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Glucocorticoids have profound effects on brain development and adult CNS function. Excess or insuffi-
cient glucocorticoids cause myriad abnormalities from development to ageing. The actions of glucocorti-
coids within cells are determined not only by blood steroid levels and target cell receptor density, but
also by intracellular metabolism by 11b-hydroxysteroid dehydrogenases (11b-HSD). 11b-HSD1 regener-
ates active glucocorticoids from their inactive 11-keto derivatives and is widely expressed throughout the
adult CNS. Elevated hippocampal and neocortical 11b-HSD1 is observed with ageing and causes cognitive
decline; its deficiency prevents the emergence of cognitive defects with age. Conversely, 11b-HSD2 is a
dehydrogenase, inactivating glucocorticoids. The major central effects of 11b-HSD2 occur in develop-
ment, as expression of 11b-HSD2 is high in fetal brain and placenta. Deficient feto-placental 11b-HSD2
results in a life-long phenotype of anxiety and cardiometabolic disorders, consistent with early life glu-
cocorticoid programming.

� 2010 Elsevier Inc. Open access under CC BY license.
1. Introduction: An unhorrible history

1953 was a key year in biology: Crick and Watson discovered
the structure of DNA, Howard and Pelc described the cell cycle
and the Nobel Prize in Physiology or Medicine went to Hans Krebs
for the eponymous tricarboxylic acid cycle. In the same year an ar-
cane enzyme reaction catalysing glucocorticoid metabolism was
discovered by Amelung and colleagues in Frankfurt. This occurred
just 3 years after Kendall, Hench and Reichstein had won the Nobel
Prize for the isolation of cortisone (‘compound E’) and shown its
spectacular effects in treating patients with rheumatoid arthritis
[96]. Amelung et al. [9] administered cortisone to rats and incu-
bated cortisone with homogenates of various organs and found
conversion to Kendall’s ‘compound F’ (cortisol). They localised
the activity to microsomes and found the highest activity in liver
with some also in kidney and muscle. This enzyme activity was
11b-hydroxysteroid dehydrogenase (11b-HSD). Until the late
1980s this reaction was considered arcane, one of a number of
pathways of metabolism of glucocorticoids by liver and other or-
gans, a topic of interest to steroid aficionados but of little main-
stream biomedical concern.

A number of reports described deficiency in the inter-conver-
sion of cortisol and cortisone in association with a very rare
disease, the syndrome of ‘‘apparent mineralocorticoid excess’’
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(AME). This condition was fatal in the few children reported
[182,244,245,277], who presented with severe hypertension and
blood biochemistry compatible with mineralocorticoid excess with
sodium retention, potassium loss and metabolic alkalosis. Paradox-
ically, despite fully suppressed plasma renin activity, AME was
accompanied by undetectable levels of all known mineralocortic-
oids, such as aldosterone and deoxycorticosterone. In the mid
1980s, Edwards and colleagues in Edinburgh investigated a unique
patient with AME who had survived to adulthood [260]. In elegant
clinical investigations they showed that the mineralocorticoid ex-
cess was due to cortisol. Normally, in humans and other mammals,
cortisol has little or no mineralocorticoid activity per se. Nonethe-
less, in the adult AME patient, suppression of endogenous cortisol
with the synthetic glucocorticoid dexamethasone reversed miner-
alocorticoid excess and concurrent re-administration of physiolog-
ical doses of cortisol recapitulated mineralocorticoid excess, an
effect not seen in healthy controls. The Edinburgh investigators
also recognised that the syndrome was analogous to the effects
of liquorice, long known to cause hypertension, and showed that
ingestion of liquorice in humans produced AME only in the pres-
ence of cortisol [265].

In a scientific serendipity, Evans and his colleagues at the Salk
Institute had just cloned the human mineralocorticoid receptor
(MR) and were surprised to note that, in vitro, MR bound the phys-
iological glucocorticoids cortisol and corticosterone and the miner-
alocorticoid aldosterone with similar affinity, a finding mooted
from earlier studies using semi-purified receptor preparations
[81] and functional studies in hippocampus [218]. It was then that
the penny dropped and the Edinburgh group [68], as well as
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Funder and colleagues in Melbourne [72], recognised that selectiv-
ity of MR in the kidney in vivo was not due to any intrinsic speci-
ficity for aldosterone over glucocorticoids but to the activity of
11b-HSD. In the kidney, in the presence of 11b-HSD, cortisol was
efficiently metabolised to inert cortisone, which does not bind to
receptors. Only aldosterone, which is not a substrate for 11b-
HSD, was able to gain access to otherwise non-selective MR. Muta-
tions of the enzyme in AME sufferers or its inhibition by liquorice
led cortisol ‘illicitly’ to bind and activate MR causing sodium reten-
tion, potassium loss and hypertension.

For the corticosteroid system this was the first example of
pre-receptor metabolism gating steroid access to receptors. Pre-
receptor activating systems had been shown for sex steroid recep-
tors, with 5a-reductase type 2 converting the weaker androgen
receptor agonist testosterone to more potent dihydrotestosterone
in male secondary sexual structures [210,292] and aromatase
converting androgens into estrogens in target tissues such as mam-
mary gland and bone, thus providing ligand for estrogen receptors
[203,237]. Analogous systems have also been described for thyroid
hormone receptors with monodeiodinase isozymes inactivating or
activating thyroid hormones in a cell-specific manner [80].
2. One enzyme or two?

An 11b-HSD activity had been purified and encoding cDNA
clones isolated from rat liver by Carl Monder and colleagues in
New York in the mid 1980s [1]. In tissue homogenates and micro-
somes this activity was bi-directional, containing both 11b-dehy-
drogenase (glucocorticoid inactivating) and 11b-reductase
(glucocorticoid regenerating) activities, fuelled by NADP(H) as co-
substrate, and had a modest affinity (high nM Km) for glucocorti-
coids (Fig. 1). This enzyme was expressed in rat kidney spawning
suggestions that it underpinned MR selectivity and AME. However,
a series of concerns (there are few MR in liver, the highest site of
expression of this enzyme; the enzyme was expressed in the prox-
imal tubule whereas MR are in the distal nephron; no mutations in
the encoding gene were found in AME patients; the enzyme is
bi-directional in homogenates yet apparently a unidirectional
dehydrogenase in kidney in vivo) undermined the ‘one enzyme’
hypothesis. In 1993, Seckl and colleagues in Edinburgh [27] and
Naray-Fejes-Toth and colleagues in Dartmouth, NH [231], isolated
and characterised a novel enzyme from human placenta and rat
kidney, respectively. This was distinct from the enzyme described
by Monder, being a high affinity (low nM Km) exclusive 11b-dehy-
drogenase which used NAD rather than NADP(H) as co-substrate.
In 1994, Krozowski’s group [6] isolated a cDNA encoding this
‘renal’ 11b-HSD from human kidney, White and colleagues found
Fig. 1. The enzymatic actions of 11b-hydroxysteroid dehydrogenase (11b-HSD) in inter
(corticosterone) is metabolised by 11b-HSD2 to its inactive form (11-dehydrocorticoste
the same enzyme in sheep kidney [2], the rodent homologues were
soon cloned [214] and an identical enzyme purified and its encod-
ing cDNA cloned in the human placenta [27]. The new enzyme was
called 11b-HSD type 2 to distinguish it from Monder’s 11b-HSD
type 1 (Fig. 1). 11b-HSD2 is highly expressed in aldosterone-selec-
tive target tissues such as the distal nephron [226], colon [301],
salivary glands [225] and skin [125], thus serving to confer aldoste-
rone specificity on MR. Expression of 11b-HSD2 mRNA has also
been localised to the adrenal gland [249], and vasculature
[39,90], as well as in placenta and is widespread in the mid-gesta-
tional fetus [28]. Mutations in HSD11B2 encoding 11b-HSD2 are
found in patients with AME [65] and mice homozygous for tar-
geted disruption of the hsd11b2 gene faithfully recapitulate AME
[134].

This left open the question of what Monder’s 11b-HSD1 en-
zyme, which was highly expressed in liver and also rat kidney
was doing? Several groups suggested it might be a lower affinity
11b-dehydrogenase. In 1994, Seckl, Walker and their colleagues
in Edinburgh showed that whilst bi-directional in homogenates,
11b-HSD1 acted as a predominant 11b-reductase in intact cells
and in vivo, including in humans [113,155,215]. 11b-HSD1 is highly
expressed in liver, adipose tissue, immune system cells and, in
some species, in testes and ovary, with low-level expression wide-
spread. In most tissues glucocorticoid regeneration is the preferred
reaction although, unlike 11b-HSD2, its direction is dependent on
levels of co-substrate. Indeed 11b-HSD1 is located inside the inner
leaflet of the endoplasmic reticulum where its co-precipitates with
hexose-6-phosphate dehydrogenase (H6PDH) which appears to be
the major source of generation of NADPH driving 11b-reduction
[66]. Deficiency or knock-out of H6PDH leads to reaction reversal
of 11b-HSD1, though the importance of this remains uncertain un-
der most physiological circumstances [143,144].

Here we review the biology of 11b-HSDs and focus on their role
in determining glucocorticoid access to the developing and adult
brain. We highlight their biology in health and role in the patho-
genesis of disease through the lifespan.
3. 11b-HSD and its place in the world of corticosteroid signalling
in the brain

Glucocorticoids have profound effects on pre- and post-natal
brain development. They are essential for normal maturation in
most regions of the developing CNS, initiating terminal maturation,
remodelling axons and dendrites, and affecting neuronal and glial
cell survival [171]. Either inadequate or excessive glucocorticoid lev-
els cause abnormalities in neuronal and glial structure and function
that often impact throughout the lifespan. Similarly in adulthood,
-conversion of active and inactive glucocorticoids in rodents. Active glucocorticoid
rone) while regeneration can occur via 11b-HSD1.
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either excessive or deficient glucocorticoid action affects myriad
brain functions, altering biochemistry, neurotransmission, cell
structure, birth and death [118,120,160,234,235,285]. Thus accurate
control of glucocorticoid levels and cellular action is critical for brain
development and function. Whilst the precise mechanisms by which
plasma glucocorticoid levels are regulated and thereby affect brain
function is beyond the scope of this review, the classical view as-
cribes such regulation merely to the activity of the hypothalamic–
pituitary–adrenal (HPA) axis, with its key forward drivers (stress,
diurnal cues) and its well-described negative feedback control.

At the cellular level, the pervasive effects of glucocorticoids are
largely a consequence of their transcriptional effects mediated via
binding to high affinity MR and/or to the lower affinity glucocorti-
coid receptor (GR). Many genes, perhaps 5% of the genome, are glu-
cocorticoid targets, albeit few if any exclusively so. Target genes
include receptors, enzymes, neurotransmitters, calcium activation,
ion channels, cytoskeleton, cellular transport, growth and metabo-
lism [304].

