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Determining the number of embeddings of Laman graph frameworks is an open problem
which corresponds to understanding the solutions of the resulting systems of equations.
In this paper we investigate the bounds which can be obtained from the viewpoint
of Bernstein’s Theorem. The focus of the paper is to provide methods to study the
mixed volume of suitable systems of polynomial equations obtained from the edge length
constraints. While in most cases the resulting bounds are weaker than the best known
bounds on the number of embeddings, for some classes of graphs the bounds are tight.
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1. Introduction

Let G = (V , E) be a graph on n vertices with 2n − 3 edges. If each subset of k vertices spans at most 2k − 3 edges, we
say that G has the Laman property and call it a Laman graph (see [20]). A framework is a tuple (G, L) where G = (V , E) is
a graph and L = {li, j: [vi, v j] ∈ E} is a set of |E| positive numbers interpreted as edge lengths. For generic edge lengths,
Laman graph frameworks are minimally rigid (see [7]), i.e. they are rigid and they become flexible if any edge is removed.

A Henneberg sequence for a graph G is a sequence (Gi)3�i�r of Laman graphs such that G3 is a triangle, Gr = G and each
Gi is obtained by Gi−1 via one of the following two types of steps: A Henneberg I step adds one new vertex vi+1 and two
new edges, connecting vi+1 to two arbitrary vertices of Gi . A Henneberg II step adds one new vertex vi+1 and three new
edges, connecting vi+1 to three vertices of Gi such that at least two of these vertices are connected via an edge e of Gi and
this certain edge e is removed (see Fig. 1).

Any Laman graph G can be constructed via a Henneberg sequence and any graph constructed via a Henneberg sequence
has the Laman property (see [25,27]). We call G a Henneberg I graph if it is constructable using only Henneberg I steps.
Otherwise we call it Henneberg II.

Given a Laman graph framework we want to know how many embeddings, i.e. maps α : V → R2, exist such that the
Euclidean distance between two points in the image is exactly li, j for all [vi, v j] ∈ E . Since every rotation or translation
of an embedding gives another one, we ask how many embeddings exist modulo rigid motions. Due to the minimal rigidity
property, questions about embeddings of Laman graphs arise naturally in rigidity and linkage problems (see [16,28]). Graphs
with less edges will have zero or infinitely many embeddings modulo rigid motions, and graphs with more edges do not
have any embeddings for a generic choice of edge lengths.
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Fig. 1. A Henneberg I and a Henneberg II step. New edges are dashed and the deleted edge is pointed.

Determining the maximal number of embeddings (modulo rigid motions) for a given Laman graph is an open problem.
The best upper bounds are due to Borcea and Streinu (see [4,5]) who show that the number of embeddings is bounded by(2n−4

n−2

) ≈ 4n−2√
n−2

. Their bounds are based on degree results of determinantal varieties.

A general method to study the number of (complex) solutions of systems of polynomial equations is to use Bernstein’s
Theorem [2] for sparse polynomial systems. This theorem provides bounds on the number of solutions in terms of the mixed
volume of the underlying Newton polytopes. Since the systems of polynomial equations describing the Laman embeddings
are sparse, the question arose how good these Bernstein bounds are for the Laman embedding problem. While for concrete
systems of equations, the mixed volume can be computed algorithmically, studying the mixed volume for classes of polytopes
is connected with a variety of issues in convex geometry (such as understanding the Minkowski sum of the polytopes).

In this paper, we study the quality of the Bernstein bound on the Laman embedding problem and provide methods to
handle the resulting convex geometric problems. In most cases, our bounds are worse than the bounds in [5]. However, we
think that the general methodology of studying Bernstein bounds nevertheless provides an interesting technique, and we
see the main contribution of this paper in providing the technical tools (such as achieving to determine the mixed volume)
to compute these bounds for whole classes of graphs. It is particularly interesting that for some classes of graphs, the mixed
volume bound is tight.

