperature in °F), HUM (relative humidity in
percentage), PRES (pressure in inch), VIS (visibility in distance mile),
MWS (maximum wind speed in miles/hr), AWS (average wind
speed in miles/hr), PREC (precipitation in inch), and WD (wind
direction in degrees). Three indicators are used to measure other
primary pollutant parameters (OPP). These are NO2 (daily
maximum 1–hour NO2 concentration in ppb), PM2.5 (24 hour
average particulate matter less than and equal to 2.5 m size in
g/m3), and SO2 (daily maximum 1–hour SO2 concentration in ppb).

There is only one indicator (GLOC: ground level ozone concen
tration in ppb) that was used to measure the GLO (ground level
ozone) for understanding the degree of influence of various direct
and indirect causal factors for the formation of ground level ozone.
Though, VOC is considered as one of the major precursor for ozone
formation, it is not considered in the model due to unavailability of
data. Daily air quality data were collected from the website of U.S.
EPA whereas the meteorological data were collected from website
http://www.wunderground.com. In the present PLS–PM model
analysis, an overall 672 day’s data were compiled for the duration
of 2008 to 2010.

4.3. Priori PLS–Path model formulation

The conceptual model behind the relations among latent and
manifest variables is drawn as a path diagram (Figure 2) in which
ellipses represent the manifest variables and rectangles or squares
refer to the latent variables. Arrows show causations among the
variables (either latent or manifest), and the direction of the array
defines the direction of the relation, i.e. variables receiving the
array are to be considered as endogenous variables in the specific
relationship.

Table 1. Description of the variables used in the model

Latent Variables (LV) Notation Used in
the Equation Manifest Variables (MV) Notation Used in

the Equation
Latent Exogenous Variables (LEXV)
Photochemical Reaction Catalyst (PRC) LV1 Extraterrestrial radiation on horizontal surface in W/m2 (SR1) X11

Extraterrestrial radiation normal to the sun in W/m2 (SR2) X12
Meteorological Factors (MF) LV2 Temperature in °F (TEMP) X21

Dew point temperature in °F (DP) X22
Relative humidity in percentage (HUM) X23

Pressure in inch (PRES) X24
Visibility in distance mile (VIS) X25

Maximum wind speed in miles/hr (MWS) X26
Average wind speed in miles/hr (AWS) X27

Precipitation in inch (PREC) X28
Wind direction in degrees (WD) X29

Other Primary Pollutants (OPP) LV3 Daily Maximum 1–hour NO2 concentration in ppb (NOX) X31
24 hour average particulate matter less than 2.5 m size in

g/m3 (PM2.5)
X32

Daily Maximum 1–hour SO2 concentration in ppb (SO2) X33
Latent Endogenous Variables (LENV)
Ground Level Ozone (GLO) LV4 Ground Level Ozone Concentration in ppb (GLOC) Y11
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The measurement model indicates the relationship between the
MVs as listed in Table 1 and the three LEXVs. The structural model
reflects the relationship between the three LEXVs and one LENV as
listed in Table 1. The main purpose of the PLS path model is to
evaluate both the measurement and structural models. In particular,
we focus on assessing the path coefficient ( ) value in the structural
model, which reflects the impact of the LEXVs on the LENV.

Measurement and structural model equations were formu
lated corresponding with the priori path model represented in
Figure 2. The equations are the same as the multiple linear
regression equations, and they are solved by the least square
technique for determination of path coefficients. This facilitates
direct comparison of values to reflect the relative importance of
manifest variables in order to explain variation in the latent
variables (Seker and Serin, 2004). PLS–PM’s main objective is to get
estimates of both the latent variables and the parameters
(coefficients and loadings).

The formulations of the measurement model in the present
case (formative mode) are represented in Equations (3) to (6) as
follows:

(3)

(4)

(5)

(6)

where, jk is a coefficient linking each manifest variable to the
corresponding latent variable and the error term ej represents the
fraction of the corresponding latent variable not accounted for by
the block of manifest variables.