Beyond plasma glucocorticoid levels and cellular GR and MR den-
sity, target tissue availability of glucocorticoids is also regulated in
blood by their plasma protein binding, largely to corticosteroid-
binding globulin (CBG) as well as albumin. CBG binds physiological
glucocorticoids (cortisol, corticosterone) with high affinity, but has
low or minimal affinity for their inert 11-keto-forms (cortisone,
11-dehydrocorticosterone) or for synthetic glucocorticoids (dexa-
methasone, prednisolone, triamcinolone) or mineralocorticoids
(aldosterone, deoxycorticosterone, fludrocortisone) [26,229]. CBG
may also act to deliver glucocorticoids to target cells. Binding to
CBG and lower affinity proteins such as albumin ensures that only
a small amount (2–5%) of physiological glucocorticoid is ‘free’ in
the circulation [26,229]. However, CBG’s capacity to bind steroids
can be flooded by high diurnal peak or stress levels of glucocorticoids
when much becomes free. Severe illness/chronic stress often sup-
presses CBG production with a consequent increase in ‘free’ gluco-
corticoid, albeit with diminution of the delivery function of CBG
[274]; the balance for glucocorticoid signalling is, as yet, poorly
understood.

As glucocorticoids are highly lipophilic they readily diffuse
across biological membranes into the cytoplasm, however, a role
for membrane transporters is emerging. The Mdr/p-glycoprotein/
ABCB1 transporter acts particularly at the blood–brain barrier
(but also on other membranes) to partially exclude specific cortico-
steroids from brain (as in many peripheral organs), although such
membrane ‘barriers’ are not absolute. Nonetheless p-glycoprotein
minimises access of synthetic steroids like dexamethasone to the
brain [169] and appears responsible for the preferential access of
the non-substrate corticosterone rather than cortisol to human
cerebrospinal fluid [124]. Nonetheless, the 10-fold molar excess
of cortisol over corticosterone in human blood militates for its pre-
dominant role in hypothalamic–pituitary–adrenal (HPA) axis feed-
back [217]. Inward glucocorticoid carriers and pumps, mirroring
the monocarboxylate transporter 8 which regulates thyroid hor-
mone access to the brain and other organs [99], are being sought
but remain, as yet, poorly defined.

Once inside the cell, corticosteroids bind to the two main types
of intracytoplasmic receptors; GR and MR [71,165,220]. An addi-
tional nuclear receptor, the pregnane X receptor (PXR; known as
SXR in humans) binds many synthetic glucocorticoids albeit with
much lower affinity than GR and MR [129]. PXR is highly expressed
in liver, but little if at all in brain parenchyma. However, PXR is
present in CNS capillaries [18] where it directly up-regulates p-gly-
coprotein, perhaps forming a mechanism to attenuate brain expo-
sure when plasma cortisol levels are chronically high. Additionally,
MR and probably GR mediate rapid non-genomic effects probably
via sites on the cell membrane [50]. The detailed biology of these
important new actions is only beginning to emerge.
GR are widely if not ubiquitously expressed in neurons and glia.
In contrast, high levels of MR are confined to hippocampus, septum
and scattered nuclei in the brain stem [11]. However, many other
regions have low-levels of MR and its role in signalling glucocorti-
coid actions in these sites is becoming clearer. Moreover, specific
challenges may induce MR (and GR) in loci of otherwise low
expression revealing novel functions such as neuroprotection in
neocortex under cell challenges such as hypoxia and hypoglycae-
mia [136,157]. MR have a sub-nanomolar affinity (Kd � 0.5 nM)
for corticosterone and cortisol. When these glucocorticoids are
not locally inactivated by 11b-HSD2, as in the adult hippocampus,
MR are thought to be largely occupied at even the low-levels of
‘free’ glucocorticoids during the diurnal nadir [41,176,218]. Thus
it is assumed hippocampal MR signalling is predominantly (not
exclusively) determined by MR density. In contrast, GR have a low-
er (�5 nM) Kd for physiological glucocorticoids and are barely
occupied under basal levels of steroids, but become progressively
activated as glucocorticoid levels rise during ultradian pulses, the
diurnal maximum or a stress response [51,218,219,258].

Over and above all these factors, within cells, 11b-HSD acts as a
major determinant of glucocorticoid access to receptors in periph-
eral tissues (reviewed in [65,239]). However, unlike the kidney and
other classical aldosterone-selective target tissues, MR in the CNS
largely bind physiological glucocorticoids in vivo [70], apart from
discrete areas regulating blood pressure and salt appetite, reflect-
ing the 100–1000-fold molar excess of glucocorticoids in the circu-
lation. Thus the now ‘classical’ role of 11b-HSD2 in generating
aldosterone-selective access to MR is minimal in the adult CNS.
So is there any 11b-HSD in the brain and, if so, which isozyme(s)?
Here we review this intriguing issue.

4. 11b-HSD1

4.1. Historic studies

11b-HSD1 is the main isozyme found in the adult mammalian
CNS. It was originally described in neuronal and glial cell lines in
the 1960s. Using at that time cutting-edge histochemical and bio-
chemical techniques, 11-keto oxidation of steroids was found in
mouse, rat, dog and primate whole brain extracts, as well as fetal
brain and the C6 glioma cell line [86,87,175,209,252]. Thereafter,
inter-conversion of radiolabelled cortisol and cortisone in vivo
and in vitro confirmed 11b-HSD activity in mouse brain, at lower
levels than found in liver, kidney and placenta [33]. In contrast,
the key studies in the late 1980s, which uncovered the crucial role
of 11b-HSD in preventing glucocorticoids from binding to renal MR
in vivo [68,72], did not find 11b-HSD activity in the hippocampus,
data interpreted as demonstrating that the non-selectivity of hip-
pocampal MR for corticosteroid ligands in vivo reflected the ab-
sence of 11b-HSD.

Subsequent re-examination of this issue, however, clearly dem-
onstrated 11b-HSD activity in homogenates, first of rat cerebellum
[179] and then in a broad range of rat CNS regions, including the
hippocampus [139,180]. 11b-HSD activity is highest in the cerebel-
lum, hippocampus and neocortex, with levels some 10–30% of
those in kidney and liver [139,179]. 11b-HSD is also clearly detect-
able in most other brain subregions, including the hypothalamus,
amygdala and brain stem [139,180,241]. The anterior pituitary also
has high 11b-HSD activity [139,180]. Other mammalian species
also express 11b-HSD activity in the CNS [115] including the
post-mortem human brain [233]. Whilst there is some discordance
in the earlier literature on the expression of 11b-HSD2 mRNA, and
perhaps confusion generated by highly sensitive PCR-based meth-
ods which inevitably detect occasional transcripts, the vast major-
ity of 11b-HSD mRNA and activity in the adult mammalian CNS is
11b-HSD type 1. The exception may be a few discrete nuclei in the
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hind brain/brain stem, notably the nucleus of the tractus solitarius
(NTS), which expresses 11b-HSD2 mRNA in adult rodents.
5. Distribution of 11b-HSD1 in the CNS

5.1. 11b-HSD1 in the adult brain

11b-HSD1 is widely distributed in the CNS, albeit with an un-
even pattern of expression. The enzyme mRNA, protein and activity
are found in neurons and in glia [180]. High adult expression is
found in the cerebellum, hippocampus and cortex, with a curious
patchy microdistribution, high in some cells, lower in others, that
remains unexplained [180]. Higher levels are found in specific
cells, for instance Purkinje cells of the cerebellum, CA3 pyramidal
cells of the hippocampus and layer V neurons of the neocortex
[180]. Lower expression is found in most cells of the CNS and spinal
cord and includes notably the paraventricular nucleus of the hypo-
thalamus, a key locus for glucocorticoid feedback control of the
HPA axis [180]. 11b-HSD1 is also expressed in anterior pituitary
cells including corticotrophs [131].

In general mRNA expression is paralleled by immunohisto-
chemistry and by enzyme activity. The former has been hampered
by the dearth of monospecific antisera, though western analysis
suggests a single band in CNS at 34 kDa, the expected size of the
full-length translated protein allowing for some glycosylation.
However, most antisera reveal additional bands, not only dimers
(68 kDa), but also alternative sizes that may or may not be prod-
ucts of the 11b-HSD1 gene.

At a subcellular level, work has similarly been hampered by a
lack of highly selective antisera. In peripheral cells, 11b-HSD1 is lo-
cated within the inner leaflet of the endoplasmic reticulum [201].
Early immunocytochemical studies suggested more widespread
locations in neurons including on the cell membrane. Such data re-
quire confirmation and consequent speculation of a role for 11b-
HSD1 in gating corticosteroid access to membrane MR [119], and
perhaps GR, and thus modulation of rapid non-genomic effects, re-
mains to be explored.
5.2. 11b-HSD1 in the developing brain

Glucocorticoids play an important role during development,
affecting the growth and differentiation of a number of tissues
and organs, including the central nervous system [52,172]. High-
dose glucocorticoid administration during the late prenatal and
early post-natal period in rodents leads to permanent inhibition
of brain growth, with reduced neurogenesis and glial proliferation,
attenuated dendrite formation and behavioural and neuroendo-
crine impairments [23,49,85,283], often resulting in long term
consequences on brain structure and function known as ‘program-
ming’ (see section on developmental programming). Although it is
11b-HSD2 that is considered important in development, playing its
part in maintaining a low glucocorticoid environment for the
growing fetus (see section on 11b-HSD2), 11b-HSD1 also has an
important role in late gestation. One mechanism to protect the
fetus from very high levels of maternal glucocorticoids is to induce
a period of stress hyporesponsiveness in the dam during preg-
nancy, which may occur, in part, from increased expression of
11b-HSD1 in the hypothalamus decreasing the forward drive on
the HPA axis [121]. In rodents, 11b-HSD1 is also expressed in the
placenta from E16, perhaps to boost the glucocorticoid surge near
the end of gestation to ensure fetal maturation [34]. In the fetal
brain, however, expression of 11b-HSD1 mRNA in the ovine fetal
hippocampus is detectable at mid-gestation, rises until late gesta-
tion but decreases near to parturition and is not affected by prena-
tal glucocorticoid treatment [254]. In the rat [58,178] and mouse
[257], 11b-HSD1 mRNA is not observed in the fetal brain until late
gestation (>embryonal day (E) 16), a time when 11b-HSD2 is
declining, and increases with age, although one report failed to de-
tect 11b-HSD1 mRNA in fetal brain at all [273]. Treatment with
dexamethasone in late gestation did increase 11b-HSD1 expression
in the hippocampus of the newborn [294] as well as adult offspring
[251], implicating it in the fetal programmed adult phenotype.

The activity in neonatal rat brain is likely to be 11b-reductase,
which is the main reaction direction of 11b-HSD1 in primary (late)
fetal hippocampal cell cultures [215]. Intriguingly, recent data
indicate that 11b-HSD1 knock-out mouse (11b-HSD1�/�) pups
are heavier at birth (controls: 1.344 ± 0.028 g; 11b-HSD1�/�:
1.468 ± 0.033 g, P < 0.05), suggesting a possible general role for
11b-HSD1 expression in cell maturation during late fetal and early
post-natal life (D.J. Stenvers, J.R. Seckl and M.C. Holmes, unpub-
lished observations) again introducing the potential for
11b-HSD1 and programming effects. This suggests that care should
be taken in treating pregnant women with emerging selective 11b-
HSD1 inhibitors.

