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Induction of Adult-like Antibody, Th1, and CTL Responses to Measles Hemagglutinin by Early
Life Murine Immunization with An Attenuated Vaccinia-Derived NYVAC(K1L) Viral Vector
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Although initially developed in adult animals, novel viral vectors expressing recombinant measles antigens must eventually
prove their success in the early life setting, where the efficacy of the currently used live-attenuated measles virus vaccine
is limited. The immunological requirements for vaccine candidates include the generation of protective antibody responses
as well as the induction of Th1 and cytotoxic T lymphocytes (CTL) responses, which is challenging in the neonatal setting.
Here, we report that young BALB/c mice immunized with a single dose of a vaccinia-based NYVAC(K1L) vector generate
adult-like antihemagglutinin (HA) antibody responses as well as adult-like Th1 and CTL responses. Despite this strong
immunogenicity in early life, antibody responses (but not T-cell responses) to a single dose of NYVAC(K1L)-HA remained
susceptible to inhibition by preexisting measles antibodies, calling for use of prime-boost strategies. NYVAC(K1L)-HA is the
first attenuated live viral vector demonstrated as capable of inducing adult-like antibody, Th1, and CTL responses against
measles in an early life murine immunization model, a capacity previously only reported for measles DNA vaccines. © 2001
Academic Press
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INTRODUCTION

Measles disease causes approximately 1.0 million
deaths every year and its eradication remains a global
challenge despite the introduction of live-attenuated
measles vaccine in 1963 (Arvin, 2000). Although highly
effective in children and adults, this vaccine is weakly
immunogenic in infants less than the age of 6–9 months
(Redd et al., 1999). This limited efficacy was long consid-
ered to essentially result from inhibition of infant re-
sponses by persistent measles-specific maternal anti-
bodies during the first months of life (Albrecht et al.,
1977). However, it was recently recognized that the im-
maturity of the infant immune system is responsible for
weak or absent antibody responses to live-attenuated
measles virus even in the absence of maternal antibod-
ies (Gans et al., 1998). As a consequence, infants

ounger than 12 months of age account for a significant
raction of measles-associated fatalities worldwide. As

1 To whom correspondence and reprint requests should be ad-
ressed at W.H.O. Collaborating Centre for Neonatal Vaccinology, De-
artment of Pathology, C.M.U., Rue Michel Servet 1, CH-1211 Geneva 4,
witzerland. Fax: (141)-22-702 57 46. E-mail: jiri.kovarik@
edecine.unige.ch.

2 Abbreviations: ALVAC, recombinant canarypox virus vector; HA,
measles-hemagglutinin; MV, measles virus; MVS, measles vaccine
u
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(Schwarz strain); NYVAC, attenuated vaccinia virus vector; VV, vaccinia
virus.
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nfant protection through herd immunity requires a very
igh level of measles vaccine coverage that may not be
ithin reach of many countries, this disease burden

ustifies the attempts to develop a measles vaccine
hich could already be protective early in life.
Initial attempts to use Formalin-inactivated, alum-pre-

ipitated MV vaccines were abandoned due to the in-
uction of short-lived immunity and increased risk for
typical measles disease upon exposure to wild-type
irus, possibly through preferential induction of Th2-like
esponses (reviewed in Redd et al., 1999). Increasing the
iters of live-attenuated measles vaccines resulted in
mproved infant immunogenicity, but unexpected excess

ortality in vaccinated girls precluded the implementa-
ion of this alternative vaccine strategy (Garenne et al.,
991) (reviewed in Wild, 1999). Use of alternative strains
f live-attenuated measles vaccines yielded some inter-
sting results, although none appears capable of fully
ircumventing the limitations of early life responses to
easles vaccine (Pabst et al., 1999). Thus, efforts are

ongoing to develop novel vaccines/immunization strate-
gies that would be both safe and effective already very
early in life.