To use these algebraic tools for the embedding problem we formulate that problem as a system of polynomial equa-
tions in the 2n unknowns (x1, y1, . . . , xn, yn) where (xi, yi) denote the coordinates of the embedding of the vertex vi .
Each prescribed edge length translates into a polynomial equation. I.e. if ek := [vi, v j] ∈ E with length li, j , we require
hk(x) := (xi − x j)

2 + (yi − y j)
2 − l2i, j = 0. Thus we obtain a system of |E| quadratic equations whose solutions repre-

sent the embeddings of our framework. To get rid of translations and rotations we fix the points (x1, y1) = (c1, c2) and
(x2, y2) = (c3, c4). (Here we assume without loss of generality that there is an edge between v1 and v2.) For practical rea-
sons we choose ci �= 0 and c3, c4 are chosen such that the embedded points (x1, y1) and (x2, y2) have distance l1,2. Hence
we want to study the solutions to the following system of 2n equations.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h1(x) := x1 − c1 = 0
h2(x) := y1 − c2 = 0
h3(x) := x2 − c3 = 0
h4(x) := y2 − c4 = 0
hk(x) := (xi − x j)

2 + (yi − y j)
2 − l2i, j = 0 ∀ek = [vi, v j] ∈ E − {[v1, v2]}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (1)

The paper is structured as follows. In Section 2 we review the concepts of mixed volumes and Bernstein’s Theorem. In
Section 3 we present some technical tools to simplify mixed volume calculation. Then, in Section 4 we discuss the quality
of the Bernstein bounds on the Laman embedding problem.

2. Preliminaries

2.1. Mixed volumes and mixed subdivisions

The Minkowski sum of two sets A1, A2 ⊂ Rk is defined as

A1 + A2 = {a1 + a2 | a1 ∈ A1,a2 ∈ A2}.
Let P1, . . . , Pk be k polytopes in Rk . For non-negative parameters λ1, . . . , λk the k-dimensional Euclidean volume
volk(λ1 P1 + · · · + λk Pk) of the scaled Minkowski sum is, as a function of λ1, . . . , λk , a homogeneous polynomial of de-
gree k with non-negative coefficients (see e.g. [24,30]). The coefficient of the monomial λ1 · · ·λk is called the mixed volume
of P1, . . . , Pk and is denoted by MVk(P1, . . . , Pk).

We denote by MVk(P1,d1; . . . ; Pr,dr) the mixed volume where Pi is taken di times and
∑r

i=1 di = k. The mixed volume
is invariant under permutation of its arguments, it is linear in each argument, i.e.

MVk(. . . ,αPi + β P ′, . . .) = α MVk(. . . , Pi, . . .) + β MVk(. . . , P ′, . . .) (2)
i i
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Fig. 2. From left to right: P , Q , the Minkowski sum of P and Q and a mixed subdivision Γ of P + Q .

and it generalizes the usual volume in the sense that

MVk(P , . . . , P ) = k!volk(P ) (3)

holds (see [24]).
Let P = P1 + · · · + Pr ⊂ Rk be a Minkowski sum of polytopes that affinely spans Rk . A sum C = F1 + · · · + Fr of faces

Fi ⊂ Pi is called cell of P . A subdivision of P is a collection Γ = {C1, . . . , Cm} of cells such that each cell is of full dimension,
the intersection of two cells is a face of both and the union of all cells covers P . Each cell is given a type type(C) =
(dim(F1), . . . ,dim(Fr)). Clearly the entries in the type vector sum up to at least the dimension of the cell C . A subdivision
is called mixed if for each cell C ∈ Γ we have that

∑
di = k where type(C) = (d1, . . . ,dr). Cells of type (d1, . . . ,dr) with

di � 1 for each i will be called mixed cells.
With this terminology the mixed volume can be calculated by

MVk(P1,d1; . . . ; Pr,dr) =
∑

C

d1! · · ·dr !volk(C) (4)

where the sum is over all cells C of type (d1, . . . ,dr) in an arbitrary mixed subdivision of P1 + · · · + Pr (see [17]).
To construct mixed subdivisions we proceed as in [17]. Not every subdivision can be constructed in this way but since

we only need one arbitrary mixed subdivision this simple construction can be used. For each polytope Pi choose a linear
lifting function μi : Rk → R. In the following μi is identified with the vector of Rk that defines it. By P̂ i we denote the
lifted polytopes conv{(q, 〈μi,q〉): q ∈ Pi} ⊂ Rk+1, where 〈·,·〉 denotes the Euclidean scalar product and conv A denotes the
convex hull of a point set A.