For the structural relationships we constructed four equations
for four latent variables. The first equation for LV1 which is not

influenced by any other latent variables is given by Equation (7) as
follows:

(7)

Similarly the second the relationship in which LV2 depends on
LV1 the structural model is represented in Equation (8) as follows:

(8)

The third inner or structural relationship in which LV3 depends
on LV1 and LV2 is represented in Equation (9) as follows:

(9)

The fourth inner relationship in which LV4 depends on LV1, LV2
and LV3 is represented in Equation (10) as follows:

(10)

4.4. Path analysis algorithm

The algorithm for the path analysis is represented in Figure 3.
PLS Path modeling follows a sequential procedure that can be
divided in three major stages. In first stage, the main objective is to
determine the scores of the latent variables in the model that
serve as a numerical representation of the latent construct. This is
an iterative process between inner and outer method to determine
the weights until convergence. The purpose of determining the
weights is that these values further used to get the scores of the
latent variables. This process begins with an outside approximation
assuming initial weight of 1 so that each LV factor score is initially a
simple sum of its item scores. From the starting point, the
algorithm iterates between the inside and outside approximation
methods in the calculation of LV scores. The outside method
provides an estimate of the LV score via an aggregation of its
indicators, whereas the inside method yields an estimate based on
the adjacent (neighboring) LV scores.

Figure 2. A proposed path model showing the causal relations among the variables.

Variables



Gorai et al. – Atmospheric Pollution Research (APR) 393

Figure 3. Flow diagram of PLS–Path analysis.

Once the iterative process completes, the second stage has to
do with estimating the path coefficients of the inner model using
the LV scores obtained in the previous step. The final estimates of
the loadings or weights (measurement model) are also determined
using ordinary least squares (OLS) regression. And the third stage
involves the computation of the loadings or weights (outer model/
measurement model). The loadings are determined by computing
simple correlations. The model was run for the analysis using plspm
package of R Software.

5. Results and Analysis of Model

The idea is to calculate estimates of latent variables as linear
combinations of their associated indicators using a special linear
combination. We look for a linear combination in such a way that
the obtained latent variables take into account the relationships of
the structural and the measurement models in order to maximize
the explained variance of the dependent variables (both latent and
observed variables). The model results are analyzed in two stages.
In first stage outer model or measurement model was analyzed.
Once the validation of the outer model was done, the inner model
was tested for determining the path coefficients and factor
loadings.

5.1. Analysis of measurement model

Two cases were critically examined for deciding on whether a
particular indicator should enter into the index or not. An indicator
can be irrelevant for the construction of the formative index

because it either does not have a significant impact on the
formative index, or because it exhibits high multicollinearity, which
could mean that the indicator’s information is redundant. In order
to check for the first case, the significance of the estimated
indicator weights were determined by means of bootstrapping
(Chin, 1998; Davison et al., 2003; Tenenhaus and Vinzi, 2005). The
bootstrap results indicated that the weights of all the indicators
are significant at 5% level. Thus on the basis of this test no
manifest variables were eliminated from the priori path model.

In order to assess the degree of multicollinearity among the
formative indicators, correlation coefficients (for two variables)
and variance inflation factor (VIF) (for more than two variables in a
particular block) values should be computed (Cassel et al., 2000;
Diamantopoulos and Winklhofer, 2001; Grewal et al., 2004). A rule
of thumb states that VIFs greater than 10 reveal a critical level of
multicollinearity. However, any VIF substantially greater than 3.3
(Diamantopoulos and Siguaw, 2006; Petter et al., 2007) indicates
multicollinearity and should be remediated. The correlation
coefficient between two variables greater than 0.8 indicates the
problem of collinearity (Kennedy, 2003).

In the present model, there are three blocks of manifest
variables. In first block, there are only two variables or indicators.
The second and third block is represented by nine and three
indicators respectively. The correlation between the variables or
indicators in first block (SR1, SR2) was found to be 0.993 which
exceeds the recommended value of 0.8 indicating the problem of
multicollinearity. Thus, the variable SR2 removed as remediation
from the model during subsequent path analysis. The estimated
magnitudes of multicollinearity for (Block 2: TEMP, DP, HUM, PRES,
VIS, MWS, AWS, PREC, WD and Block 3: NO2, PM2.5, SO2) with more
than 2 indicators were tested using variation inflation factor (VIF).
The estimated magnitudes of multicollinearity for block 2 (MP)
manifest variables indicated high value of VIF with dew point
temperature (DP). After removing the variables (DP), the VIF values
found to be within 2 for all the combinations and this indicates that
there is no further problem of multicollinearity in second block
(MP). The VIF values for third block (OPP) were found to be within
2 and this clearly indicated no problem of multicollinearity. After
remediating action, the subsequent results indicated no further
problem of multicollinearity and the measurement model is valid.