In addition to DNA immunization (Martinez et al., 1997;
Polack et al., 2000; Schlereth et al., 2000a), a series of
ecombinant live viral vectors are under preclinical eval-

ation in various rodent and nonhuman primate models.
his includes replication-deficient vectors, such as the
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13VACCINATION OF INFANT MICE WITH NYVAC(K1L)-HA
ALVAC2 canarypox (Taylor et al., 1992), modified vaccinia
irus Ankara (MVA) (Stittelaar et al., 2000), or an engi-

neered adenovirus vector (Fooks et al., 1998), as well as
replication-competent vectors such as vesicular stoma-
titis virus (VSV) (Schlereth et al., 2000b) and human

arainfluenza virus type 3 (PIV3) (Durbin et al., 2000),
onsidered for mucosal immunization. Most of these
trategies are based on measles-hemagglutinin (MV-
A), which contains virus-neutralizing B- as well as T-cell
pitopes, and is considered as an essential measles
accine antigen (Tamin et al., 1994). However, these
ovel live viral vectors developed for intended use in
oung infants have not yet been tested in early life
odels.
Murine models of neonatal immunization have re-

ently proven useful to study the impact of immune
mmaturity on vaccine responses to tetanus, respiratory
yncytial virus, and measles vaccine antigens (reviewed

n Siegrist, 2000, 2001). As observed in infants, immuni-
ation with live-attenuated measles vaccine (MV-
chwarz, MVS) of 1-week-old BALB/c mice resulted in
eaker antibody responses than those elicited later in

ife (Barrios et al., 1996) and was susceptible to inhibition
y maternal antibodies (Siegrist et al., 1998a). Early life

murine immunization was associated with limited Th1
responses, which was also recently reported in infant
studies (Gans et al., 1999), and to weak cytotoxic T
lymphocytes (CTL) responses (Barrios et al., 1996). Thus,
this murine model appears useful to characterize factors
limiting early life responses and strategies able to cir-
cumvent these limitations.

Based on numerous observations suggesting the cen-
tral role of antigen-presenting cells (APC) in the shaping
of early life T-cell responses, we postulated that a vac-
cine capable of replication within APC could result in a
more optimal activation of neonatal APC than replication-
defective vaccines. The vaccinia-based NYVAC strain
was derived from the Copenhagen strain by the precise
deletion of 18 open reading frames encoding functions
implicated in the pathogenicity of Orthopoxviruses as
well as host-range regulatory functions governing the
replication competency of these viruses on cells derived
from certain species, including human and mouse (Tarta-
glia et al., 1992). By the reintroduction of the K1L host-
range gene (Goebel et al., 1990) into the NYVAC vector,
the capacity of the virus to replicate in human and rodent
cells is restored (Perkus et al., 1989). Nevertheless, the
absence of the thymidine kinase gene in the NYVAC(K1L)
construct ascertains a highly reduced neurovirulence
compared to the Western reserve (WR) vaccinia strain
(Buller et al., 1985; Wild et al., 1992). In the present study
we inserted the MV-HA gene (Wild et al., 1992) under the
control of the VV-modified early/late H6 promoter, into the
NYVAC(K1L) vector to generate the NYVAC(K1L)-HA vac-

cine construct. This NYVAC(K1L) vector encoding for sev-
eral different circumsporozoite proteins was reported i
able to protect BALB/c mice from challenge in the Plas-
modium berghei rodent malaria model (Lanar et al.,
1996). In this report, we assessed the early life immuno-
genicity of the novel NYVAC(K1L)-HA construct, as com-
pared to other MV-HA delivery systems, in our murine
models of early life immunization.

RESULTS

Induction of adult-like CTL and Th1-like responses by
early life immunization with NYVAC(K1L)-HA

BALB/c mice were immunized at 1 week of age or as
adults with a single dose of NYVAC(K1L)-HA, or with
ALVAC-HA (controls). Mice were sacrificed 3 weeks after
immunization for evaluation of T-cell responses. MV-HA-
specific CD8 responses were first assessed by measur-
ing CTL activity following in vitro restimulation with the
MV-HA 544–552 immunodominant CTL peptide (Barrios
et al., 1996). In adult mice, NYVAC(K1L)-HA and
ALVAC-HA both induced considerable CTL responses,
measured by lysis of MV-HA-transfected P815 targets
cells (Fig. 1). Similarly strong CTL responses were elic-
ited by a single dose of NYVAC(K1L)-HA given to 1-week-
old mice (Fig. 1A), which contrasted with a lack of CTL
induction following early life ALVAC-HA immunization
(Fig. 1B). When the capacity of NYVAC(K1L)-HA to induce
IFN-g-secreting MV-HA CTL peptide-specific CD81 T
cells was assessed by ELISPOT, similar high frequen-
cies of antigen-specific IFN-g-producing CD81 T cells

ere observed in mice immunized with NYVAC(K1L)-HA
t 1 week of age or as adults (Fig. 2). This was again in
ontrast to immunization with ALVAC-HA, which only

nduced antigen-specific CD81 IFN-g-secreting cells in
adult, but not in infant mice (Fig. 2).