The set of those facets, i.e. codimension 1 faces, of P̂ := P̂1 + · · · + P̂ r which have an inward pointing normal with
a positive last coordinate is called the lower hull of P̂ . Projecting down this lower hull back to Rk by forgetting the last
coordinate yields a subdivision of P1 + · · · + Pr . Such a subdivision is called coherent and is said to be induced by μ =
(μ1, . . . ,μr).

Example 1. Let

P = conv

{(
0
0

)
,

(
3
0

)
,

(
0
2

)
,

(
3
2

)}
, Q = conv

{(
1
0

)
,

(
0
3
2

)
,

(
3
3

)}
.

The Minkowski sum of P and Q is depicted in Fig. 2 together with one of the possible coherent mixed subdivisions. The
cells C1, . . . , C4 are mixed cells of this subdivision.

There exist several software packages to compute mixed volumes. For the results in this work the PHCpack by Jan
Verschelde [29] was employed.

2.2. BKK theory

The main tool in this work is the following theorem that provides a connection between solutions to systems of polyno-
mial equations and discrete geometry. For a polynomial f = ∑

α∈A cαxα ∈ C[x1, . . . , xk] the Newton polytope NP( f ) ⊂ Rk is
the convex hull of the monomial exponent vectors, i.e. NP( f ) = conv A. Let C∗ := C \ {0}.

Theorem 2 (Bernstein [2]). Given polynomials f1, . . . , fk ∈ C[x1, . . . , xk] with finitely many common zeroes in (C∗)k and let NP( f i)

denote the Newton polytope of f i . Then the number of common zeroes of the fi in (C∗)k is bounded above by the mixed volume
MVk(NP( f1), . . . ,NP( fk)). Moreover for generic choices of the coefficients in the fi , the number of common solutions is exactly
MVk(NP( f1), . . . ,NP( fk)).

Remark 3. Here, and throughout this work generic is interpreted as follows. A subset A of Cm is called Zariski open if there is
an algebraic variety V , i.e. a solution set to a system of algebraic equations, such that A = Cm \ V . We say that a statement
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is true for a generic choice in Cm if it is true for a non-empty Zariski open subset of Cm . This implies that the statement is
true “almost everywhere” in a measure theoretic sense.

Various attempts have been made to generalize these results to count all common roots in Ck (see for example [12,18,
22]). The easiest, but sometimes not the best bound is MVk(conv(NP( f1)∪ 0), . . . , conv(NP( fk)∪ 0)) which is shown in [22].
Since the Newton polytopes of system (1) all contain the point 0 as a vertex, the mixed volume of (1) yields a bound on
the number of solutions in C rather then only on those in C∗ .

The bound on the number of solutions of a polynomial system arising from Bernstein’s Theorem is also often referred to
as the BKK bound due to the work of Bernstein, Khovanskii and Kushnirenko. The BKK bound generalizes the Bézout bound
(see [8, Chapter 7]) and for sparse polynomial systems it is often significantly better.

Bernstein also gives an explicit condition that characterizes when a choice of coefficients is generic. Let w be a non-zero
vector and let ∂w P denote the face of a polytope P which is minimal with respect to the direction w , i.e. ∂w P := {p ∈
P : 〈w, p〉 = minq∈P 〈w,q〉}. For a given f = ∑

α∈A cαxα we set ∂w f = ∑
α cαxα to be the face equation with respect to w ,

where the sum is over all integer points α ∈ ∂w NP( f ).

Theorem 4 (Bernstein’s Second Theorem [2]). If for all w �= 0, the face system ∂w f1 = 0, . . . , ∂w fk = 0 has no solution in (C∗)k, then
the mixed volume of the Newton polytopes of the fi gives the exact number of common zeros in (C∗)k and all solutions are isolated.
Otherwise it is a strict upper bound.

Remark 5. If a direction w is a witness of the degeneracy, then it lies on the so-called tropical prevariety (see [23]) of the
polynomials f1, . . . , fk .