The standardized factor loading reflects the explanatory
power of MVs to their corresponding LVs. These are calculated on
the basis of MVs datasets (excluding SR2 and DP) as represented in
Figure 2. The loadings of each manifest variable with its associated
latent variable and its cross loading on other latent variables are
shown in Table 2. The manifest variable, SR1 (X11) is positively
correlated to the latent variable, PRC. The LV, MP is positively
affected by TEMP (X21), HUM (X23), VIS (X25), MWS (X26), AWS
(X27), PREC (X28) and negatively affected by the PRES (X24). All the
MVs [NO2 (X31), SO2 (X32), and PM2.5 (X33)] in block 3 have
positive impact on the LV (OPP). The results shown in Table 2 also
clearly indicate that TEMP (X21) has maximum impact (0.792) on
LV MP whereas VIS (X25) has least impact. In block 3, NO2 has the
maximum impact (0.997) on the LV OPP. The manifest variables
PM2.5 (X32) and SO2 (X33) have very less impact in comparison to
the variable NO2 (X31). Generally, a MV’s loading on its associated
latent variable is greater than its cross–loading on other latent
variables in the model. The loading and cross–loading results
represented in Table 2 clearly indicates that the loading on its
associated latent variables are greater than its cross–loadings on
other latent variables except VIS (X25) in block 2 (MP) and SO2
(X32) in block 3. This may indicate that these variables are more
associated with the latent variable GLO.

No

Yes
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Table 2. Latent variables loadings and cross loadings

PRC MP OPP GLO

PRC
X11 1 0.434 –0.316 0.056

MP
X21 0.552 0.792 –0.362 –0.157
X23 0.093 0.439 –0.147 –0.354
X24 –0.223 –0.396 0.325 –0.013
X25 –0.003 0.012 –0.049 0.029
X26 –0.039 0.267 –0.197 –0.203
X27 –0.130 0.318 –0.292 –0.267
X28 0.023 0.255 –0.095 –0.226

OPP
X31 –0.319 –0.512 0.997 0.299
X32 0.082 –0.024 0.139 0.215
X33 0.023 –0.097 0.211 0.166

GLO
Y11 0.056 –0.403 0.304 1

5.2. Analysis of structural model

Reliable and valid outer model estimations permit an evalu
ation of the inner path model estimates. The essential criterion for
this assessment is the coefficient of determination (R2) of
endogenous latent variables. Falk and Miller (1992) recommended
the R2 for variable's variance explained by the independent
variables. They also recommended the R2 for endogenous variables
be greater and equal to 0.10. An R2 greater and equal to 0.10
ensures that the variance explained by the endogenous variables
has practical, as well as statistical significance. The observed R2
value for three endogenous latent variables, MP, OPP and GLO
were found to be 0.189, 0.275, and 0.25 respectively. Thus, the
observed value is sufficiently higher than the recommended value
(0.10). The path coefficients in the model decomposed into direct
and indirect effects, corresponding, to direct and indirect paths
represented in the arrows in the model. This is based on the rule
that in a linear system, the total causal effect of LVi on LVj is the
sum of the values of all the paths from i to j. The PLS PM results for

path coefficients and its statistical significance are represented in
Table 3. In order to determine the confidence intervals of the path
coefficients and statistical inference, bootstrap method was used
(Tenenhaus and Vinzi, 2005). The path coefficient results for each
indicated paths along with the confidence interval are represented
in Table 3. The bootstrap analysis was carried out using 200 sample
data sets. The path coefficients results represented in Table 3
clearly indicate that the original path coefficients values are closely
matches with the path coefficients values obtained from bootstrap
results. This indicates the path drawn in the model having
consistent relationship. Also, the confidence intervals shown in
Table 3 clearly indicate that the path coefficients values fall in this
range. Thus, all the paths defined in the diagram are significant.
From Table 3, it can inferred that the LEXV, MP has the highest
negative impact (–0.448) on the LENV, GLO. According to the
structural model results, the ground level ozone concentration will
decrease with the meteorological factors. Similarly, the photo
chemical reaction catalyst (PRC) and other primary pollutant (OPP)
also have significant positive impact on the ground level ozone
concentration.