6. Regulation of 11b-HSD1 expression

Given the importance of 11b-HSD in determining glucocorticoid
action, many studies have addressed the regulation of enzyme
activity. Dexamethasone, a synthetic glucocorticoid which is con-
ventionally thought to be a poor substrate for 11b-HSDs, induces
11b-HSD1 gene expression and activity in rat hippocampus and li-
ver and a variety of other peripheral cells [91,155,290]. Similar ef-
fects are found in other brain regions including the cortex,
cerebellum and hypothalamus of the rat [155] and the hippocam-
pus of the mouse (Teelucksingh, PhD Thesis, University of Edin-
burgh). However, care should be taken in interpreting these data
as preliminary evidence using 19F-magnetic resonance spectros-
copy of dexamethasone in vivo suggests that dexamethasone can
be metabolised by 11b-HSD1 [193].

Glucocorticoid induction of cerebral 11b-HSD1 requires several
days to become manifest. The mechanism is probably direct, as
11b-HSD1 induction by dexamethasone is also seen in primary
hippocampal cells in culture [215]. Similar direct induction of 11b-
HSD1 and its mRNA is observed in a variety of primary cells in vitro
[31,44,69,91,113,269,300], although regulation in vivo is tissue-
specific and considerably more complex [111,114,116,173,309].
Indeed, the cloned rat 11b-HSD1 gene proximal promoter region
contains putative GRE half-sites [177] and promoter–reporter con-
structs indicate that the 11b-HSD1 promoter contains a functional
glucocorticoid response element within 3700 base pairs of the tran-
scription start site [286]. However, there is considerable evidence
that glucocorticoid regulation of 11b-HSD1 is indirect. The Hsd11b1
gene is transcribed from three promoters, P1-3 [30,177], but tran-
scription in the brain, as well as liver and adipose tissue, is predom-
inantly from P2 and is dependent upon C/EBPa and b [30,303].
Glucocorticoid regulation of human HSD11B1 gene appears to be
indirect and requires C/EBPb binding to the P2 promoter, in skin
and lung (C/EBPb itself is up-regulated by glucocorticoids)
[91,232]. Other transcription factors have been shown to regulate
11b-HSD1 transcription in the peripheral tissues by acting on the
p2 promoter: PPARa [98], PPARc [22], HNF1a [248], LXRa [268],
but all act indirectly. More work is needed to determine 11b-HSD1
promoter regulation in the brain.

Arthritis stress for 15 days, which persistently and markedly
elevates plasma corticosterone levels, also induces hippocampal
11b-HSD1 [155]. This is consistent with inflammatory stress being
a major activator of 11b-HSD1, with proinflammatory cytokines
increasing 11b-HSD1 expression [311]. This has prompted the no-
tion that hippocampal 11b-HSD1 may function as an additional le-
vel of protection of vulnerable neurons from the endangering



Fig. 2. Orientation of 11b-HSD1 in the endoplasmic reticulum and its relationship
with H6PDH. 11b-Hydroxysteroid dehydrogenase type 1 (11b-HSD1) is located on
the luminal side of endoplasmic reticulum (ER) and the N-terminus is embedded
into the membrane of the ER. The system comprising the glucose-6-phosphate
(G6P) transporter and hexose-6-phosphate dehydrogenase (H6PDH) is crucial for
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metabolic effects of chronically elevated glucocorticoid levels
[155,181]. However, induction of 11b-HSD1 as a reductase would
be predicted to increase cellular exposure to glucocorticoids and
thus amplify any deleterious effects! In keeping with this, in the
tree shrew, chronic psychosocial stress (for 28 days) attenuates
hippocampal 11b-HSD activity [115]. Thus, (i) there are species dif-
ferences, (ii) there is a complex time course of effects of glucocor-
ticoids upon 11b-HSD1 expression or (iii) the effects of chronic
inflammatory stress on hippocampal 11b-HSD1 differ from other
chronic stimuli to the hypothalamic–pituitary–adrenal axis.

The case of inflammatory up-regulation of 11b-HSD1 in the
brain, begs the question, which cells are showing the up-regula-
tion, neurones or glia? It has been reported that microglia, the
phagocytes of the brain, express 11b-HSD1. This is up-regulated
when activated [84] as expected from the cells’ monocyte lineage.
11b-HSD1 in neurones, however, may be differentially regulated.

Other prominent regulatory factors of 11b-HSD in peripheral
tissues include estrogen, growth hormone, thyroid hormones and
insulin [91,145,146,153,154], but none of these have been shown
to affect 11b-HSD1 in the CNS. Overall, regulation of 11b-HSD1
in the brain is inadequately understood.
transport of G6P to the H6PDH enzyme. G6P binds to the H6PDH to form 6-
phospho-gluconolactone (G6P=O) resulting in generation of NADPH inside the
lumen of the ER. The NADPH thus produced is utilised by 11b-HSD1 for the
reduction of 11-dehydrocorticosterone to corticosterone.
7. Reaction direction, redox potential and hexose-6-phosphate

dehydrogenase

The bi-directional capability of 11b-HSD1 suggests the same en-
zyme can increase or decrease intracellular glucocorticoid action
depending on the context, particularly the cellular redox status.
In contrast to bidirectionality in homogenates or purified enzyme
preparations, in intact peripheral cells 11b-HSD1 usually acts as a
predominant 11b-reductase, regenerating active glucocorticoids
from inert 11-keto forms. For 11b-HSD1 to act as an efficient
reductase it requires high levels of NADPH (an NADPH:NADP ratio
>10). This gradient is thought to be generated by hexose-6-phos-
phate dehydrogenase (H6PDH) in the inner lumen of the endoplas-
mic reticulum (ER) [Fig. 2; [66]], where 11b-HSD1 associates with
H6PDH through direct protein–protein interactions [14] to maxi-
mize efficiency [201]. Mutations in H6PDH in the mouse and hu-
man attenuate 11b-HSD1 oxido-reductase activity and reveal
dehydrogenation [143,144], but does this matter in the brain?

As in peripheral tissues, 11b-HSD activity in homogenates of
whole brain or CNS subregions is bi-directional. 11b-HSD activity
in homogenates of brain subregions is markedly potentiated by
addition of exogenous dinucleotide co-substrate in vitro, whereas
in kidney or liver, activity is only marginally altered [86,139,
179,180], perhaps reflecting lower levels of endogenous NADP(H)
in the brain [82]. This has spawned the concept that variations in
co-substrate levels may determine enzyme activity and direction
in the brain in vivo [139,179,181]. Using immunocytochemistry,
Gomez-Sanchez et al. [83] found patchy low expression of
H6PDH in the brain that was not fully congruent with 11b-HSD1.
Whilst this observation implies that 11b-HSD1 may act primarily
as a dehydrogenase in the brain, this has not been observed. In-
deed, in intact cells from hippocampus, cortex and cerebellum
11b-HSD1 acts as a near exclusive reductase [215]. Perhaps alter-
native sources of NADPH drive 11b-reductase in intact brain cells
in vitro and in vivo. NADPH concentrations and H6PDH activity
can be very sensitive to glucose concentrations depending on the
cell type [66]. Glucose-6-phosphate (G6P), the substrate for
H6PDH, is transported from the cytosol to the ER via the G6P trans-
porter (G6PT; Fig. 2). G6PT deficiency in mice or humans decreases
11b-HSD1 reductase activity due to lack of substrate for G6PDH
[291]. G6P is not only a substrate for H6PDH but is also converted
to glucose by the enzyme glucose-6-phosphatase a (G6Pase), link-
ing metabolic and glucocorticoid pathways. G6Pase deficiency
causes glycogen storage disease type 1 (von Gierke’s disease) and
an increase in hepatic 11b-HSD1 reductase activity [291] due to
elevated availability of G6P for H6PDH. Indeed H6PDH is inte-
grated in the pentose phosphate pathway to generate reducing
equivalents in the form of NADPH, crucial for reductive biosynthe-
sis within cells and necessary for provision of ribose-5-phosphate
for synthesis of nucleotides and nucleic acids. However, the brain
is not a prominent target in glycogen storage disease type 1 with
damage correlating merely with hypoglycaemia, the major periph-
eral manifestation [170]. Clearly there is much to discover about
the determinants driving 11b-reductase in brain cells.

The stability of 11b-reductase in brain homogenates is reported
greater than in liver [137–139]. Why this should be the case is
unclear, but may reflect lower proteolytic or other degradative
processes in brain or a reaction direction driven by more than a suf-
ficiency of co-substrate generators other than H6PDH. Subtle
tissue-specific differences in 11b-HSD1 co-processing (e.g. glyco-
sylation, which possibly affects reaction direction [3]) has also been
advocated to underlie the stabilization of the 11b-reductase com-
ponent in brain, though no direct data address this speculation.
8. Functions of 11b-HSD1 in the brain

8.1. Tools to study 11b-HSD1 function

Investigation of the possible function of 11b-HSD1 in CNS-de-
rived and peripheral cells in vitro and in brain and other organs
in vivo, initially exploited liquorice-based ‘natural’ inhibitors of
11b-HSDs. The root of the liquorice plant, Glycyrrhiza glabra, syn-
thesises a number of triterpenoids based around glycyrrhizin; glyc-
yrrhetinic acid is the most potent and inhibits 11b-HSDs at low nM
Km in cell homogenates [20,264]. These compounds are now
known to be non-specific, inhibiting both 11b-HSD1 and 2 and also
affecting gap junctions and some related short-chain ketoreducta-
ses such as 15-hydroxyprostaglandin dehydrogenase, albeit with
2–4 logs lower affinity than 11b-HSDs [15,88,112].

More recently, a number of genetically-manipulated mouse
models have been employed, including transgenic over-expression
and knock-out lines. Whilst redundancy and compensatory devel-
opmental effects complicate many such approaches, the derived
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data in the case of 11b-HSD1 are strengthened by the lack of
redundancy since adult 11b-HDSD1�/� mice cannot regenerate ac-
tive glucocorticoids from inert 11-keto forms [135]. Moreover, un-
wanted developmental effects are minimised by the low
endogenous expression of 11b-HSD1 in the fetus until near birth.
Nonetheless, 11b-HSD1 is expressed in late fetal development
and contributes to amplifying glucocorticoid signalling at least in
the lung at term [110], and is clearly expressed postnatally
[179,180] so developmental effects may contribute somewhat to
knock-out phenotypes.

Recently, a number of selective 11b-HSD1 inhibitors have been
reported. The first, arylsulphonamidothiazoles, inhibit 11b-HSD1
in vitro and in vivo and show >200-fold selectivity over 11b-HSD2
[4,16]. These agents lower plasma glucose and insulin in hypergly-
caemic mice, reduce hepatic glucose production, decrease choles-
terol, free fatty acids and triglyceride levels [5], recapitulating
the 11b-HSD1�/� mouse phenotype which represents lowered
intracellular glucocorticoid action predominantly in liver and
adipose tissue [186]. Similar effects are shown by other com-
pounds, adamantyl triazoles, octyltriazoles, phenyl triazoles
[13,97,323,324]. However, to date central effects of these 11b-
HSD1 inhibitors have not been reported. This may reflect the
therapeutic target prioritized by the pharmaceutical companies
(and hence central effects were not monitored) or the difficulty
of designing selective compounds passing the blood–brain barrier.
However recent data suggest peripherally administered selective
11b-HSD1 inhibitors can target the enzyme effectively in the brain
[256].

