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Abstract

Support vector machine (SVM) is firmly based on learning theory and uses regression technique by introducing accuracy insensitive
loss function. In this paper, a SVM model for the autogenous shrinkage of concrete mixtures was proposed. The model chose water-to-
cementitious material ratio (w/cm), cement content, silica fume percentage, fly ash percentage, total aggregate content, curing temper-
ature, high-range water-reducing admixture (HRWRA) content, and hydration age as input parameters, and the autogenous shrinkage
of concrete as the model output. The data set used for training and testing of the SVM model covers the experimental data presented in
the existing literature. The developed SVM model was validated using experimental work. The SVM model was compared with the ANN
prediction model, the SVM model shows comparable prediction accuracy and could easily be established. In short, the proposed SVM
model exhibited excellent capability in predicting the autogenous shrinkage of concrete mixtures.
� 2016 Chinese Society of Pavement Engineering. Production and hosting by Elsevier B.V. This is an open access article under the CCBY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Concrete is the most widely used construction material
worldwide. In the past decades, great efforts have been
made to develop a new generation of concrete to improve
its performance and competitiveness as a construction
material. Consequently, concrete with high performance
and high durability has been developed and is used much
frequently to construct civil infrastructures. Although such
concrete has improved properties, it appears to have an
increased tendency to develop early age cracking caused
by autogenous shrinkage due to the use of rather low
water-to-cementitious material ratio (w/cm) [1]. Cracking
in concrete members reduces the load-carrying capacity
http://dx.doi.org/10.1016/j.ijprt.2016.06.003
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of the structure. Cracks allow water and other potentially
aggressive species, such as deicing salt, chlorides, sulfates,
freezing water, CO2, to go through the cover layer to come
into contact with the reinforcements, leading to reinforce-
ment corrosion and rupture in steel reinforced concrete
[2,3].

Autogenous shrinkage was first mentioned by Lyman in
1934 [4]. For many years, there was little known research
conducted on this phenomenon. Since the early 1990s,
the importance of autogenous shrinkage has been wholly
reconsidered, and now a number of researchers continue
to conduct studies on this increasingly important phe-
nomenon [5–8]. Autogenous shrinkage is a deformation
caused by the continued hydration of cement, exclusive
of the effects of applied load and change in either thermal
condition or moisture content [9]. Thus, the measurement
of autogenous shrinkage has to be conducted under sealed
conditions to eliminate moisture exchange. Autogenous
shrinkage of concrete increases as the water-to-
hosting by Elsevier B.V.
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Fig. 1. e -insensitive loss function setting for SVM in regression [31].
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cementitious material ratio (w/cm) decreases. According to
Aitcin et al. [10], the autogenous shrinkage will not be high
if the w/cm ratio is greater than about 0.42, but will
develop rapidly if the w/cm ratio is lower than 0.42. At a
very low w/cm ratio of 0.17, an autogenous shrinkage of
700 * 10�6 for concrete was reported [11]. There are several
factors influencing the evolution of the autogenous shrink-
age of concrete, including the w/cm [7], curing temperate
[11], aggregate content, cement content [12], and the type
and percentage of supplementary cementitious materials
[7]. These parameters are highly correlative and play com-
plex, combined roles on the development of autogenous
shrinkage.

Previous approaches for development of the predictive
drying shrinkage models [13–17] do not normally perform
well for autogenous shrinkage of concretes with high per-
formance and high durability, they are limited to concretes
with relatively low 28-day compressive strengths. In terms
of prediction of the early-age autogenous shrinkage of con-
crete, Nehdi and Soliman [18] have proposed an artificial
neural network (ANN) model. However, the ANN has
slow convergence speed and poor generalizing perfor-
mance, and sometimes experiences over-fitting problems.
Furthermore, there is no proper method to determine the
number of hidden layers. The support vector machine
(SVM) is a novel and efficient approach to improve gener-
alization performance and can attain a global minimum.
SVMs achieve good generalization ability by adopting a
structural risk minimization induction principle that aims
at minimizing a bound on generalization error of a model
rather than minimizing the error on the training data only.
It has ability to avoid overtraining, and has better general-
ization capability than ANN model. Moreover, the SVMs
can always be updated to get better results by presenting
new training examples as new data become available [19].