3. New technical tools to simplify mixed volume calculation

In the special case of Henneberg I graphs, system (1) is of a shape that allows to separate the mixed volume calculation
into smaller pieces. The main tool to do this is the following lemma. An equivalent decomposition result was already
mentioned in [6] in which the authors refer to [14] (in Russian) for the proof. For the convenience of the reader we provide
here a proof based on the properties of symmetric multilinear functions.

Lemma 6. Let P1, . . . , Pk be polytopes in Rm+k and Q 1, . . . , Q m be polytopes in Rm ⊂ Rm+k. Then

MVm+k(Q 1, . . . , Q m, P1, . . . , Pk) = MVm(Q 1, . . . , Q m) · MVk
(
π(P1), . . . ,π(Pk)

)
(5)

where π : Rm+k → Rk denotes the projection on the last k coordinates.

Proof. First we show the lemma in the semimixed case where Q 1 = · · · = Q m =: Q and P1 = · · · = Pk =: P , then we use
properties of symmetric multilinear functions to reduce the general situation to the semimixed case.

By (3) we have to show first that

MVm+k(Q , . . . , Q , P , . . . , P ) = m!k!volm(Q ) · volk
(
π(P )

)
(6)

where Q is taken m times and P is taken k times. But this formula for semimixed systems is a special case of [13,
Chapter IV, Lemma 4.9] or also of [3, Theorem 1].

Let P m (resp. P m+k) be the set of all m-dimensional (resp. (m + k)-dimensional) polytopes and define two functions g1
and g2 on (P m)m × (P m+k)k via

g1(Q 1, . . . , Q m, P1, . . . , Pk) := MVm+k(Q 1, . . . , Q m, P1, . . . , Pk),

g2(Q 1, . . . , Q m, P1, . . . , Pk) := MVm(Q 1, . . . , Q m) · MVk
(
π(P1), . . . ,π(Pk)

)
.

Due to the properties of mixed volumes (see Section 2.1) it is easy to see that g1 and g2 are invariant under changing the
order of the Q i and under changing the order of the P j . Furthermore it follows from (2) that both functions are linear in
each argument.

Hence, for fixed P1, . . . , Pk the induced mappings

g̃(P1,...,Pk)

i (Q 1, . . . , Q m) := gi(Q 1, . . . , Q m, P1, . . . , Pk) (i = 1,2)

are symmetric and multilinear, and analogously, for fixed Q , the mappings

ḡ(Q )
i (P1, . . . , Pk) := gi(Q , . . . , Q , P1, . . . , Pk) (i = 1,2)

are symmetric and multilinear. For any semigroups A, B and any symmetric multilinear function f : An → B , it follows from
an inclusion-exclusion argument (see [13, Theorem 3.7]) that

f (a1, . . . ,an) = 1

n!
∑

1�i <···<i �n

(−1)n−q f (ai1 + · · · + aiq , . . . ,ai1 + · · · + aiq ). (7)

1 q
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Hence we have for i = 1,2 that

gi(Q 1, . . . , Q m, P1, . . . , Pk)

= g̃(P1,...,Pk)

i (Q 1, . . . , Q m)

= 1

m!
∑

1�i1<···<iq�m

(−1)m−q g̃(P1,...,Pk)

i (Q i1 + · · · + Q iq , . . . , Q i1 + · · · + Q iq )

= 1

m!
∑

1�i1<···<iq�m

(−1)m−q ḡ
(Q i1 +···+Q iq )

i (P1, . . . , Pk).

Since we can expand ḡ
(Q i1 +···+Q iq )

i (P1, . . . , Pk) by using (7) as well, we see that both functions g1 and g2 are fully deter-
mined by their images of tuples of polytopes where Q 1 = · · · = Q m = Q and P1 = · · · = Pk = P . This proves the lemma. �

Another technical tool which is employed in a subsequent proof is the following lemma. This goes back to an idea of
Emiris and Canny [10] to use linear programming and formula (4) to compute the mixed volume.