8.2. Effects in CNS cells

Whilst early studies of 11b-HSD in the CNS showed the pres-
ence of the enzyme, ideas of function were dominated by the spec-
tacular biology of 11b-dehydrogenase in the kidney which was
initially thought to be the same enzyme. With the discovery that
11b-HSD1 predominates in the adult mammalian CNS and is an
11b-reductase in intact clonal and primary cultures of liver and
other cells, this interpretation was challenged [31,113,155]. Rajan
and colleagues [215] showed that primary cultures of (fetal) hippo-
campal cells expressed 11b-HSD1 but not 11b-HSD2. The activity
was exclusively an 11b-reductase and could be potently inhibited
(Ki low nM) by carbenoxolone, the hemisuccinate (to promote
absorption) derivative of glycyrrhetinic acid. In vitro, pre-treat-
ment with glucocorticoids promotes hippocampal cell death in
the presence of high but sub-lethal doses of excitatory amino acid
glutamatergic neurotransmitters such as kainic acid [215]. Whilst
intrinsically inert 11-dehydrocorticosterone is equipotent with ac-
tive corticosterone in potentiating kainate neurotoxicity, addition
of carbenoxolone, itself without neurotoxic effects, attenuates the
toxicity of 11-dehydrocorticosterone, but not corticosterone, in
hippocampal cell cultures [215]. These data support the 11b-
reductase reaction direction of 11b-HSD in hippocampal cells and
imply a potential role in amplifying intracellular glucocorticoid ac-
tion. However, such in vitro studies cannot do more than indicate
any in vivo importance.

8.3. Alternative reactions

11b-HSD1 has recently been reported to additionally catalyze
inter-conversion of 7-position modified sterol and steroid sub-
strates including the oxysterols 7-ketocholesterol to 7b-hydroxy-
cholesterol [223,238]. This probably reflects the mirror-image
structures involved; inverting 7-position modified ketosterol/
ketosteroid rings produces a close resemblance to the known
11-keto-steroid substrates. Indeed, 11b-HSD1-dependent gluco-
corticoid conversion may be attenuated by competition from the
alternative 7-oxysterol substrates [293]. The importance of such
reactions in the brain is unexplored, but oxysterols such as 7-keto-
cholesterol may be neurotoxic and their levels rise with excitotox-
icity and perhaps other pathologies [59,127]. The role of 11b-HSD1
and whether or not 7-keto and 7b-hydoxy cholesterol forms differ
in these or other properties in the CNS remains uncertain. Addi-
tionally, 7-keto- and 7b-hydroxy derivatives of the neurosteroids
dehydroepiandrosterone (DHEA) and pregnenolone may be metab-
olised by 11b-HSD1 [194]. 7-position modification of DHEA and
pregnenolone may potentiate neurosteroid activity, for instance
in cognitive enhancement with ageing [313], but any functional
importance of 11b-HSD1 in these reactions has yet to be addressed.

8.4. 11b-HSD1 and the HPA axis

Inter-individual differences in HPA axis underlie differential
vulnerability to neuropsychiatric and metabolic disorders,
although the basis of this variation is poorly understood. A major
stress to one individual may underpin anxiety or depressive symp-
toms with chronically elevated glucocorticoids, while another may
develop post-traumatic stress disorder (PTSD) associated with a
tendency towards lower circulating glucocorticoids, or fail to elicit
any lasting behavioural or neuroendocrine abnormality at all.
Although the relationship between the different HPA axis states
to the pathophysiology of these disorders is unclear, perhaps the
most robust biological effect in psychiatry is altered glucocorticoid
feedback efficacy upon the HPA axis in various disease states, nota-
bly blunted feedback in melancholic depression and enhanced
feedback in PTSD [45,317]. Moreover, numerous reports of efficacy
of glucocorticoid-lowering therapies in metabolic syndrome and
depression [109,263,295,320] suggest a role in pathogenesis and/
or maintenance of pathologic vulnerability. Clearly the genetic
and developmental mechanisms that underpin individual differ-
ences in HPA axis function are of considerable importance.

Expression of 11b-HSD1 in sites within the brain that are
responsible to the negative feedback actions of glucocorticoids
(cerebral cortex, hippocampus, hypothalamus and pituitary), sug-
gest this enzyme may be a key regulator of the HPA axis. Indeed,
mice lacking 11b-HSD1 exhibited signs of attenuated glucocorti-
coid negative feedback, consistent with reduced glucocorticoid sig-
nalling within the brain [94]. Moreover, the mice had elevated
nadir levels of plasma corticosterone, an exaggerated corticoste-
roid response to an acute stressor and the adrenal glands were en-
larged [94]. Interestingly, when the 11b-HSD deletion was bred
onto another genetic strain background (129/MF1 moved to
C57Bl/6 J) the consequences of the deletion on HPA axis activity
was considerably altered. In C57Bl/6 J mice, 11b-HSD1 deletion re-
sults in normal basal plasma corticosterone and an efficient nega-
tive feedback signal onto the brain, due to a compensatory rise in
the levels of GR expression in the hippocampus and PVN of the
hypothalamus [38]. Indeed the elevation of basal corticosterone
appears to track with the 129 genotype. However, all 11b-HSD1
null mice have larger adrenals often with an exaggerated glucocor-
ticoid response to stress [38]. Thus, although 11b-HSD1 appears to
contribute to regulation of the HPA axis, the genetic background is
crucial in governing the response to its loss. Similar variations in
plasticity may underpin inter-individual differences in vulnerabil-
ity to disorders associated with HPA axis dysregulation. While
these data indicate that 11b-HSD1 inhibition does not inevitably
activate the HPA axis beyond ‘compensatory’ elevation of ACTH
to maintain plasma glucocorticoids, it does suggest that certain
individuals treated with inhibitors could potentially have chroni-
cally increased cortisol levels. However, to date, trials of 11b-
HSD1 inhibitors in rodent models or clinical trials have failed to
uncover cortisol/corticosterone changes [228]. Note that the adre-
nocortical enlargement is considered ‘compensatory’ in as far as
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peripheral 11b-HSD1 contributes substantially (20–40%) to total
daily glucocorticoid production by regenerating cortisol from inert
cortisone largely in the liver and splanchnic bed [17,288]. Merely
to replace this, the HPA axis must drive the adrenals to produce ex-
tra glucocorticoids. Use of a selective 11b-HSD1 inhibitor in hu-
mans increases serum levels of ACTH and ACTH-sensitive adrenal
products such as dehydroepiandrosterone, but without changes
in cortisol, and is presumed to reflect this process [228]. Whether
or not human equivalent of the 129 mouse, with 11b-HSD1 defi-
ciency-induced plasma glucocorticoid excess, will be found re-
mains an important if unanswered question.

Tissue-specific alteration of 11b-HSD1 has added to our under-
standing of the role of this enzyme in regulating HPA activity and
circulating glucocorticoid levels. If 11b-HSD1 is replaced only in
the liver, using an ApoE-HSD1 transgene in 11b-HSD1�/� mice
from a strain that shows elevated circulating levels of corticoste-
rone, the basal and stressed plasma corticosterone levels and the
adrenal weights are normalised [205], implying peripheral 11b-
HSD1 is sufficient to rescue HPA abnormalities seen in 11b-
HSD1�/� mice. Overexpression of 11b-HSD1 in the liver (i.e. on a
wild type background) has no observable effect on circulating lev-
els of corticosterone [206], nor does overexpression in fat [164] or
the brain [102]. Furthermore, ectopic expression of the dehydroge-
nase 11b-HSD2 in fat, which reduces local glucocorticoid exposure,
also has no effect on circulating glucocorticoid levels [126].
Fig. 3. The effects of diurnal rhythm and voluntary exercise on 5-HT 2CR mRNA express
light-dark cycle with lights on at 06:00 and lights off at 18:00. Mice were sacrificed at 0
06:00 (W6). 5-HT 2CR mRNA expression was detected by in situ hybridisation histochem
retrosplenial cortex (KO: P = 0.022, WT: P = 0.698) and (B) choroids plexus (KO: P = 0.0
variation was observed in 11b-HSD1�/�, but not in wild type animals (KO: P = 0.090, WT:
are mean ± SEM. +P < 0.05 compared to corresponding 06:00 value.
However, it still remains to be tested whether deletion of 11b-
HSD1 solely in the brain is sufficient to recapitulate the HPA effects
observed in a global knock-out on a ‘HPA-dysfunction susceptible’
strain background.

8.5. Circadian regulation

Intriguingly, an abnormal circadian profile of plasma corticoste-
rone levels was reported in 11b-HSD1 knock-out mice on a 129/
MF1 background [94], suggestive of abnormalities in circadian sig-
nalling onto the HPA axis in the absence of 11b-HSD1. However,
the altered circadian rhythm in plasma corticosterone and ACTH
was not apparent in 11b-HSD1�/�mice on the C57Bl/6 J strain back-
ground. Furthermore, the clock genes, Per1 and Per2, show normal
circadian variation of expression in 11b-HSD1�/� mice, but expres-
sion of the 5-HT2C receptor, previously shown to be expressed in a
circadian manner in the rat hippocampus where it is regulated by
glucocorticoids [103], only showed circadian variation in 11b-
HSD1�/�mice, not in wild type controls (C57Bl/6 J; Fig. 3) suggesting
this rhythm only becomes manifest when intraneuronal glucocorti-
coid levels are low in this species. Consistent with normal circadian
patterns of gene expression and hormone levels, circadian wheel-
running behaviour is unaltered in 11b-HSD1�/� mice.

Given the regulation of 11b-HSD1 by glucocorticoids, circadian
changes in the enzyme in brain has been explored. In C57Bl/6 J
ion in 11b-HSD1�/� (KO) and wild type mice (WT). Animals were kept in a constant
6:00 (6), 12:00 (12), 18:00 (18), or after two months of voluntary wheel-running at
istry. Diurnal variation was seen in 11b-HSD1�/�, but not in wild type animals in (A)
01, WT: P = 0.232). (C) In the mediodorsal thalamus a tendency towards diurnal
P = 0.596). (D) Representative photomicrographs. n = 4–6 for each condition. Values



Fig. 4. The effects of diurnal rhythm and voluntary exercise on 11-HSD1 mRNA expression in the cortex and hippocampus of wild type mice (C57BL/6J). Animals were kept in
a constant light-dark cycle with lights on at 06:00 and lights off at 18:00. Mice were sacrificed at 06:00 (6), 12:00 (12), 18:00 (18), or after two months of voluntary wheel-
running at 06:00 (W6). Gene expression was detected by in situ hybridisation histochemistry. 11-HSD1 mRNA expression in (A) cortex and (B) CA3 of wild type animals.
n = 4–6 for each condition, except where a number above the bar indicates the n for that condition. Values are mean ± SEM.
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mice there is no circadian variation in 11b-HSD1 mRNA in the hip-
pocampus (Fig. 4; D.J. Stenvers, J.R. Seckl, M.C. Holmes, unpub-
lished observations. Similarly in mice with diet–induced obesity,
no rhythm in hippocampal 11b-HSD1 activity was observed
[284]. However, 11b-HSD1 mRNA shows diurnal variation in lean,
but not obese, Zucker rats [32]. Overall the impact of 11b-HSD1 on
circadian regulation and of diurnal cues on brain 11b-HSD1 appear
strain, species and state-dependent. This may have importance as
11b-HSD1 inhibitors may provide greater metabolic efficacy when
given in the evening [284] in rodents, the time of the diurnal peak
of glucocorticoids. It may have been postulated that an inhibitor
would have minimal impact on intracellular glucocorticoid levels
at the active glucocorticoid zenith, but this also coincides with
the maximum for plasma levels of the 11-keto substrate for 11b-
HSD1. Any impact of this in humans remains unexplored.