Some of SVM applications in the civil engineering prob-
lems include remote sensing images analysis and rainfall-
runoff model [20], conceptual cost estimates in construction
projects [21], soil moisture prediction [22], slope reliability
analysis [23], settlement study of shallow foundations
[24], model for contractor prequalification [25], and seismic
liquefaction assessment [26].

This paper is the first one to demonstrate the potential
of SVM application to predict the autogenous shrinkage
of similar concrete mixtures. In this study, the theory and
procedure of SVM were briefly reviewed, and training pro-
cess of the SVM was described. Moreover, the developed
SVM model was validated using experimental work.

2. Support vector machine

SVM is one of the machine learning (ML) techniques
derived from statistical learning theory by Vapnik and
Chervonenkis [27]. The foundations of SVM were devel-
oped by Vapnik [28] at AT&T Bell Laboratories. Overall,
SVMs have been applied in statistics, computer science,
and other fields with great success.
In the following, a brief description of the principles of
SVMs is provided. One can find more details about statis-
tical learning theory and SVMs in Gunn (1998) and Smola
and Scholkopf (2004) [29,30].

Suppose that the training data are given as
fðx1; y1Þ; . . . ; ðxn; ynÞg � X , where X denotes the space of
the training data patterns (e.g., X = Rd). n denotes the size
of the training data set, xi denotes the value of the input
and yi denotes the value of output. The goal of SVM is
to find a function f that has at most e deviations from
the actually obtained targets yi for all the training data,
and is also as flat as possible. The functions f for given
training data can be represented by the following equation:

f ðxÞ ¼ hx; xi þ b ð1Þ
where x � X and b � R; <, > denote the dot product in X;
x is the weight vector; b is the scalar threshold.

Following statistical theory, SVM determines the regres-
sion function by minimizing an objective function. The
parameters x and b of the regression function are estimated
by minimizing the regularized risk function as follows:

Minimize

1

2
jjxjj2 þ C

Xn
i¼1

ðni þ n�i Þ ð2Þ

Subject to

yi � hx;uðxÞi � b 6 eþ ni
hx;uðxÞi þ b� yi 6 eþ n�i
ni; n

�
i P 0; i ¼ 1; 2 . . . l

8><
>:

9>=
>; ð3Þ

where C = prespecified SVM tolerance parameter and ni
and n�i = slack variables determining the degree to which
data points will be penalized if the error is larger than pre-
cision parameter e. e is the insensitive loss function. Fig. 1
illustrates e–insensitive loss function setting to given data in
SVM, and it is also represented by the following equation:

LeðyÞ ¼
jf ðxÞ � yj � e ; jy � f ðxÞj P e

0; otherwise

�
ð4Þ
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By introducing Lagrangian multipliers and maximizing,
the dual optimization problem can be expressed as:
Maximize

� e
Xn
i¼1

ðai þ a�i Þ �
1

2

Xn
i;j¼1

ðai � a�i Þðaj � a�j Þ < xi; xj >

þ
Xn
i¼1

ðai � a�i Þyi ð5Þ

Subject toPn
i¼1ðai � a�i Þ ¼ 0;

0 6 ai; a�i 6 C; i ¼ 1; 2; 3 . . . n

�
ð6Þ

where ai; a�i are called Lagrangian multipliers. Solving Eq.
(5) with constraints in Eq. (6) determines the Lagrange
multipliers (ai; a�i ), and the w and b of regression function
given by Eq. (1) are finally obtained as follows:

x¼
Xn
i¼1

ðai�a�i Þxi; Thus; f ðxÞ¼
Xn
i¼1

½ðai�a�i Þ< xi;x>�þb

ð7Þ

b ¼ 1

n

Xn
i¼1

yi �
Xn
j¼1

ðaj � a�j Þ < xi; xj >

 !
ð8Þ

Based on the Karush–Kuhn–Tucker (KKT) conditions
for quadratic programing, only a small number of coeffi-
cients (ai � a�i ) will be assumed to have nonzero values
(the data points lying on or outside the e bound have no-
zero value), and their data points could be referred to as
support vectors (see Fig. 1).