Analysis of CD4 T-cell responses to a single vaccine
dose indicated significant production of IFN-g and al-
most complete absence of IL-5 secretion by splenocytes
of mice immunized at 1 week of age with NYVAC(K1L)-
HA. Indeed, NYVAC(K1L)-HA immunization resulted in
comparable cytokine secretion following adult or early
life immunization, with similar IFN-g levels (1836 6 645
pg/ml in adults and 1353 6 1213 pg/ml in 1-week-old

ice) and no detectable IL-5 production in either age
roups (Fig. 3 and data not shown). This again con-

rasted with the high levels of IL-5 observed following
arly life immunization with either MVS or ALVAC-HA

Fig. 3). Thus, in contrast to both MVS and ALVAC-HA,
YVAC(K1L)-HA immunization proved capable of induc-

ng adult-like early life Th1, and CTL responses even in
h2-prone 1-week-old BALB/c mice.

ntibody responses to NYVAC(K1L)-HA following
arly life or adult immunization
Total IgG antibodies to MV-HA, measured by ELISA,
ndicated similar IgG antibody responses following early
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14 KOVARIK ET AL.
life or adult immunization with NYVAC(K1L)-HA, both in
terms of kinetics and in antibody titers (Fig. 4A). In mice
primed at 1 week of age, IgG antibody responses were
elicited earlier than following DNA immunization, but
reached a plateau similar to those induced by MV-
DNA-HA (Fig. 4B) or ALVAC-HA (Fig. 4C). As previously
observed following MV-DNA-HA immunization of adult
mice, antibodies elicited by NYVAC(K1L)-HA remained
weaker than those induced by ALVAC-HA (Fig. 4C and
Martinez et al. (1997)). NYVAC(K1L)-HA induced a similar
IgG2a (2.4–2.5 log10)/IgG1 (1.8–2.1 log10) subclass distri-

FIG. 1. Specific lysis of 51Cr-labeled P815-HA target cells by spleen c
or (B) ALVAC-HA. Spleen cells of mice immunized either at the age of 1
peptide (see Materials and Methods) prior to the incubation with
experiments.

FIG. 2. Enumeration of CTL-HA peptide-specific CD81 T cells secreti
ither at 1 week of age or as adults were harvested 3 weeks postimmun
f cells were then incubated on anti-IFN-g-coated nitrocellulose plates

Materials and Methods. Indicated are the mean number of spots per m

from wells with various concentrations of effector cells (see Materials and Met
mice. Similar results were generated in a repeat experiment.
ution of MV-HA antibodies in both adult and young
ice, as observed following DNA immunization (not

hown) and in contrast to preferential induction of IgG1
ntibodies in mice immunized at 1 week of age with
ither ALVAC-HA or MVS (Barrios et al., 1996).

As antibody-mediated protection not only relies on
nduction of initial antibody responses but also on prim-
ng efficacy, mice primed at 1 week of age with

YVAC(K1L)-HA received a second dose of vaccine, ei-
her NYVAC(K1L)-HA or ALVAC-HA. Efficient early priming

as demonstrated by the 10-fold or 100-fold increase of

vested from mice immunized 3 weeks previously with (A) NYVAC(K1L)
1w) or in adulthood (Ad) were restimulated for 7 days with the CTL-HA
A targets. Results shown are representative of three independent

g by ELISPOT assay. Spleen cells of mice immunized with viral vectors
and restimulated for 7 days with the CTL-HA peptide. Defined numbers

plates further processed to obtain specific spots, as described under
leen cells incubated for every experimental group (6SD), as detected
ells har
week (
ng IFN-
ization
and the
illion sp
hods). Indicated also is the respective background value of naı̈ve adult
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15VACCINATION OF INFANT MICE WITH NYVAC(K1L)-HA
IgG antibodies following NYVAC(K1L)-HA or ALVAC-HA
injection, respectively (Fig. 5). The relative increase of
MV-HA IgG (Fig. 5), IgG1, and IgG2a (not shown) antibody
titers was similar following boosting with either vaccine.