8.6. 11b-HSD1 and appetite regulation

Overexpression of 11b-HSD1 in adipose tissue causes hyper-
phagia, whereas ectopic expression of 11b-HSD2 in adipose tis-
sue induces hypophagia suggesting that glucocorticoid action
within fat tissues controls appetite [126,164]. However, the
11b-HSD1�/� mouse paradoxically shows increased appetite for
high fat diet, at least for several weeks [184,185]. This suggests
distinct, perhaps central effects of enzyme deficiency on appetite
for calorie dense diets. Indeed, 11b-HSD1 (mRNA and enzyme
activity) is expressed in the hypothalamic arcuate nucleus, a
key locus for appetite control [180]. Intriguingly, 11b-HSD1 is in-
duced in the arcuate nucleus by high fat feeding [57]. 11b-HSD1
null mice have altered neuropeptide gene expression in the arcu-
ate, notably reduced anorexigenic cocaine and amphetamine-reg-
ulated transcript and melanocortin-4 receptor mRNAs suggesting
increased ‘appetitive tone’ [57]. Importantly, under high fat diet
challenge, the 11b-HSD1 null arcuate nucleus up-regulates orex-
igenic agouti-related peptide (AGRP) mRNA, whereas controls fed
this obesogenic diet reduce AGRP expression [57]. The mecha-
nisms appear to operate via l-opioid receptor tone and imply
that local 11b-HSD1 plays a role in central adaptive restraint
mechanisms to dietary challenges.

8.7. 11b-HSD1 and affective behaviour

In a significant proportion of patients suffering from depression,
there is elevated cortisol production over 24 h, notably a rise in na-
dir plasma cortisol levels and a decreased amplitude of the circa-
dian profile [37]. It was therefore suggested that elevated
glucocorticoid signalling within the brain may play a role in the
aetiology of depression, which is supported by the high incidence
of depression in patients suffering from Cushing’s syndrome [40].
However, a consequence of high glucocorticoid levels is some
down-regulation of GR in the brain and periphery, manifest in
depression with reduced negative feedback as observed in the
dexamethasone suppression test. The glucocorticoid hypothesis
of depression therefore had been modified, as the behavioural
abnormalities of mood are perhaps as likely due to low rather than
high glucocorticoid signalling, a hypothesis supported by the affec-
tive phenotype of mice lacking GR selectively in the forebrain [24].
Hence, as 11b-HSD1�/� mice have lower levels of corticosterone in
the brain, they have been assumed to be susceptible to increased
anxiety or depressive-like behaviours. Generally this was not
found to be the case, at least on the C57Bl/6 background, in either
elevated-plus maze or open field tests [312]. These findings are
consistent with results from GR+/� mice, which also have reduced
(as opposed to abrogated) CNS glucocorticoid signalling but also
do not show altered affective behaviours in the basal state [221].
Young and old mice with modest overexpression of 11b-HSD1 in
the forebrain also showed no signs of anxiety, and do not exhibit
altered GR or MR density either (at least in hippocampus), suggest-
ing that low/normal to somewhat elevated glucocorticoid signal-
ling does not increase anxiety or depressive-like behaviours
[102]. Perhaps a ‘second hit’ such as altered monoaminergic neuro-
transmission is required to manifest affective impacts with modest
changes of central glucocorticoid signalling?
8.8. Cognition in young animals

11b-HSD1 is widely expressed in hippocampus and neocortex
suggesting its potential involvement in such processes as memory
and learning. Young adult 11b-HSD1 null mice generally show nor-
mal performance in tests of cognitive function; for example normal
acquisition and retention of spatial memory in the watermaze and
Y-maze [312,315]. Whilst 11b-HSD1�/� mice have impaired per-
formance in the object recognition test, which examines memory
and exploratory behaviour in a novel environment (Fig. 5) this
was associated with hyperactivity which confounds assessment
(D.J. Stenvers, J.R. Seckl and M.C. Holmes, unpublished observa-
tions). 11b-HSD1 null mice also unexpectedly show reduced mem-
ory retention after 24 h in the passive avoidance test (latency
16 ± 2.3 s vs. 63 ± 22.2 s). Reduced hippocampal MR signalling dur-
ing the circadian trough, potentially a consequence of reduced glu-
cocorticoid regeneration within MR-expressing hippocampal cells
when basal corticosterone levels are low (as in young animals)
and thus MR signalling might be modulated, is a plausible cause
of the novelty-induced hyperactivity, and possibly also of the re-
duced associative memory in 11b-HSD1�/�mice. However, the ma-
jor cognitive phenotypes associated with 11b-HSD1 manipulations
only emerge with ageing.



Fig. 5. Behaviour of 11b-HSD1�/� (KO) and wild type (WT) mice in the object recognition test. Two identical objects were presented to the mice in a learning session (L). In
test sessions after 1 (T 1), 4 (T 4) or 24 (T 24) hours, the same (old) object and a new object were shown to the animals. (A) Distance travelled by 11b-HSD1�/� and wild type
animals (n = 12 per genotype) in experiment 1. ANOVA reveals a significant effect of genotype (P = 0.017) and a decrease in activity over sessions in 11-HSD1�/� animals only
(P = 0.022). (B and C) Exploration time of 11b-HSD1�/� and wild type mice (n = 12 per genotype) in experiment 1. (B) 11b-HSD1�/�mice show increased total exploration time
compared to wild types, confirmed by ANOVA (genotype effect, P = 0.019). (C) No significant preference for the novel object over the old object was seen in either genotype.
ANOVA reveals a significant session:genotype interaction effect (P = 0.010). (D and E) Exploratory behaviour of naïve wild type mice (n = 12) in experiment 2. Significant
preference for the novel object was seen (D) in terms of absolute exploratory behaviour, confirmed by ANOVA (P = 0.005), but not (E) in terms of the percentage of total
exploration time spent exploring the novel object. Dashed line indicates chance level. (F) Exploration time of naïve wild type mice (n = 15) in experiment 3. Values are
mean ± SEM. �P < 0.05 compared to corresponding wild type animals.
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9. 11b-HSD1 and the ageing brain

Chronic elevation of glucocorticoids is associated with affective,
cognitive and even psychotic disorders [272]. Accumulating evi-
dence suggests that cognitive impairments with ageing associate
with elevated glucocorticoid levels in rodents and humans [168].
Indeed, maintenance of low glucocorticoid level throughout life,
either via neonatal ‘programming’ of GR and MR in hippocampus
which afford tighter HPA axis control, by antidepressant drugs
which up-regulate GR and MR in the hippocampus and other feed-
back sites in adulthood to similar effect, or by adrenalectomy with
low-dose glucocorticoid replacement in mid-life, prevent the
emergence of cognitive deficits with age [140,166,314].

Aged 11b-HSD1�/� mice resist the cognitive impairments seen
in aged wild type mice. This occurs in various cognitive tasks of
spatial memory, such as the watermaze [315] and the Y-maze
[312]. Indeed the Y-maze test is sensitive enough to determine
cognitive decline in mid-aged animals and again 11b-HSD1�/�

mice are protected from the deficits seen in congenic wild type ani-
mals. Importantly, the effects appear to be mediated upon cogni-
tive processes, rather than confounders such as affective
behaviour or locomotion which are broadly unchanged by 11b-
HSD1 deficiency (although aspects of locomotion at least are
clearly impacted by ageing per se [312]). Cognitive effects of 11b-
HSD1 deficiency have been observed using two distinct in-bred ge-
netic backgrounds (129, C57Bl/6 J) suggesting they may be
generalisable.

Deficiency or inhibition of 11b-HSD1 in liver and adipose tissue
causes local insulin sensitisation attenuating glucocorticoid driven
processes such as hepatic gluconeogenesis and lipid b-oxidation.
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The effect is to reduce fasting and post-prandial glucose and insu-
lin levels, triglycerides and atherogenic LDL-cholesterol, notably in
obese animals and subjects with type 2 diabetes [135,184,185,
228,289]. Type 2 diabetes is a risk factor for cognitive impairments
with ageing [12,267] and cognition correlates with HbA1c, a mar-
ker of long-term glycaemic control, in non-diabetic elderly subjects
[158]. However, several lines of evidence suggest that direct effects
of 11b-HSD1 deficiency in the brain play a role.

First, whilst on the original 129 strain background, 11b-HSD1
deficiency was associated with modestly elevated plasma cortico-
sterone levels [94], this is not seen on other strain backgrounds
[312] and would under other circumstances anyway be anticipated
to cause cognitive deficits not protection over the lifespan. More-
over, 11b-HSD1�/�mice show strikingly reduced intrahippocampal
corticosterone levels in the face of maintained or even elevated
plasma glucocorticoids [312]. This illustrates the importance of
the enzyme in determining effective intracellular glucocorticoid
signalling within brain cells.

Second, though 11b-HSD1 deficiency certainly attenuates met-
abolic disease with dietary challenge, obesity or stress, there is lit-
tle effect under basal conditions. The cognitive protection seen in
aged 11b-HSD1�/� mice under low stress housing and on normal
chow diet was not associated with any alterations in body weight,
plasma glucose or lipids, though plasma insulin levels were re-
duced [135,185]. It seems unlikely that modest lowering of insulin
levels is alone responsible for cognitive improvements. However,
the role of insulin signalling and processing in the CNS clearly mer-
its further dissection, notably as the insulin degrading enzyme
(IDE) is also important in beta-amyloid processing. Nor is this a
generalised retardation of ageing since longevity appears unaltered
in 11b-HSD1 deficient mice.

Third, 11b-HSD1 deficiency has effects upon the brain. Most
notable is the effect upon long-term potentiation (LTP) in the
CA1 region of hippocampal slices. LTP is a measure of synaptic
plasticity and is associated with learning and memory function.
Aged C57Bl/6 J control mice show attenuated LTP formation to a
tetanic stimulus compared with young animals. In contrast aged
11b-HSD1�/� mouse slices exhibit substantially greater LTP forma-
tion than similarly aged wild type preparations [312]. Again, whilst
it is not possible to prove in such a model that the electrophysio-
logical effects in hippocampal slices are due to the direct actions
of 11b-HSD1 in the brain, this is a plausible scenario.

Fourth, glucocorticoids inhibit neurogenesis, a key process in
the dentate gyrus which underpins its plasticity and could impact
upon cognitive functions. Young 11b-HSD1�/� mice show substan-
tially increased hippocampal neurogenesis [312], as anticipated
from the known inhibitory effects of glucocorticoids on the pro-
cess. Aged mice have very little neurogenesis anyway in the den-
tate gyrus, and the presence or absence of 11b-HSD1 appears to
make little difference to this [312]. Of course, greater neurogenesis
in young animals might underpin a systematic ‘gain-of-function’
state. Whilst no cognitively enhanced functions have been re-
ported in young 11b-HSD1�/� mice, the tests employed may not
be sensitive enough to discriminate such effects.