In terms of nonlinear regression, instead of trying to fit a
nonlinear model, the data are mapped into a high feature
dimension space. Therefore, the dot product < xi; xj >
can be changed into < /ðxiÞ;/ðxjÞ > for the nonlinear case.
The SVM training algorithm would only depend on the
data through dot products in high feature dimension space.
Besides, in high feature dimension space, the dot products
can be replaced by the kernel function (i.e.
Kðxi; xjÞ ¼< /ðxiÞ;/ðxjÞ >), we only need to use K in the
SVM training algorithm without treating the feature space
explicitly to obtain the specific formulation of /. So Eqs.
(5)–(7) can be transformed into the following formulation:

Maximize

�e
Xn
i¼1

ðai þ a�i Þ �
1

2

Xn
i;j¼1

ðai � a�i Þðaj � a�j ÞKðxi; xjÞ

þ
Xn
i¼1

ðai � a�i Þyi ð9Þ

Subject toPn
i¼1ðai � a�i Þ ¼ 0;

0 6 ai; a�i 6 C; i ¼ 1; 2; 3 . . . n

�
ð10Þ

f ðxÞ ¼
Xn
i¼1

½ðai � a�i ÞKðxi; xjÞ� þ b ð11Þ
There are four standard conversion of Kernel function
mostly used in regression and modeling including:

(1) Linear Kernel.
Kðu; vÞ ¼< u; v > ð12Þ

(2) Polynomial Kernel.

Kðu; vÞ ¼< u; v>d

Kðu; vÞ ¼ ð< u; v > þ1Þd ð13Þ
lly the second Kernel is preferred; because it solves the
ems of Hessian so as to close zero.
probl

(3) Radial Basis Function (RBF).

Kðu; vÞ ¼ expð�gammaju� vj2Þ ð14Þ
(4) Sigmoid Kernel.

Kðu; vÞ ¼ tan hð�a < u; v > þcÞ ð15Þ
The kernel parameters should be carefully chosen as
they are important to define the high-dimensional feature
space and control the complexity of the final solution.
The SVMs are largely characterized by the type of its ker-
nel function, it is important to choose the appropriate ker-
nel function and kernel parameters for each application
problem in order to guarantee satisfactory results. The
kernel-specific parameters were chosen by a trail–and-
error approach.

3. Development of SVM-based autogenous shrinkage

predictive models

3.1. Database

As mentioned previously, autogenous shrinkage of con-
crete has not been researched as extensively as drying
shrinkage. To avoid some complexity, only experimental
data having mixture components with comparable physical
and chemical properties were identified for the training and
testing of the SVM. A number of data sets (approximately
518 data points) were selected from different studies, as
summarized in Table 1. Moreover, the data are divided
into three subsets: training, validation, and testing. The
training data are used to train the model to recognize the
patterns between input and output data. The validation
data are used to evaluate the effectiveness of the developed
model in generalizing the underlying relationships and
achieving good performance when new data are intro-
duced. The final model is tested with the testing data set,
not presented to the model before, to ensure that predic-
tions are real and not artifacts of the training process
[18]. Before training, both data sets were normalized within
the range of 0.1–0.9 in accordance with the following equa-
tion. This preprocessing step increases the efficiency of the
SVM training.



Table 1
Database sources and range of input and output variables.

Source No. of mixtures Variables Maximum Minimum

1 Zhang et al. [7] 9 Cement, kg/m3 924 292
2 Igarashi et al. [34] 4
3 Yang et al. [35] 3 w/cm 0.6 0.24
4 Lee et al. [36] 4
5 Akcay and Tasdemir [37] 1 SF, % cementitious material 15 0
6 Sah and Sato [38] 1
7 Mazloom et al. [39] 4 FA, % cementitious material 35 0
8 Akkaya et al. [40] 3
9 Bentur et al. [41] 1 TA, % total mass 68 30
10 Cusson and Hoogeveen [42] 1
11 Jiang et al. [8] 5 HRWRA, % cementitious material 5 0.1
12 Yoo et al. [43] 5
13 Yun et al. [44] 4 Temperature, �C 35 5