Influence of antibodies of maternal origin on antibody
and T-cell responses to NYVAC(K1L)-HA

Given the capacity of NYVAC(K1L)-HA to induce adult-
like early life Th1, CTL, and antibody responses, we
asked whether it could also overcome the inhibition of
antibody responses by preexisting measles-specific an-
tibodies. Two-week-old BALB/c mice were thus immu-
nized 48 h after passive ip transfer of serum from MVS

FIG. 3. IL-5 content of culture supernatants from splenocytes har-
vested from HA-immune mice restimulated with HA antigen for 72 h.
One-week-old mice were immunized with NYVAC(K1L)-HA, ALVAC-HA,
or MVS and sacrificed 3 weeks later to harvest their spleen cells.
Cytokine levels were measured in culture supernatants from cells of
individual mice (n 5 5 to 8 mice per group) using capture ELISA.
Results are expressed as means (6SD) for each experimental group.
Results shown are representative of several (n 5 3) independent
experiments.

FIG. 4. Anti-HA IgG responses to immunization of 1-week-old mice w

IgG titers in sera from individual mice bled at several time points postimmuniz
6–8 mice) and SD in reference to a serum standard (see Materials and Meth
immune adult females, a procedure previously demon-
strated as mimicking transfer of antibodies of maternal
origin to infant pups (Siegrist et al., 1998a). The presence
of relatively low titers of passively transferred HA-spe-
cific IgG (4.5 log10), measured by preimmunization bleed-
ing, completely inhibited early life MV-HA antibody re-
sponse to 1 3 106 PFU of NYVAC(K1L)-HA (Fig. 6A). Next,
in the presence of even lower titers of passively trans-
ferred HA-specific IgG (,4.0 log10), a second immuniza-
ion of NYVAC(K1L)-HA (1 3 106 PFU) was given 1 week

after primary immunization, a strategy previously suc-
cessfully applied to circumvent the inhibition of antibody
responses mediated by passively transferred IgG in var-
ious immunization models including MVS (Martinez et
al., 1999; Siegrist et al., 1998a, 1999). This early two-dose

trategy did allow induction of antibody responses to HA,
ut only in four of seven pups and at a late time point

Fig. 6B).
To define whether the failure of NYVAC(K1L)-HA to

nduce MV-HA antibodies in the presence of passively
ransferred MV-HA antibodies was due to neutralization
f the vaccine load or to another HA-specific immune
echanism, IgG responses to the NYVAC(K1L) vector
ere measured. Failure to induce MV-HA antibody re-

ponses in the presence of passively transferred MV-HA
ntibodies was correlated with the absent or very low
ntibody responses to the NYVAC(K1L) vector, both at
arly (day 12) and at late (day 97) time points after

mmunization (not shown). In contrast, significant anti-
YVAC(K1L) antibodies were present in pups that had
scaped inhibition of MV-HA antibody responses by
V-HA antibodies following use of the early prime-boost

trategy. Thus, passively transferred MV-HA antibodies
nhibited induction of both anti-HA and anti-NYVAC(K1L)
ntibody responses. In contrast, a single dose of
YVAC(K1L)-HA elicited similarly strong CTL responses

Fig. 7) and CD4 T-cell-dependent IFN-g secretion
1282 6 530 vs 1742 6 674 pg/ml (controls)) whether

VAC(K1L)-HA (A), DNA-HA (B), or ALVAC-HA (C). Measured were total
ith NY

ation. Results are expressed as mean IgG ELISA titers per group (n 5
ods).
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administered in the presence or the absence of pas-
sively transferred HA-specific IgG (4.1 log10). Thus, induc-
tion of CD8 and CD4 responses remained unaffected by
the presence of HA-specific IgG at titers which com-
pletely inhibit the generation of infant mice antibody
responses.