Another important evaluation relates to the indirect effects of
the LEXVs on other LEXVs or LENVs. This relationships evaluates
the effect of predecessor of a certain endogenous latent variable
involves in mediating (Helm et al., 2009) or moderating (Henseler
and Fassott, 2009). The indirect effects can be calculated from the
above results using the Equation (11) as:

Indirect Effect = Total effects – Direct effects (11)

Mathematically, the indirect effects can be calculated as the
multiplication of path coefficients of indirect paths. Considering
“GLO” as the dependent in the model above, and considering “MP”
as the independent, the indirect effects were calculated by
multiplying the path coefficients for each path from MP to GLO.
Thus the indirect effects of the MP to GLO is calculated as:

MP GLO = MP OPP x OPP GLO = –0.464 x 0.170 = –0.0791

Similarly, indirect effects of PRC to GLO is:

PRC GLO = PRC MPx MP GLO + PRC MPx MP OPPx OPP GLO = –0.2486

Table 3. Path coefficients results

Paths Path Coefficients
(using 672 data sets)

Path Coefficients (using 200 data
sets in bootstrap analysis) Standard Error 95 LCI 95 UCI

Direct Effects
PRC–>MP 0.434 0.434 0.036 0.364 0.506
PRC–>OPP –0.115 –0.115 0.037 –0.192 –0.046
PRC–>GLO 0.305 0.308 0.037 0.237 0.383

MP–>OPP –0.464 –0.467 0.038 –0.542 –0.399

MP–>GLO –0.448 –0.454 0.032 –0.527 –0.397

OPP–>GLO 0.170 0.171 0.036 0.105 0.241

Total Effects

PRC–>MP 0.434 0.434 0.036 0.364 0.506

PRC–>OPP –0.316 –0.318 0.042 –0.392 –0.222

PRC–>GLO 0.056 0.056 0.042 –0.025 0.132

MP–>OPP –0.464 –0.467 0.038 –0.542 –0.399

MP–>GLO –0.527 –0.534 0.027 –0.588 –0.483

OPP–>GLO 0.170 0.171 0.036 0.105 0.241
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The sum of the direct and the indirect effects gives total effect
of each variable on GLO. The summary of direct effects, indirect
effects and total effects of various paths of the structural model is
represented in Table 4. The same is also graphically represented in
Figure 4. The characteristics of GLO responses obtained by path
analysis in the Gulfport area showed that GLO concentration is
most strongly related to the meteorological factors (MP) in both
the ways (direct effect and indirect effect) but in negative way.
That is, meteorological factors (MP) and other primary pollutant
parameter (OPP) have reduced the GLO concentrations. The model
results also indicate that PRC has significant direct impact on

ground level ozone concentration but very small overall effects.
This is because PRC has significant indirect negative impact on GLO
via MP. Thus, the combined effect of direct and indirect
compensates each other leads to weakest effect of PRC on GLO
concentration. Thus, when both direct and indirect effects are
taken into account, PRC emerges as having the weakest effect on
GLO. The third block, OPP also has a positive impact on GLO
concentration. The structural model is demonstrated by the path
coefficients ( i j) and the loading of the MVs to corresponding LVs
represented in Figure 5.

Figure 4. Direct, indirect and total effects of LEXVs on LEXVs/LEDVs.

Figure 5. Estimated loadings and path coefficients.
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Table 4. Direct effects, indirect effects and total effects

Paths Direct
Effects

Total
Effects

Indirect Effects=Total Effects–
Direct Effects

PRC MP 0.434 0.434 0.000

PRC OPP –0.115 –0.316 –0.202

PRC GLO 0.305 0.056 –0.249

MP OPP –0.464 –0.464 0.000

MP GLO –0.448 –0.527 –0.079

OPP GLO 0.170 0.170 0.000

6. Conclusions

The results of this exploratory study suggest that the PLS path
modeling approach for constructing ground level ozone concen
tration index is promising. This model not only permits cons
truction of the index, but also provides insights into how different
parameters differentially affect ground level ozone concentration
in a particular geographical area. The results provide useful
information for controlling the concentration of ground level ozone
concentration. The PLS path modeling approach can be extended
by incorporating an expanded set of variables related to the
different dimensions. However, the results of this study illustrate
the potential advantages of these approaches generally to better
understanding conceptualizations and measures of ground level
ozone concentration, which will ultimately aid for its management
and impact reduction. The present work is limited by data
availability for all the variables involved in ground level ozone
formation and dispersion.
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