Age, h 363 2
Autogenous shrinkage, le 804.38 �38.3

Notes: TA is total aggregate content; SF is silica fume; FA is fly ash; and HRWRA is high-range water-reducing admixture.
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xnormalized ¼ xi � xmin

xmax � xmin

� 0:8þ 0:1 ð16Þ

where xnormalized = normalized value of each parameter;
xi = actual value of each parameter; and xmin and xmax =
minimum and maximum values of each parameter. For
SVM training, eight input variables were selected: water-
to-cementitious material ratio (w/cm), cement content, sil-
ica fume percentage, fly ash percentage, total aggregate
content, curing temperature, HRWRA content, and hydra-
tion age. The autogenous shrinkage of concrete was the
single output.
3.2. Model development

As mentioned above, the data are divided into three sub-
sets: training, validation, and testing. Because there is no
precise method for partitioning the database, the SVM
model was trained with randomly selected 50% of the total
database, while 25% was used for validation and the other
25% for testing. In the training process, the coefficient of
determination (R2), the standard error of predicted values
divided by the standard error of measured values (Se/Sy),
and the root-mean-squared error (RMSE) were used as
the main criteria to evaluate the performance of the SVM
model. Definitions of these evaluation criteria are provided
in Table 2. The R2 is a measure of correlation between the
predicted and the measured values and therefore, determi-
nes accuracy of the fitting model (higher R2 equates to
Table 2
The performance evaluation parameters of concretes autogenous shrinkage pr

Statistical parameters R2

Definitions
R2 ¼ 1�

Pn

i¼1
ðyti�ypi Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyti�ytiÞ

2
q

Note: yti and ypi =target and predicted modulus values, respectively, and yti and
patterns.
higher accuracy). The Se/Sy and the RMSE indicate the rel-
ative improvements in accuracy and thus a smaller value is
indicative of better accuracy. A set of criteria presented in
Table 3, originally developed by Pellinen [32], were also
adopted in this evaluation.

One of the important steps in SVM model development
was the setting up of the appropriate Kernel function K,
parameters C and e for training the SVM. In this study,
considering the good performance under general smooth-
ness assumptions, the Radial Basis Function (RBF) is used
as the kernel function of the SVMs. Consequently, they are
especially useful if no additional knowledge of the data is
available. This is also demonstrated in the experiment by
comparing the results obtained using the RBF with results
obtained using the polynomial kernel. The polynomial ker-
nel gives inferior results and takes a longer time in the
training of SVMs. The gamma, parameters C and e were
chosen by a trial and error approach. The choice of
gamma = 6; C = 100 and e = 0.005 in this study is because
these values produced the best possible results according to
the validation set. The software used in this study is
‘‘SVMdark”.
3.3. Sensitivity of predictions to SVM parameters

Sensitivity analysis of SVM control parameters (C, e and
gamma) on the R2 of the SVM based predictive autogenous
shrinkage models was investigated. Fig. 2a gives the R2 of
SVMs at various gamma, in which C and e are, respectively,
ediction model merits.

Se/Sy RMSE

Se
Sy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyti�ypi Þ2½ ��nPn

i¼1
ðyti�ytiÞ

2
� �

�ðn�pÞ

s
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðyti � ypi Þ2

q

ypi =mean of the target and predicted modulus values corresponding to n



Table 3
Statistical criteria for correlation between the observed and the predicted
[32].

Criteria R2 Se/Sy

Excellent P0.9 60.35
Good 0.79–0.89 0.36–0.55
Fair 0.40–0.69 0.56–0.75
Poor 0.20–0.39 0.76–0.90
Very poor 60.19 P0.90

(b) The results of various C in which gamma = 6 and ε = 0.005. 

(c) The results of various ε in which C = 100 and gamma= 6. 

(a) The results of various gamma in which C = 100 and ε = 0.005.