Lemma 7. Given polytopes P1, . . . , Pk ⊂ Rk and lifting vectors μ1, . . . ,μk ∈ Rk
�0 . Denote the vertices of P i by v(i)

1 , . . . , v(i)
ri

and

choose one edge ei = [v(i)
ti

, v(i)
li

] from each Pi . Then C := e1 + · · · + ek is a mixed cell of the mixed subdivision induced by the liftings
μi if and only if

i) The edge matrix E := Va − Vb is non-singular (where Va := (v(1)
t1

, . . . , v(k)
tk

) and Vb := (v(1)

l1
, . . . , v(k)

lk
)) and

ii) For all polytopes Pi and all vertices v(i)
s of P i which are not in ei we have:(〈μ1 − μi, �e1〉, . . . , 〈μk − μi, �ek〉

) · E−1 · (v(i)
li

− v(i)
s

)
� 0 (8)

where �ei = v(i)
ti

− v(i)
li

.

Before beginning with the proof we start with some auxiliary considerations about how to apply linear programming
here. In [10] it is shown that the test, if a cell lies on the lower envelope of the lifted Minkowski sum can be formulated as
a linear program. Let m̂i ∈ Rk+1 denote the midpoint of the lifted edge êi of P̂ i such that m̂ = m̂1 + · · · + m̂k is an interior
point of the Minkowski sum ê1 + · · · + êk . Consider the linear program

maximize s ∈ R�0 (9)

s.t. m̂ − (0, . . . ,0, s) ∈ P̂1 + · · · + P̂k.

If we denote the vertices of Pi by v(i)
1 , . . . , v(i)

ri
this can be written as

maximize s ∈ R�0

s.t. m̂ − (0, . . . ,0, s) =
k∑

i=1

ri∑
j=1

λ
(i)
j v̂(i)

j (10)

ri∑
j=1

λ
(i)
j = 1 ∀i = 1, . . . ,n

λ
(i)
j � 0 ∀i, j.

s measures the vertical distance of m̂ to the lower envelope of the Minkowski sum. Hence m̂ lies on the lower envelope of
P̂1 + · · · + P̂k if and only if the optimal value of (9) is zero.

Setting xT = (λ
(1)
1 , . . . , λ

(1)
r1 , . . . , λ

(k)
1 , . . . , λ

(k)
rk

, s) ∈ Rr1+···+rk+1, the linear program (10) can be written in standard matrix
form max{cT x: Ax = b, x � 0} with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v(1)
1 . . . v(1)

r1 . . . . . . v(k)
1 . . . v(k)

rk
0k

〈μ1, v(1)
1 〉 . . . 〈μ1, v(1)

r1 〉 . . . . . . 〈μk, v(k)
1 〉 . . . 〈μk, v(k)

rk
〉 1

1T
r1

0T
r2

. . . 0T
rk

0

0T
r1

1T
r2

. . . 0T
rk

0
...

. . .
...

...
T T T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

0r1
0r2

. . . 1rk
0
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bT = (
m̂,1T

k

) ∈ R2k+1,

cT = (
0T

r1+···+rk
,1

) ∈ Rr1+···+rk+1.

Here 0k and 1k denote the all-0-vector and the all-1-vector in Rk , respectively. In this notation the point m̂ from (9)
corresponds to x̄ = (λ

(1)
1 , . . . , λ

(k)
rk

, s) where s = 0 and λ
(i)
j = 1

2 if the edge êi contains the vertex v̂(i)
j and λ

(i)
j = 0 otherwise.

Assume a feasible vertex x̄ � 0 of the linear program (10) is given. For a subset S ⊂ {1, . . . , r1 +· · ·+ rk + 1} let A S be the
submatrix of A that consists of the columns with indices in S . If v is a vector, then v S is understood as the vector where
all entries with indices which are not in S are deleted. Now let B be a (not necessarily unique) choice of 2k + 1 indices
such that A−1

B · b = x̄B and denote by N those indices which are not in B . By linear programming duality (see, e.g. [15]) x̄ is
optimal if and only if

cT
N − cT

B · A−1
B · AN � 0, (11)

where the inequality is understood componentwise, i.e. each component of the vector on the left hand side is non-positive.
To prove Lemma 7 we assume that x̄ is optimal and deduce conditions on the lifting vectors μi by using inequality (11).