However, other data suggest that changes in 11b-HSD1 impact
more with ageing. Thus transgenic mice engineered to over-ex-
press 11b-HSD1 in the forebrain (50% increase across the hippo-
campus) under the CAMIIK promoter, which is expressed only
from the third post-natal week thus avoiding ‘developmental’ ef-
fects, show normal learning in the watermaze as mature (9 month
old) adults, but subsequently develop memory impairments at
18 months of age (mid-life) using watermaze test of spatial learn-
ing and conditioned avoidance learning tests [102]. Whether or not
these animals show altered neurogenesis remains to be explored,
but the implication is that ageing per se is required for the effects
of 11b-HSD1 manipulations to impact noticeably on cognitive
function and that elevated 11b-HSD1 activity is sufficient to pro-
duce cognitive decline with ageing. This, together with the clear
cognitive decline associated with up-regulation of endogenous
11b-HSD1 in the brain of C57Bl/6 mice in layer V of the cerebral
cortex and CA3 regions of the hippocampus as they age [102], af-
fords strong support for the notion that it is the enzyme in the
brain that is crucial and perhaps causal to the cognitive impacts
seen. It has even been suggested that cognitive decline with ageing
is caused by a ‘‘Cushing’s disease of the brain’’, paralleling the
emerging biology of raised 11b-HSD1 in adipose tissue in human
and monogenic rodent obesity [151,216] that causes metabolic dis-
ease [163,164]. This may sound all very intractable, but indeed
even short-term (2 weeks) treatment with a CNS-active selective
11b-HSD1 inhibitor improves cognitive function in aged mice, at
least in the low stress Y-maze task [256]. Thus the 11b-HSD1-asso-
ciated part of the glucocorticoid contribution to cognitive ageing
appears not entirely irreversible.

A further issue arises; what drives increased 11b-HSD1 in the
brain with ageing? The limited data imply the age-related rise in glu-
cocorticoid levels may further amplify their deleterious effects in the
CNS by inducing 11b-HSD1 expression. An intriguing alternative is
developmental programming, a process largely addressed below.
Data in rodents suggest that prenatal exposure to excess glucocorti-
coids ‘programmes’ long-lasting increases in 11b-HSD1 transcripts
in the hippocampus [251]. Any human relevance of such biology re-
mains to be explored, but late-gestational programming of increased
11b-HSD1 in peripheral tissues occurs in non-human primates [196]
so the extrapolation is perhaps not entirely absurd.

9.1. Human brain studies

In situ hybridization studies in post-mortem human brain have
confirmed the expression of 11b-HSD1 in hippocampus, prefrontal
cortex and cerebellum [233]. In two small, randomized, double-
blind, placebo-controlled, crossover studies, carbenoxolone im-
proved verbal fluency in healthy elderly men and verbal memory
in patients with diabetes type 2. Similar finding have been reported
in rodents [315].

In a prospective study in 41 healthy elderly men, the total body
11b-HSD1 ratio, but not other indices of glucocorticoid production
or metabolism, predicted the decline in ventricular volume and
cognitive function (processing speed) over the next 6 years [159],
explaining 10% and 30% of the variance, respectively. These data
suggest that elevated 11b-HSD1 may be predictive and even causal
of cognitive decline and brain matter loss with ageing in humans.
However, the location(s) of the 11b-HSD1 responsible for these ef-
fects is uncertain. Moreover, a potential link between cognition
and metabolism should be highlighted. Since 11b-HSD1�/� mice
are insulin sensitized and have an atheroprotective lipid profile,
it might be anticipated that the neuroprotective effect of the en-
zyme inhibitors could be secondary to metabolic and vascular ef-
fects. Chronic hyperglycemia in type 2 diabetes indeed associates
with mild cognitive impairments [267]. Polymorphisms in
HSD11B1 gene have been linked to diabetes type 2 and hyperten-
sion, at least in Native Americans, and a rare polymorphism
(rs846911-C/A) has been correlated with an increased risk of Alz-
heimer’s disease [54]. However, in a study of 194 participants of
the Scottish Mental Survey the common variants did not associate
with cognitive impairment with ageing and the rare polymorphism
was not detected [56]. Nevertheless, although carbenoxolone en-
hances insulin sensitivity in healthy young volunteers [289] and
patients with diabetes type 2 [10], in the elderly cognition studies
there were no effects on indices of glycaemic control or serum lip-
ids. The potentially synergistic effects of 11b-HSD1 inhibition on
the brain and metabolism appear propitious, but the locus of action
of selective 11b-HSD1 inhibitors needs to be defined. Nonetheless,
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11b-HSD1 inhibition is an intriguing prospective therapy for
cognitive decline with ageing, especially as even short-term use
of CNS-active selective inhibitors improve memory function in
aged rodents [256] as does non-selective carbenoxolone in elderly
humans [233]. Any efficacy of such agents in more catastrophic
pathological states of cognitive decline, such as Alzheimer’s
disease, remains to be explored.

10. 11b-HSD2

Within the cell, 11b-HSD2 is localised to the endoplasmic retic-
ulum, with a cytosol-facing active site and co-factor binding do-
main, and binds to its substrate with around 100-fold more
affinity than 11b-HSD1, suggesting it may play a more dominant
role in corticosteroid metabolism in tissues if the two enzymes
are co-expressed [65]. Importantly, 11b-HSD2 is not always colo-
calised with MR and so its function has expanded beyond involve-
ment in electrolyte transport to include regulation of corticosteroid
action. Thus, 11b-HSD2 is highly expressed in fetal tissues, includ-
ing the brain [28], and in the placenta where it is located at the
interface between maternal and fetal circulations, in the syncytio-
trophoblast in humans [29] and the labyrinthine zone in rodents
[287]. This high expression of feto-placental 11b-HSD2 potentially
serves as a ‘glucocorticoid barrier’ thus enabling tight regulation of
materno-fetal glucocorticoid transfer.

11. 11b-HSD2 deficiency: of mice and men

Hypertension associated with AME has been identified in approx-
imately 100 cases worldwide [65]. The condition presents in child-
hood or young adulthood as severe hypertension, hypokalaemia,
low renin and an extended half-life of cortisol as well as intrauterine
growth retardation, short stature, thirst, polyuria and altered post-
natal growth. Initially AME was attributed to elevated mineralocor-
ticoid action but it was subsequently realised to be the consequence
of defective cortisol metabolism, thus implicating impaired 11b-
HSD2 activity [260,277]. Indeed, over 33 different mutations in
11b-HSD2, all autosomal recessive, have been identified and result
in partial or total attenuation of enzyme activity [65].

An initial mouse model of targeted 11b-HSD2 disruption on an
outbred background revealed mice with an apparently normal
phenotype at birth but within 48 h, 50% exhibit motor deficiencies,
perhaps due to hypokalaemia, and die [134]. Survivors are fertile,
but exhibit severe hypertension, hypokalaemia and polyuria
[134], all typical characteristics of AME and thus apparent mineral-
ocorticoid actions of corticosterone were revealed by 11b-HSD2
deficiency. Interestingly, these mice did not exhibit reduced fetal
weight although this was clearly apparent in later studies on a
11b-HSD2 knock-out model congenic on a C57BL/6 J background
[101]. This raises the intriguing possibility of gene interaction ef-
fects on feto-placental 11b-HSD2 function.

In addition to replicating AME symptoms, 11b-HSD2�/� mice
revealed a key role for 11b-HSD2 in brain function. Heterozygous
matings have shown 11b-HSD2�/� offspring have heightened anx-
iety in comparison to their wild type littermates [101], demon-
strating a key role of feto-placental 11b-HSD2 in prenatal
glucocorticoid ‘programming’, a point which will be discussed in
detail later.

12. Expression and action of 11b-HSD2 in the brain

12.1. 11b-HSD2 in the adult brain

11b-HSD2 expression in the adult nervous system is low in
comparison to classic MR target sites. Indeed, initial attempts at
localising 11b-HSD2 expression in the brain failed [36,42,226].
However the development of sensitive mRNA probes coupled with
extensive examination of the rat brain, localised moderate levels of
11b-HSD2 mRNA in scattered specific cells of the ventromedial and
paraventricular (PVN) nuclei of the hypothalamus, amygdala, locus
coeruleus, subcommissural organ and nucleus tractus solitarus
(NTS) [224,227,322]. These areas underpin central control of blood
pressure and sodium appetite, both features reported to be preferen-
tially activated by aldosterone rather than corticosterone (reviewed
in [79]) implying mediation by 11b-HSD2-protected MR. Most other
MR-associated functions in the CNS are driven by glucocorticoids
such as hippocampus-associated cognition [11,53,281], suggesting
that the majority of MR-positive cells are 11b-HSD2 negative,
reflecting their predominant occupancy by glucocorticoids in vivo
[41,176,218].

Distribution of 11b-HSD2 within the mouse brain is limited
even further, localised only to the NTS [104,105] which is consis-
tent with a decreased aldosterone dependence on salt regulation
in mice in comparison to rats [230]. This rather implies that any
11b-HSD2 mRNA outside the NTS-sodium appetite/central cardio-
vascular control circuitry is low-level expression without clear
functional importance. In contrast, development of a transgenic
mouse in which Cre recombinase was targeted to 11b-HSD2 sug-
gested extensive distribution of 11b-HSD2 within the brain [192].
However, this most likely reflects the widespread expression of
11b-HSD2 in the developing brain driving developmental Cre
expression which remains permanently activated thereafter.

Using real-time RT-PCR, 11b-HSD2 mRNA expression in the
adult human brain has been reported in the amygdala, caudate nu-
cleus, cerebellum, corpus callosum, hippocampus and thalamus
[321], though the functional significance of low copy number
transcripts is moot, especially in pooled samples of human post-
mortem CNS when RNA preservation may be poor. Exploiting
individual samples with very short-post-mortem delays (<4 h),
no 11b-HSD2 mRNA or 11b-dehydrogenase activity was found in
human cortex, hippocampus or cerebellum [233].

Moreover, 11b-HSD2 colocalisation with MR in the adult rodent
brain is to date only clearly evident within the NTS, suggesting this
is the major (perhaps only) locus with the potential for aldoste-
rone-specific activation [79]. Curiously, adrenalectomized rats still
exhibit c-Fos activation (an indicator of neuronal activation) in
11b-HSD2 neurons within the NTS after dietary sodium depriva-
tion [75], which suggests that these 11b-HSD2 positive neurons
are activated by factors additional to adrenal aldosterone and other
corticosteroids. What these signals could be remains to be
established but angiotensin II has been proposed [79]. Alterna-
tively, the identification of 11-hydroxylase and aldosterone syn-
thase activity (with encoding cyp11b1 and cyp11b2 mRNAs)
within the brain points to local corticosteroid synthesis which
may afford some impact in the absence of adrenal products
[316]. 11b-HSD2 positive neurons within the NTS are innervated
by the amygdala, PVN, dorsomedial NTS and components of the
vagus [77,79,243,250], affording alternative pathways to activate
the system. These inputs may act in conjunction with aldosterone
to modulate NTS control of sodium appetite. It might be antici-
pated that NTS 11b-HSD2 neurons also project to areas involved
in autonomic control of cardiovascular function. However to date,
this does not seem to be the case and instead these axons innervate
forebrain and forebrain-relay nuclei in the rostral brain stem [78]
which associate with behavioural changes related to sodium
appetite, reward, arousal and mood (reviewed in [79]).