Fig. 2. Sensitivity of the R2 to SVM model control parameters (C, e and
gamma).
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fixed at 100 and 0.005. The figure shows that the R2 on the
training set increases initially but subsequently fluctuates
with gamma increases. An appropriate value for gamma

would be between 1 and 10. In this aspect, it can be said
that gamma plays an important role on the generalization
performance of SVMs. Fig. 2b gives the results of various
C where gamma and e are, respectively, fixed at 6 and
0.005. It can be observed that the R2 on the training set
increases initially but subsequently decreases monotoni-
cally as C increases. Fig. 2c gives the results of SVMs with
various e where gamma and C are, respectively, fixed at 6
and 100. Fig. 2c shows that the R2 on the training set is
very comparatively stable and relatively unaffected by
changes in e. This indicates that the performance of SVMs
is insensitive to e. However, the number of support vector
decreases as e increases, especially when e is larger than
0.01 [33].

4. Results and discussion

To verify the satisfactory performance of the training
process, the SVM model is used to predict the autogenous
shrinkage of concrete mixtures from the training data set
using the eight input variables. The plot of statistical anal-
ysis is presented in Fig. 3a. The figure includes the equity
line as a reference, which represents the condition of equal
values for the predicted and measured autogenous shrink-
age strains. The points are mostly located on or slightly
under/above the equity line between the experimental and
predicted expansion values. It was demonstrated that the
SVM model captured the input-output relationships
exactly. The RMSE, R2, and Se/Sy values were 23.14 le,
0.971, and 0.174, respectively, which indicate that the per-
formance of the SVM is satisfactory.

The generalization capacity of the SVM was examined
by testing the testing data (20% of the original data-
base). Results of statistical analysis for the testing data
are presented in Fig. 3b. As mentioned previously, the test
vectors form an independent data set, which were not pre-
viously presented to the model, and thus the predictive
capacity of the model for new data can be evaluated. The
value of R2 that evaluates the performance of the model
in predicting the autogenous shrinkage values scattered
around the line of equality without bias is found to be
0.924. And the RMSE and Se/Sy values were found to be
33.29 le and 0.286, respectively. It can be deduced that
the SVM had a satisfactory generalization capacity for pre-
dicting the autogenous shrinkage of similar concrete mix-
tures exposed.

As for validation data set, the results of statistical anal-
ysis for the validation data are presented in Fig. 3c. The
RMSE, R2, and Se/Sy values were 31.15 le, 0.948, and
0.239, respectively, indicating excellent performance of
the SVM model.



(a)Training 

(b)Validation 

(c)Testing 

Fig. 3. Response of SVM model in predicting autogenous shrinkage of
concrete: (a) training; (b) validating; and (c) testing.

Fig. 4. Response of ANN model in predicting autogenous shrinkage of
concrete for testing data [18].
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The accuracy of the proposed SVM autogenous shrink-
age model was compared with the ANN based predictive
model. Details related to the development and performance
of the selected ANN autogenous shrinkage model are
described in Nehdi and Soliman (2012) [18]. The plus-
minus sign of autogenous shrinkage used in Nehdi and
Soliman (2012) [18] is opposite to this study. Results of
the statistical analysis of the ANN model are presented
in Fig. 4 for the testing data points. The predictions of
ANN models show slightly higher R2 value compared to
that of SVM model, but the RMSE obtained using SVM
is almost one-half that of ANN model. Results of this com-
parison indicate that the prediction performance of SVM is
comparable to ANN, although not as good. Nevertheless,
the SVM has many advantages over the ANN. For
instance, the development of ANN model requires a large
number of controlling parameters for optimization and a
relatively large training database while SVM require only
three controlling parameters (C, e, and gamma) with little
dependency on the magnitude of training data sets
required. These advantages of SVM can make it a promis-
ing alternative to ANN.

5. Validating SVM model using experimental work

5.1. Material

P�O42.5 type Portland cement having specific gravity of
3.14 and Blaine fineness of 327 m2/kg was utilized in this
study, Its chemical composition are given in Table 4, and
the information was provided by the cement supplier.

The coarse aggregate used was crushed granite with a
nominal size of 5–16 mm, and the fine aggregate used
was river sand with a fineness modulus of 2.3. The specific
gravity for the coarse and fine aggregates was 2.66 and 2.65
respectively. The grading of the aggregates was kept con-
stant for concrete production.

A naphthalene-based superplasticizer was used in this
study, its water-reducing rate is beyond 20%.