Proof of Lemma 7. Note that C is full-dimensional if and only if E is non-singular. In the following only this full-dimensional
case will be considered. To simplify the notation write μ(V ) to denote (〈μ1, v1〉, . . . , 〈μk, vk〉).

We know that C is a mixed cell if and only if the following x̄ is the optimal solution to the linear program defined
above:

x̄ = (
λ

(1)
1 , . . . , λ

(k)
rk

,0
)

where λ
(i)
j =

{
1
2 , j ∈ {ti, li},
0, else.

The submatrices of A corresponding to x̄ are

AB =
( Va Vb 0k

μ(Va) μ(Vb) 1
Idk Idk 0k

)
and AN =

⎛
⎝ v(i)

s

〈μr, v(i)
s 〉

ξi

⎞
⎠

1�i�k
1�s�ri
s �=ti ,li

where ξi denotes the ith unit vector. Since

A−1
B =

( E−1 0k −E−1 · Vb
−E−1 0k E−1 · Va

−μ(E) · E−1 1 μ(E) · E−1 · Vb − μ(Vb)

)

and cN = (0, . . . ,0) the criterion (11) implies that x̄ is optimal if and only if

(0, . . . ,0,1) · A−1
B · AN � 0 (componentwise).

But the ith component of the vector on the left can be explicitly computed as

−(
μ(E) · E−1) · v(i)

s + 〈
μr, v(i)

s
〉 + (

μ(E) · E−1 · Vb − μ(Vb)
) · ξi

which equals the left hand side of (8) since 〈μi, v(i)
s 〉 = (〈μi, �e1〉, . . . , 〈μi, �en〉) · E−1 · v(i)

s and μ(Vb) · ξi = 〈μi, v(i)
li

〉. �
Note that (8) is linear in the μ j . Hence, for a given choice of edges this condition defines a cone of lifting vectors which

induce a mixed subdivision that contains our chosen cell as a mixed cell.

4. Application of the BKK theory on the graph embedding problem

Our goal is to apply Bernstein’s results to give bounds on the number of embeddings of Laman graphs. A first observation
shows that for the formulation (1) the Bernstein bound is not tight. Namely, the system (1) allows to choose a direction
w that satisfies the conditions of Bernstein’s Second Theorem 4. The choice w = (0,0,0,0,−1,−1, . . . ,−1) yields the face
system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂wh1 = x1 − c1 = 0
∂wh2 = y1 − c2 = 0
∂wh3 = x2 − c3 = 0
∂wh4 = y2 − c4 = 0
∂whk = x2

i + y2
i = 0 ∀ek = [v1, vi], [v2, vi] ∈ E

∂whk = (xi − x j)
2 + (yi − y j)

2 = 0 ∀ek = [vi, v j] ∈ E with i, j �= 1,2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

which has (x1, y1, . . . , xn, yn) = (c1, c2, c3, c4,1, i,1, i, . . . ,1, i) as a solution with non-zero complex entries. So the mixed
volume of the system in (1) is a strict upper bound on the number of graph embeddings.
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To decrease this degeneracy we apply an idea of Ioannis Emiris1 (see [9]). Surprisingly the introduction of new variables
for common subexpressions, which increases the Bézout bound, can decrease the BKK bound. To the best of our knowledge
it is an open problem to characterize in general when substitutions can be applied to remove degeneracies and reduce the
mixed volume.

Here we introduce for every i = 1, . . . ,n the variable si together with the new equation si = x2
i + y2

i . This leads to the
following system of equations.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 − c1 = 0
y1 − c2 = 0
x2 − c3 = 0
y2 − c4 = 0
si + s j − 2xi x j − 2yi y j − l2i, j = 0 ∀[vi, v j] ∈ E − {[v1, v2]}
si − x2

i − y2
i = 0 ∀i = 1, . . . ,n

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (12)

Experiments show that the system (12) is still not generic in the sense of Theorem 4 for every underlying minimally rigid
graph. Hence the upper bound on the number of embeddings given by the mixed volume might not be tight in every case.

4.1. Henneberg I graphs

For this simple class of Laman graphs the mixed volume bound is tight as we will demonstrate below. Our proof exploits
the inductive structure of Henneberg I graphs which is why it cannot be used for Henneberg II graphs.