DISCUSSION

The challenge for a new measles vaccine is to be able to
induce adult-like antibodies, Th1-like and CTL responses at
an early time in life where the currently used live-attenuated
vaccines are of insufficient immunogenicity (Gans et al.,
1998). We show here that this may be achieved in infant

FIG. 5. Anti-HA IgG responses after primary immunization (day 0) of
1-week-old mice with NYVAC(K1L)-HA and secondary immunization
(day 28) with either NYVAC(K1L)-HA or ALVAC-HA. Measured were total
IgG titers in sera from individual mice bled at several time points post
primary and secondary immunization. Results are expressed as mean
IgG ELISA titers per group (n 5 6–8 mice) and SD in reference to a
serum standard (see Materials and Methods).

FIG. 6. Induction of anti-HA antibody responses to NYVAC(K1L)-HA
transferred 2 days prior to immunization. (A) Time course of anti-HA a
n the presence of moderate titers of preexisting anti-HA IgG. (B) Time

and 14) of 1 3 106 PFU NYVAC(K1L)-HA in the presence of low titers o
ice that were passively transferred with anti-HA IgG but immunized
ice that did not receive anti-HA IgG prior to the immunization with NYV
ndividual mice bled at various time points after immunizations. Results are e
in reference to a serum standard.
mice by immunization with a new viral vector, the vaccinia-
derived NYVAC(K1L) vector. In contrast to immunization
with live-attenuated MVS and live-recombinant ALVAC-HA,
a single dose of NYVAC(K1L)-HA induced adult-like CD81

responses already in 1-week-old mice, an age previously
experimentally defined as best correlating with the stage of
immune maturation of human neonates (reviewed in Sie-
grist, 2000, 2001). These CD8 responses are associated
with CD4 T cells secreting high levels of IFN-g and no IL-5,
both in adult and in young mice, despite the use of the
Th2-prone BALB/c mouse strain. This exclusive Th1 pattern
of early life measles responses contrasts with the prefer-
ential induction of Th2 early life responses to MVS or to
ALVAC-HA (Barrios et al., 1996).

The observation that two poxvirus-derived vaccines
(ALVAC-HA and NYVAC(K1L)-HA) encoding the same
measles antigen and showing similar T-cell responses in
adult mice exhibit very distinct immunogenic properties
in early life is of interest. Induction of adult-like neonatal
Th1 and CTL responses is currently considered as de-
pendent on the extent of neonatal APC activation, and
thus of APC-T cell interactions (Adkins, 1999). The differ-
ence in the early life immunogenicity of ALVAC-HA and
NYVAC(K1L)-HA could thus reflect differences in their
tropism for neonatal vs adult APC. This may not be
monitored in vivo, as no virus can be recovered from
tissues of mice inoculated with strongly attenuated, non-
virulent vaccinia-derived vaccine strains (not shown).

Distinct early life immunogenicity patterns could, how-
ever, directly result from differences in the capacity of the
two vectors to optimally activate neonatal APC. The ca-
pacity of single-step replicating viral vectors (Sendai
TR-5 vaccine (Siegrist et al., 1998b) and DISC herpes

ization of 2-week-old mice in the presence of anti-HA IgG passively
responses to a single immunization of 1 3 106 PFU NYVAC(K1L)-HA

of anti-HA antibody responses to two subsequent immunizations (day
isting anti-HA IgG. The control groups for these experiments included
S only (natural decline of the transferred anti-HA IgG antibodies) and
)-HA (positive controls). ELISA was used to measure titers in sera from
immun
ntibody
course
f preex

with PB
AC(K1L
xpressed as mean IgG ELISA titers per group (n 5 6–8 mice) and SD
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17VACCINATION OF INFANT MICE WITH NYVAC(K1L)-HA
vaccine (Franchini et al., 2001)) to induce adult-like Th1
and CTL responses in neonatal mice supports this hy-
pothesis, and viral replication is known to lead to strong
IFN-a production and subsequent IL-18 up-regulation
Sareneva et al., 2000).