5.2. Mixture proportions

Mixture proportions of the concrete studied are given in
Table 5. The w/c ratio of the concrete ranged from 0.3 to
0.5.

5.3. Specimen preparation and test method

The concrete was mixed in a laboratory pan mixer. The
fine and coarse aggregates were mixed first, followed by the
addition of cement. After the materials were uniformly dis-
persed, water and the HRWRA were added and mixed
together until a consistent mixture was obtained.

In order to measure the length change of concrete, the
method similar to the one applied by Lee et al. [36] was
used, as shown in Fig. 5. For each mixture, two concrete



Table 4
Chemical composition of cement.

Composition CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O Na2O LOI Free CaO

Proportion(%) 64 21.1 4.9 3.0 2.1 1.6 0.78 0.18 2.1 0.95

Table 5
Mix proportions for concrete.

Mix ID Mix proportions (kg/m3) w/cm TA(%)

Cement Water Sand Coarse aggregate HRWRA

LJ1 382 191 641 1190 0 0.5 65%
LJ2 409 184 635 1176 0.6% 0.45 65%
LJ3 439 175 625 1162 0.8% 0.4 65%
LJ4 481 168 612 1139 1.0% 0.35 65%
LJ5 531 159 597 1109 1.2% 0.3 65%

Fig. 5. Experimental set-up for autogenous shrinkage test.
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prisms of 100 � 100 � 550mm were prepared. Before the
removal of the mold, two LVDTs contacted on the stud
and an embedded strain gauge positioned at the center of
the specimen were installed to monitor the length change
of the specimen. A thermocouple was also embedded hor-
izontally in the center of the prism. The molded specimens
were covered with polyester films to prevent moisture loss.
Fig. 6. Measured autogenous shrinkage v
Immediately after demolding, specimens were wrapped
with aluminum adhesive tape. The temperature of each
concrete prism used for determining the autogenous
shrinkage was recorded by the thermal couple embedded.
All specimens were stored in a chamber at a 20 ± 2 �C
and a relative humidity of 50 ± 5% during the test.
5.4. Discussion of experimental results

Fig. 6 shows the tendencies of the autogenous shrinkage
values obtained from experimental study and proposed
SVM model. It can be observed that the SVM predictions
are in relatively good agreement with the measured results.
Fig. 7 presents the comparison between the measured and
SVM model predicted autogenous shrinkage values, The
RMSE, R2, and Se/Sy values were 47.36 le, 0.906, and
alues compared with predicted values.



Fig. 7. Predicted versus observed autogenous shrinkage values of SVM
model.

Fig. 8. Residual values for SVM model predictions.

Fig. 9. Proportion of different residual value ranges.
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0.329, respectively, which indicates that the SVM is able to
provide prediction of the autogenous shrinkage of similar
concrete mixtures.
Residual value (predicted values subtract measured val-
ues) was applied to evaluate the performance of the pro-
posed SVM model. The residuals of tested mixtures are
plotted in Fig. 8. Positive residuals indicate that the model
underestimated the autogenous shrinkage, and negative
residuals indicate that the model overestimates them. It is
clear that almost all of residuals are within a range of
±100 le, which indicates a reasonable performance of the
SVM model. Besides, as shown in Fig. 9, the distributions
of the residuals in the positive region are greater than that
in the negative range, indicating that the SVM model
slightly underestimated autogenous shrinkage.

6. Conclusions

Autogenous shrinkage is a highly complex mechanism
that makes modeling its behavior a difficult task. This
study has proposed using an SVM model to predict auto-
genous shrinkage of concrete mixtures, in order to exam-
ine the applicability and potential of SVM in
characterization of construction materials. The data used
to develop the SVM model were from the existing litera-
ture. A comprehensive sensitivity analysis of SVM control
parameters (C, e and gamma) on the R2 of the SVM based
predictive autogenous shrinkage models was conducted.
The gamma and C play an important role in the general-
ization performance of SVMs and the performance of
SVMs is insensitive to e. The developed SVM model
was compared with the ANN-based model. It was found
the prediction performance of SVM is comparable to the
ANN. However, development of ANN model requires a
large number of controlling parameters while the SVM
model is relatively easy. The developed SVM model was
validated using experimental work. It was found that
the SVM model is a viable method for predicting autoge-
nous shrinkage strains of concrete and the SVM model
slightly underestimated autogenous shrinkage. Neverthe-
less, the proposed SVM model is restricted to extrapola-
tion within the domain of the data used in its training.
Furthermore, a more comprehensive database may
increase the prediction accuracy. Also, the prediction
accuracy may further be enhanced by including other
experimental variables.