Lemma 8. For a Henneberg I graph on n vertices, the mixed volume of system (12) equals 2n−2 .

Proof. Each Henneberg sequence starts with a triangle for which system (12) has mixed volume 2 which can be computed
using the software from [29]. Starting from the triangle we consider a sequence of Henneberg I steps and show that the
mixed volume doubles in each of these steps.

In a Henneberg I step we add one vertex vn+1 and two edges [vr, vn+1], [vq, vn+1] with lengths lr,n+1 and lq,n+1. So our
system of equations (12) gets three new equations, namely

sn+1 − x2
n+1 − y2

n+1 = 0, (13)

sr + sn+1 − 2xr xn+1 − 2yr yn+1 − l2r,n+1 = 0, (14)

sq + sn+1 − 2xqxn+1 − 2yq yn+1 − l2q,n+1 = 0. (15)

In the new system of equations these three are the only polynomials involving xn+1, yn+1 and sn+1, so Lemma 6 can be
used to calculate the mixed volume separately. The projections of the Newton polytopes of Eqs. (13), (14) and (15) to the
coordinates xn+1, yn+1 and sn+1 are

conv
{
(2 0 0 )T , ( 0 2 0 )T , ( 0 0 1 )T }

and twice

conv
{
(1 0 0 )T , ( 0 1 0 )T , ( 0 0 1 )T , ( 0 0 0 )T }

.

The mixed volume of these equals 2. So by Lemma 6 the mixed volume of the new system is twice the mixed volume of
the system before the Henneberg I step. �

To get two new embeddings in every Henneberg I step we choose the new edge lengths to be almost equal to each other
and much larger then all previous edge lengths (larger then the sum of all previous is certainly enough).

Corollary 9 (Borcea and Streinu [5]). The number of embeddings of Henneberg I graph frameworks is less than or equal to 2n−2 and
this bound is sharp.

Of course the elementary proof described in [5] of this statement does not need such heavy machinery as Bernstein’s
Theorem. The purpose of Lemma 8 is to show that the techniques described in this work apply here and that the BKK
bound is tight in this case.

4.2. Laman graphs on 6 vertices

The first Laman graphs which are not constructable using only Henneberg I steps arise on 6 vertices. A simple case
analysis shows that up to isomorphisms there are only two such graphs, the Desargues graph and K3,3 (see Fig. 3).

1 Personal communication at EuroCG 2008, Nancy.
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Fig. 3. Left: Desargues graph. Right: K3,3.

The number of embeddings of both graphs has been studied in detail. The Desargues graph is studied in [5] where the
authors show that there can only be 24 embeddings and that there exists a choice of edge lengths giving 24 different
embeddings. This is obtained by investigating the curve that is traced out by one of the vertices after one incident edge is
removed. Husty and Walter [19] apply resultants to show that K3,3 can have up to 16 embeddings and give as well specific
edge lengths leading to 16 different embeddings.

Both approaches rely on the special combinatorial structure of the specific graphs. The general bound in [5] for the
number of embeddings of a graph with 6 vertices yields

(2·(6−2)
6−2

) = 70. In this case the BKK bound gives a closer estimate.
Namely the mixed volume of the system (12) (which uses the substitution trick to remove degeneracies) can be shown to
be 32 for both graphs. As before we used the PHCpack [29] for the mixed volume calculations.

4.3. General case

For the classes discussed above (Henneberg I, graphs on six vertices) as well as some other special cases, the BKK bound
on the number of embeddings resembles or even improves the general bound of

(2n−4
n−2

)
. For the general case, the mixed

volume approach for the system (1) without the substitutions suggested by Emiris provides a simple, but very weak bound.
However, it may be of independent interest that the mixed volume can be exactly determined as a function of n and that
in particular the value is independent of the structure of the Laman graph.

Theorem 10. For any Laman graph on n vertices, the mixed volume of the initial system (1) is exactly 4n−2 .

Proof. The mixed volume of (1) is at most the product of the degrees 22n−4 of the polynomial equations because it is less
than or equal to the Bézout bound (see [26]). To show that the mixed volume is at least this number we will use Lemma 7
to give a lifting that induces a mixed cell of volume 4n−2.