The significance of 11b-HSD2 in other regions of the adult brain
still remains elusive. Within the PVN, 11b-HSD2 mRNA has been
detected using RT-PCR [76,224,227,322]. Whilst microinjection of
either carbenoxolone or glycyrrhizic acid at high concentrations
directly into the PVN increased sympathetic outflow and PVN
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activity [322] and these actions occurred via MR activation as the
sympathoexcitory effects of carbenoxolone were blocked by intra-
cerebroventricular spironolactone, an MR antagonist [322], these
agents may have acted at different sites (i.e. PVN and NTS). More-
over, carbenoxolone and glycyrrhetinic acid also potently inhibit
11b-HSD1 which is also expressed in the PVN and other hypotha-
lamic loci (at mRNA, immunoreactivity and enzyme activity levels;
[180]) and may modulate glucocorticoid access to local MR as well
as GR. So any functional role for 11b-HSD2 mRNA in the PVN re-
mains uncertain. Moreover, the effects of functional expression of
both isozymes in the same or even adjacent cells is uncertain, if
and where this occurs. The notion of both destroying and regener-
ating glucocorticoids across the wall of the ER in a particular brain
cell seems rather futile unless the balance is physiologically regu-
lated somehow, a tough trick with two enzymes having such dispa-
rate affinities for substrate. The physiological importance of 11b-
HSD2 in the forebrain requires clear functional definition. The var-
ious existing genetically-manipulated mouse and perhaps future
rat models will be useful to dissect these questions in the absence
of selective 11b-HSD2 inhibitors.

12.2. 11b-HSD2. in the developing brain

In contrast to its limited expression in the adult CNS, 11b-HSD2
is highly expressed in the fetal brain where it appears critical for
normal maturation and life-long function. The developing brain,
as other fetal tissues, is extremely sensitive to glucocorticoids,
which are crucial for normal cellular and biochemical maturation
[132,167]. Thus glucocorticoids initiate terminal maturation, re-
model axons and dendrites and determine programmed cell death
[171]. In sheep, prenatal glucocorticoid administration retards
brain weight at birth [107], delaying maturation of neurons, mye-
lination, glia and vasculature [108]. The perinatal hippocampus is
especially sensitive to glucocorticoids with consequences for sub-
sequent memory and behaviour [25,247,259]. Thus, antenatal
treatment of rhesus monkeys with dexamethasone causes dose-
associated degeneration of hippocampal neurones and reduced
hippocampal volume which persists at 20 months of age [279].
Prenatal stress (induced by repeated restraint of the pregnant fe-
male in the last week of pregnancy) reduces actively proliferating
hippocampal cells and feminises sexually-dimorphic parameters
of the adult hippocampus [161].

The critical nature of glucocorticoids for neural development is
reflected by the expression of GR, MR and 11b-HSDs in the devel-
oping brain, with an intricate temporal and regional pattern
[58,73,128]. In the embryonic rat brain, GR is highly expressed in
neuroepithelium while MR expression is confined to the epithe-
lium of the septal-hippocampal system, areas of the anterior hypo-
thalamus, pituitary, deep layers of the superior colliculus, piriform
cortex and lateral septum [58]. However, MR expression only be-
comes extremely prominent in the last 3 days of gestation within
the hippocampus and lateral septum [58]. Interestingly, neural
11b-HSD2 expression does not coincide with the pattern of MR
expression. Thus, 11b-HSD2 is abundant in neuroepithelium
throughout midgestation and then strikingly and rapidly declines,
coinciding with the terminal stage of neurogenesis in particular
loci [28,58]. Similar patterns of expression occur in the human fetal
brain with 11b-HSD2 silenced between gestational weeks 19–26
[261]. The lack of correspondence between MR and 11b-HSD2
expression patterns and the abundance of 11b-HSD2 in the fetal
brain alongside GR supports the proposition that 11b-HSD2 acts
to protect immature mitotically-active brain cells from premature
exposure to the maturational effects of glucocorticoids. This is akin
to the proposed role of placental 11b-HSD2 in protecting the fetus
as a whole from overexposure to maternal glucocorticoids
[28,242,287]. Abundant 11b-HSD2 expression in the developing
CNS may act as an additional local barrier to endogenously-derived
glucocorticoids. However, it still remains to be established if the
presence of 11b-HSD2 in feto-placental tissues does indeed alter
GR activation and occupancy or indeed target cell corticosteroid
levels. Moreover, as discussed below, 11b-HSD2 may have further
indirect neuroprotective effects.

The high levels of 11b-HSD2 observed during mid-term brain
development reduce strikingly as brain areas cease to proliferate
and differentiate. After birth, high levels of 11b-HSD2 are localised
only in the proliferating external granular layer of the cerebellum
and in several nuclei of the thalamus [224,227]. Therefore the
cerebellum is sensitive in the early post-natal period to glucocorti-
coid-induced remodelling induced by either exogenous administra-
tion or in response to the stress induced by maternal separation
[152,174,302]. Furthermore, cerebellar size is reduced in 11b-
HSD2�/� mice in early in post-natal life due to a decrease in the
molecular and internal granule layers [104]. This associates with a
delay in attainment of neurodevelopmental landmarks such as neg-
ative geotaxis and eye opening [104]. Thus, the timing of exposure of
the developing brain to glucocorticoids seems to be tightly regulated
by the presence of local 11b-HSD2 and the cell-specific patterns of its
down-regulation during maturation.
13. Developmental regulation of 11b-HSD2

11b-HSD2 is expressed in the fetally-derived portion of the pla-
centa, and regulated at the transcriptional, post-transcriptional
and post-translational level by a host of factors including nitric
oxide, progesterone, oestrogen, protein kinase A, retinoic acid,
prostaglandins, catecholamines, oxygen, glucocorticoids, PPARD,
proinflammatory cytokines and heavy metal toxins [7,92,93,122,
133,204,207,236,270,271,275,280,310]. Furthermore, p38 MAPK
has a specific role in upregulating 11b-HSD2 expression via alter-
ation in 11b-HSD2 stability in primary trophoblast cells [246].

Within the brain, early weaning and social isolation decreases
11b-HSD2 expression in frontal cortex and hippocampus of piglets
[211]. Recently, signalling by sonic hedgehog, a morphogen in-
volved in the patterning of systems including the CNS, was shown
potently to induce 11b-HSD2 in mouse cerebellar granule neuron
precursors [95]. Whilst the mechanism(s) responsible for down-
regulating 11b-HSD2 in fetal brain at midgestation remain to be
established, it may related to epigenetic silencing targeting the C
and G-rich sequences in the 50 region of the 11b-HSD2 gene [29].
Indeed, 11b-HSD2 expression is altered via epigenetic mechanisms
in JEG-3 trophoblast cells [8].
14. The role of 11b-HSD2 in developmental programming

14.1. Developmental programming

A poor environment in utero, as for example indicated by low
birth weight, can permanently alter the structure and function of
organ systems, thereby increasing the offspring’s risk of cardiomet-
abolic and neurobehavioural pathologies in later life. This notion of
the developmental origins of adult health and disease is coined
‘developmental programming’. The environmental mechanisms of
developmental programming have been ascribed to two major pro-
cesses: fetal glucocorticoid exposure and fetal malnutrition. Gluco-
corticoids are crucial prenatally in the structural development and
functional maturation of fetal organs. However, glucocorticoid
overexposure of the fetus can be detrimental as glucocorticoids
cause a shift from cell proliferation to differentiation. Therefore,
exposure to excess glucocorticoids in utero alters fetal organ
growth and maturation patterns, which can result in adverse con-
sequences in later life. In humans, the actions of glucocorticoids are
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exploited for preterm births, serving to advance fetal lung matura-
tion thereby reducing neonatal morbidity and mortality [222]
although this may set the stage for adverse effects in later life
[21,29,60–63,74,117,141,149,150].

The high expression of 11b-HSD2 in placenta and fetal tissues,
the known gradient of glucocorticoids across the placenta, with
cortisol levels in the maternal circulation �10-fold higher than in
the fetus [19,47,183], and the growth retarding and maturational
effects of glucocorticoids upon the fetus [171] have spawned the
proposal that variations in feto-placental 11b-HSD2 may underlie
developmental programming. In support, placental 11b-HSD2 cor-
relates with birth parameters in rodents and, less consistently, in
humans [21,190,262] suggesting that normal variation in fetal
exposure to maternal glucocorticoids impact on fetal growth. Cru-
cially, inhibition, deficiency or by-pass (poor substrate steroids
such as dexamethasone or betamethasone) of 11b-HSD2 in gesta-
tion in rodents and humans associates with alterations in preg-
nancy duration, birth weight and programmed outcomes in the
offspring [21,48,101,150,188,195,198,200,255,298,299,306,307].
Specifically, humans homozygous (or compound heterozygous) for
deleterious mutations in HSD11B2 have very low birth weight com-
pared with their largely heterozygous siblings [48,188]. Similarly,
11b-HSD2�/� mice have lower birth weight [101]. Furthermore,
administration of dexamethasone or carbenoxolone reduces birth
weight and exerts programming effects in rats [21,35,150,198,200,
255,298,299,306,307]. In contrast, late pregnancy administration
of metyrapone, an inhibitor of adrenal glucocorticoid synthesis,
increases fetal and placental weight [35]. Mechanisms involving
glucocorticoid-driven changes in target organ structure, gene
expression and function have been demonstrated and epigenetic
process maintaining such effects advocated [64,197,198,240,296,
298,299,306,307].

Interestingly, in programming models involving maternal
low-protein diet there is an increase in maternal and fetal gluco-
corticoid levels [89,148] in addition to a decrease in placental
11b-HSD2 activity [142]. Moreover, dexamethasone administra-
tion during pregnancy decreases food intake [305]. Consequently,
there seems to be considerable overlap in mechanisms by which
maternal undernutrition and fetal glucocorticoid overexposure
elicit developmental programming.

The significance of fetal glucocorticoid exposure for adult path-
ophysiology has been studied in detail in the rodent, in particular
the rat, but studies have found similar processes in the guinea
pig and sheep [21,29,60–63,74,117,141,149,150]. Whilst all such
models show that a variety of maternal insults exert remarkably
similar, though not identical, effects upon offspring physiology,
extrapolation to humans has remained unresolved, not least
because of species differences in placental anatomy and the
detailed ontogeny of 11b-HSD2 expression [28,266]. Crucially, re-
cent work in singleton-bearing non-human primates has shown
that exposure in late gestation to dexamethasone, a synthetic
glucocorticoid which is a poor substrate for inactivation by
11b-HSD2, causes adverse cardiometabolic and neuroendocrine
sequellae in the juvenile offspring [55].

14.2. Modulation of neural 11b-HSD2 impacts on neural development
and subsequent adult function

In the rat, central programming by glucocorticoids, be it from
maternal administration of dexamethasone or prenatal stress pro-
duces offspring that appear more anxious as adults. Thus, late ges-
tational dexamethasone exposure in rats impairs the offspring’s
‘coping’ behaviours in aversive situations later in life as exempli-
fied by reduced exploration in the open field test and elevated-plus
maze [299]. Such increase in anxiety-like behaviour is evident as
early as post-natal week 10 in rats prenatally exposed to
dexamethasone [191]. Moreover, 11b-HSD2 appears important in
these events since either treatment of pregnant rats with an 11b-
HSD inhibitor or gene deletion in mice produces offspring with en-
hanced anxiety-related behaviours [101,298]. However, one must
remember that in the 11b-HSD2�/� mouse there is no 11b-HSD1
substrate (11-dehydrocorticosterone) and therefore this will have
ramifications for brain function, albeit perhaps most notably with
ageing.