References

[1] M.J. Oliveira, A.B. Ribeiro, F.G. Branco, Combined effect of
expansive and shrinkage reducing admixtures to control autogenous
shrinkage in self-compacting concrete, Constr. Build. Mater. 52 (2)
(2014) 267–275.

[2] B. Craeye, M. Geirnaert, G.D. Schutter, Super absorbing polymers as
an internal curing agent for mitigation of early-age cracking of high-
performance concrete bridge decks, Constr. Build. Mater. 25 (1)
(2011) 1–13.

[3] S. Ghourchian, M. Wyrzykowski, P. Lura, M. Shekarchi, B. Ahmadi,
An investigation on the use of zeolite aggregates for internal curing of
concrete, Constr. Build. Mater. 40 (3) (2013) 135–144.

[4] C.G. Lyman, Growth and Movement in Portland Cement Concrete,
Oxford University Press, London, UK, 1934, pp. 1–139.

http://refhub.elsevier.com/S1996-6814(16)30124-9/h0005
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0005
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0005
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0005
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0010
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0010
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0010
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0010
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0015
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0015
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0015
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0020
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0020
http://refhub.elsevier.com/S1996-6814(16)30124-9/h0020


J. Liu et al. / International Journal of Pavement Research and Technology 9 (2016) 169–177 177
[5] A. Radocea, Autogenous volume change of concrete at very early age,
Mag. Concr. Res. 50 (2) (1998) 107–113.

[6] T.H. Wee, S.N. Lim, Autogenous shrinkage of ground-granulated
blast-furnace slag concrete, ACI Mater. J. 97 (5) (2000) 587–593.

[7] M.H. Zhang, C.T. Tam, M.P. Leow, Effect of water-to-cementitious
materials ratio and silica fume on the autogenous shrinkage of
concrete, Cem. Concr. Res. 33 (10) (2003) 1687–1694.

[8] C. Jiang, Y. Yang, Y. Wang, Y. Zhou, C. Ma, Autogenous shrinkage
of high performance concrete containing mineral admixtures under
different curing temperatures, Constr. Build. Mater. 61 (3) (2014)
260–269.

[9] E. Tazawa, Autogeneous shrinkage caused by self desiccation in
cementitious material, Int. Cong (1992) 712–718, On the Chemistry of
Cement New Delhi.

[10] P.C. Aitcin, A.M. Neville, P. Acker, Integrated view of shrinkage
deformation, Concr. Int. 19 (1997).

[11] S. Mak, D. Ritchie, A. Taylor, R. Diggin, Temperature effects on
early age autogenous shrinkage in high performance concretes, in: E.
Tazawa (Ed.), Autogenous Shrinkage of Concrete: Proceedings of the
International Workshop, Japan Concrete Institute, Taylor & Francis,
1999, pp. 155–166.

[12] E.I. Tazawa, S. Miyazawa, T. Kasai, Chemical shrinkage and
autogenous shrinkage of hydrating cement paste, Cem. Concr. Res.
25 (2) (1995) 288–292.

[13] ACI Committee 209, Prediction of creep, shrinkage, and temperature
effects in concrete structures, Aci Special Publication, 1992.

[14] CEB-FIP 1990, Model Code for concrete structures, Bull. Inf. 199
(1991) 201.

[15] N.J. Gardner, M.J. Lockman, Design provisions for drying shrinkage
and creep of normal-strength concrete, ACI Mater. J. 98 (2) (2001)
159–167.

[16] ACI Committee 209, Guide for Modeling and Calculating Shrinkage
and Creep in Hardened Concrete (ACI 209.2R-08), American
Concrete Institute, Farmington Hills, MI, 2008, pp. 44.
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