For i ∈ {1, . . . ,4} the Newton polytope NP(hi) is a segment. We claim that the polynomials hi can be ordered in a way
such that for i � 5, NP(hi) contains the edge [0,2ξi] where ξi denotes the ith unit vector. To see this, note first that every
polynomial h j (1 � j � 2n) has a non-vanishing constant term and therefore 0 ∈ NP(h j). For i ∈ {1, . . . ,n}, each of the
monomials x2

i and y2
i occurs in h j (for j � 5) if and only if the edge which is modeled by h j is incident to vi .

Let E ′ := E \ {[v1, v2]}. The Henneberg construction of a Laman graph allows to orient the edges such that in the graph
(V , E ′) each vertex in V \ {v1, v2} has exactly two incoming edges (see [1,21]). Namely, in a Henneberg I step the two new

edges point to the new vertex. For a Henneberg II step we remember the direction of the deleted edge
−→[vr, vs] and let the

new edge, which connects the new vertex to vs , point to vs . The other two new edges point to the new vertex. (Fig. 4
depicts this in an example where vr = v3 and vs = v4.)

This orientation shows how to order the polynomials h5, . . . ,h2n in such a way that the polynomials h2i−1 and h2i model
edges which are incoming edges of the vertex vi within the directed graph. Remembering that the order of the variables
was (x1, y1, . . . , xn, yn) this implies that 2ξ2i−1 ∈ NP(h2i−1) and 2ξ2i ∈ NP(h2i) (for i � 3).

Now Lemma 7 can be used to describe a lifting that induces a subdivision that has

[ξ1,0] + · · · + [ξ4,0] + [2ξ5,0] + · · · + [2ξ2n,0] (16)

as a mixed cell. In the notation of Lemma 7 the chosen edges give rise to the edge matrix

E =
(

Id4 0
0 2 Id2n−4

)
,

where Idk denotes the k ×k identity matrix. Substituting this into the second condition (8) of Lemma 7 we get that for i � 5
and each Newton polytope NP(hi) all vertices v(i)

s of NP(hi) which are not 0 or 2ξi have to satisfy

(μ11 − μi1 , . . . ,μ2n2n − μi2n) · v(i)
s � 0,

where we denote by μ j = (μ j1 , . . . ,μ j2n ) ∈ Q2n the lifting vector for NP(h j). Since all the entries of each v(i)
s are non-

negative this can easily be done by choosing the vectors μ j such that their jth entry is sufficiently small and all other
entries are sufficiently large. Note that for i < 5 the Newton polytope NP(hi) is an edge and therefore is part of any full-
dimensional cell.
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Fig. 4. A Henneberg I and a Henneberg II step with directed edges.

Since the cell (16) has volume 22n−4 = 4n−2, this proves the theorem. �
As stated in the preliminary remarks at the beginning of this section the Bernstein bound is never tight for the system (1)

and hence we have:

Corollary 11. The number of embeddings of a Laman graph framework with generic edge lengths is strictly less then 4n−2 .

4.4. Open problems and future prospects

We have presented techniques to study the embedding problem of Laman graph frameworks using the BKK theory.
As already mentioned in Section 4 it is an open question whether the Bernstein bounds can be improved by applying
suitable transformations (such as substitutions) on the system of equations. Examples like the case study of Laman graph
frameworks on 6 vertices in Section 4.2 suggest that the mixed volume of the system (12) gives a significantly better bound
on the number of embeddings than the one analyzed in Theorem 10. However it also remains open to compute the mixed
volume of the system (12) as a function of n like it was done for the system (1) in Theorem 10.

The focus of our paper was on embeddings in the plane. Borcea and Streinu [5] as well as Emiris and Varvitsio-
tis [11] gave also bounds for embeddings into 3-dimensional and general n-dimensional spaces. Since for these 3- and
n-dimensional problems the resulting polynomial equations are sparse as well, the BKK techniques are also applicable. With
regard to the Bernstein bounds there are straightforward analogs of Lemma 8 and Theorem 10 to higher dimensions.
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