These programmed changes in behaviour are accompanied by
alterations in the HPA axis. Thus, maternal dexamethasone treat-
ment increases corticosterone and ACTH levels in the adult off-
spring, although interestingly, mostly in males [149,189,200,299].
These effects seem to reflect a change in the feedback of the HPA
axis at the level of the hypothalamus, since CRH mRNA increased
in the paraventricular nucleus whereas hippocampal MR and GR
both decreased [46,298]. Furthermore, the HPA axis period of hyp-
oresponsiveness in early post-natal life is abolished in adult rats
exposed to prenatal stress [156], whilst normal age-related HPA-
axis dysfunction is accelerated by prenatal stress [202]. In sheep,
a single injection of betamethasone on gestational day 104 altered
HPA function in offspring at 1 year of age, with elevated basal and
stimulated plasma cortisol concentrations [253]. In contrast, re-
peated maternal betamethasone injections elevated the ACTH re-
sponses in the offspring to a CRH/AVP challenge in addition to
increased basal ACTH levels but decreased basal and stimulated
cortisol levels [187,253]. In primates, offspring of mothers treated
with dexamethasone during late pregnancy have elevated basal
and stress-stimulated cortisol levels [55,278].

Moreover, prenatal stress and alterations in offspring HPA axis
function has also been associated in humans. Thus, children of
mothers present at or near to the World Trade Centre atrocity on
9/11, who themselves developed symptoms of post-traumatic
stress disorder (PTSD), had lower cortisol levels [318]. Importantly
these changes were most apparent in babies born to mothers who
were in the last three months of their pregnancies when the trau-
ma occurred, suggesting these observations can be attributed to
developmental programming phenomena as opposed to a genetic
susceptibility or the presence of PTSD per se [318]. Such effects
may transmit into subsequent generations, since healthy adult
children of Holocaust survivors with PTSD (and therefore lower
plasma cortisol levels) themselves have lower cortisol levels
though no PTSD [319]. This appears to be confined to the children
of Holocaust-exposed mothers with PTSD [319]. In contrast to
PTSD, maternal anxiety and depression seem to elevate cortisol
in the child [199,282]. Therefore the mechanisms of prenatal stress
programming HPA function in humans seem complex, with possi-
bly different pathways involved. Intriguingly, in Finland, women
who voluntarily ingest liquorice-containing foodstuffs (that po-
tently inhibit placental 11b-HSD2 [20]) in pregnancy have some-
what shorter gestations and their 8-year old offspring show
altered cognitive function, affective disturbances (notably mark-
edly increased rates of attention-deficit hyperactivity disorder),
HPA axis hyperactivity and sleep disturbances [212,213].

Behavioural changes in adults exposed prenatally to glucocorti-
coids appear associated with altered functioning of the amygdala,
the key structure involved in the expression of fear and anxiety,
with amygdala CRH levels implicated in fear-related behaviours.
Prenatal glucocorticoid exposure increases adult CRH levels specif-
ically in the central nucleus of the amygdala and therefore may be
responsible for the increase in anxiety-like behaviour observed in
these animals. Prenatal stress similarly programmes increased
anxiety-related behaviours with elevated CRH in the amygdala
[46] as well as schizophrenic-like behaviour [130,147] which can
be reversed by administration of oxytocin into the central amyg-
dala [147]. Moreover, corticosteroids facilitate CRH mRNA expres-
sion in this nucleus [106] and increase GR and/or MR in the



Fig. 7. Total Igf2 expression in liver of 11b-HSD2+/+, 11b-HSD2+/- and 11b-HSD2�/�

fetuses at E15. Total Igf2 expression was measured by real-time RT-PCR in offspring
generated from heterozygous 11b-HSD2 matings. Data are expressed as mean ± -
SEM; n = 6 per group. �P < 0.05.
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amygdala [298,299]. A direct relationship between brain cortico-
steroid receptor levels and anxiety-like behaviour is supported
by the phenotype of transgenic mice with selective loss of GR gene
expression in the brain, which shows markedly reduced anxiety
[276]. Furthermore, in human depression and schizophrenia, de-
creases in GR expression in specific brain regions such as the
amygdala and hippocampus have been reported [208,297]. Inter-
estingly, forebrain-specific knock-out of GR results in mice with in-
creased depressive-like behaviour and reduced anxiety-related
behaviour [24], whilst forebrain-specific MR-overexpressing trans-
genic mice exhibit reduced anxiety and altered behavioural re-
sponse to novelty [136]. It is unclear however, how depression
and anxiety relate and whether they represent different disorders
or have similar underlying dysfunction. Regardless, alterations in
brain GR and MR appear to be driving forces behind the anxious
phenotype.

Interestingly, despite increased anxiety, the HPA axis activity of
11b-HSD2�/� offspring appears unaffected, perhaps a reflection of
the additional effects of attenuated HPA axis reactivity due to re-
duced glucocorticoid clearance with absence of renal 11b-HSD2
[101]. However, as predicted, adrenal size is reduced and hence
resetting of the HPA axis may have occurred during development.
This, together with decreased degradation of corticosterone, means
less corticosterone needs to be produced. Consistent with this,
11b-HSD2�/� mice exhibit no differences during adulthood in the
limbic expression of GR, MR or CRH, but there are transient
changes within the post-natal period. In homozygous matings of
11b-HSD2�/� mice, transient elevations in GR transcript were ob-
served by in situ in all hippocampal subfields of 11b-HSD2�/� off-
spring at P14 (Fig. 6; C.T. Abrahamsen, M.C. Holmes, unpublished
observations). Similar transient changes were observed with MR,
Sgk1, Fkbp5 and BDNF (C.T. Abrahamsen, M.C. Holmes, unpub-
lished observations). Interestingly, preliminary data suggests that
altered serotonin signalling in 11b-HSD2�/� adult brains may be
Fig. 6. Hippocampal GR mRNA expression during early post-natal period in 11b-HSD2 tra
(GR) mRNA expression in the (a) CA1, (b) CA2, (c) CA3 and (d) dentate gyrus (DG) hippoc
3-week (P21) old mice by optical densitometry of in situ hybridisation autoradiographs.
ANOVA with SNK post-hoc testing for each subfield; n = 5–10 per group. �P < 0.05, #P < 0
responsible, at least in part, for the anxiety-related behaviour
(C.S. Wyrwoll, M.C. Holmes, unpublished observations).
14.3. The placenta: an indirect role for 11b-HSD2 in neuroprotection

As outlined above, it has been hypothesised that relative defi-
ciency of placental 11b-HSD2 may underpin aspects of develop-
mental programming by allowing excess glucocorticoid passage
from the ‘high’ glucocorticoid maternal circulation to the ‘low’ glu-
cocorticoid fetal environment [67]. The observed impairment of
fetal growth in these studies is frequently attributed to direct ef-
fects of glucocorticoids on the fetus. Fetal growth is however
dependent on an array of maternal, placental and fetal endocrine
signals and glucocorticoid-mediated fetal growth retardation must
also relate, at least in part, to disturbances in placental growth and
function. Indeed, maternal treatment with dexamethasone impairs
normal vascular growth in the rat placenta [100]. Moreover, in
nsgenic mice. Effect of 11b-HSD2 genotype (+/+ j, �/�h) on glucocorticoid receptor
ampal subfields. Expression levels were measured in 1-week (P7), 2-week (P14) and
Data are expressed as mean ± SEM in arbitary units (AU) and analysed by two-way
.01.



Fig. 8. Expression and function of 11b-hydroxysteroid dehydrogenase (11b-HSD) type 1 and 2. 11b-HSD1 is widely expressed throughout the adult CNS and is key to HPA axis
function and cognitive decline during ageing. Conversely, the major central effects of 11b-HSD2 are seen in development, as expression of 11b-HSD2 is high in fetal tissues
including the neonate brain and placenta. Loss of 11b-HSD2 from the fetus and fetally-derived tissues results in a life-long phenotype of anxiety, consistent with
developmental programming.
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addition to impaired vascularity, placentas from 11b-HSD2�/� fe-
tuses exhibit altered placental transport of glucose and amino
acids [308]. Thus, amino acid transport in placentas from
11b-HSD2�/� fetuses is up-regulated at E15 which coincides with
maintained fetal weight but by E18, fetal 11b-HSD2�/� weight is
decreased alongside reduced placental glucose transport [308].
Interestingly, at E15, brain and liver corticosterone levels are only
slightly higher in 11b-HSD2�/� fetuses (C.S. Wyrwoll, M.C. Holmes,
unpublished observations), suggestive of an additional placental
glucocorticoid ‘barrier’ although what this could be remains moot;
mdr1/p-glycoprotein has been advocated [123,162]. Extensive fur-
ther work is required to establish whether placental transfer of
other factors such as essential fatty acids and oxygen contribute
to altered fetal development and to elucidate the involvement of
factors within the placenta such as VEGF and IGFs in altering pla-
cental function. Indeed, Igf2 expression is up-regulated in the livers
of 11b-HSD2�/� fetuses at E15 (Fig. 7; A. Reddy, C.S. Wyrwoll, M.C.
Holmes, unpublished observations). The significance of this
expression is uncertain but it may be an indicator of crosstalk be-
tween the fetus and placenta [43]. Nonetheless, the current data
provide a convincing argument that while maternal glucocorti-
coids could play a direct role in programming the fetus, notably
its brain, placental development and function plays a key role. It
must be noted however, that until tissue specific knockouts of
11b-HSD2 in placenta and fetal tissues, in particular the brain,
are developed, the differential significance of feto-placental
11b-HSD2 for development cannot be elucidated.
15. Overview

The past decade has seen considerable progress in the under-
standing of the role of 11b-HSDs in neural function, particularly
aided by the development of transgenic animals. 11b-HSD1 plays
myriad roles in normal function of the adult brain (Fig. 8), with
wide distribution throughout the CNS, and doubtless more roles
will emerge. Furthermore, 11b-HSD1 appears critical to ageing
brain function, with age-related increases in 11b-HSD1 linked to
a decline in cognition. This opens up potential therapeutic avenues,
setting the stage for the development of selective 11b-HSD1 inhib-
itors for cognitive decline to build upon intriguing effects in null
mice and with non-selective inhibitors in animals and humans.
With regards to 11b-HSD2, its significance within the adult brain
at present seems confined to controlling salt appetite, presumably
in salt-seeking species, but this isozyme plays a crucial role during
development (Fig. 8). Both fetal neural and placental 11b-HSD2 ap-
pear to be a central hub for eliciting the programmed effects on
neuropsychiatry, although the relative significance of fetal brain
vs. placental 11b-HSD2 is yet to be established. It is anticipated
that the next decade will see exploitation of this understanding
to generate human impacts, such as prediction (measuring placen-
tal 11b-HSD2 levels or its epigenetic marks) and manipulation of
developmental programming on the risk of CNS disorders and
the use of emerging selective 11b-HSD1 inhibitors in disorders of
the ageing brain.
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