The antibody response generated by NYVAC(K1L)-HA
s strikingly similar to responses elicited by DNA-HA
mmunization: both delivery systems induced low but
dult-like responses of similar kinetics, antibody titers,
nd isotype distribution regardless of age at immuniza-

ion. The failure of NYVAC(K1L)-HA and of DNA-HA to
nduce higher antibody responses than those elicited in
nfant mice by live-attenuated MVS could be of concern
iven the importance of antibodies for protection against
easles, and the limited capacity of human infant anti-

ody responses even to MVS (Gans et al., 1998). Impor-
antly, however, strong antibody responses were elicited

hen NYVAC(K1L)-HA priming was followed by early
oosting (Fig. 5), indicating that induction of antivector

esponses does not suppress vaccine uptake and immu-
ogenicity. This was confirmed by demonstrating that
riming with a NYVAC(K1L)-NP vaccine did not affect
ubsequent responses to NYVAC(K1L)-HA (data not
hown). As previously observed following DNA priming

Martinez et al., 1999), use of heterologous prime-boost
trategies (Fig. 5) may elicit yet higher antibody re-
ponses.

FIG. 7. Specific lysis of 51Cr-labeled P815 target cells pulsed with
CTL-HA peptide at different effector:target ratios. Spleen cells were
harvested 3 weeks after immunization of 2-week-old mice with a single
dose of NYVAC(K1L)-HA in the presence or absence of transferred
HA-specific IgG (4.1 log10). Spleen cells of mice were restimulated for
7 days with the CTL-HA peptide as indicated under Materials and
Methods.
Despite the capacity of NYVAC(K1L)-HA to induce
dult-like antibody, Th1, and CTL responses in young
ice, it remains susceptible to inhibition by passively
ransferred antibodies of maternal origin. These results
re in accordance with results obtained in adult mice as
ell as in adult monkeys using the HA-expressing VV

ecombinant derived from the Copenhagen strain (Gal-
etti et al., 1995; van Binnendijk et al., 1997), as well as in
ther experimental models using vaccinia-derived vec-

ors (Murphy et al., 1988). Inhibition of anti-HA responses
by passively transferred MV-HA antibodies was associ-
ated with inhibition of antibody responses to the
NYVAC(K1L) vector, suggesting neutralization of the
NYVAC(K1L)-HA vaccine and preventing in vivo replica-
tion. However, the unaffected induction of HA-specific
CD4 and CTL responses indicates that NYVAC(K1L)-HA
replication did occur at levels sufficient to allow antigen
presentation at the APC surface and T-cell activation.
The amount of viral antigen sufficient for APC-T cell
activation may thus be significantly lower than the one
required for B-cell activation. The observation that ma-
ternal antibodies may inhibit infant antibody responses
to a novel vaccine candidate, be it NYVAC(K1L)-HA or
DNA (Siegrist et al., 1998a), should thus not lead to the
conclusion that such a vaccine cannot be used in early
life. CTL responses in mice (Galletti et al., 1995) and
proliferative T-cell responses in monkeys (van Binnendijk
et al., 1997) to HA delivered by VV recombinants of the
Copenhagen strain were not inhibited in the presence of
passively transferred anti-MV polyclonal serum. More-
over, maternal antibodies did not inhibit T-cell vaccine
responses to conventional, canarypox, or DNA vaccines
in mice (Siegrist et al., 1998a), monkeys (Stittelaar et al.,
2000), and humans (Gans et al., 1999), even if some
reduction of CTL activity was recently reported in infant
monkeys that received measles-specific immune globu-
lin prior to vaccination with MVA or WR vaccines ex-
pressing MV-HA and MV-fusion proteins (Zhu et al.,
2000). Measles-specific T cells are considered as capa-
ble of limiting disease severity should early exposure
occur. Thus, to immunize very early in life, so as to
initiate T-cell responses as early as possible, and to rely
on an early prime-boost approach to increase antibody
responses and to circumvent maternal antibody-medi-
ated inhibition of antibody responses appears as the
most promising vaccination strategy. Here, a second
dose of NYVAC(K1L)-HA given as early as 1 week after
priming circumvented passive antibody-mediated inhibi-
tion and allowed antibody responses in 70% of infant
mice.

Although mice cannot be used for measles respiratory
challenge studies, they have proven valuable models for
measuring the immunogenicity of measles vaccines,
demonstrating similar comparative immunogenicity pro-
files of live-attenuated MVS and pox-derived vectors as
cotton rats and monkeys (Barrios et al., 1996; Stittelaar et

al., 2000; Wyde et al., 2000). Despite the risk of overinter-
preting the infant mouse model, the results continue to
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18 KOVARIK ET AL.
show consistency and appear to correlate with the re-
cently described nature of human infant responses to
measles vaccine (Gans et al., 1999). Whether the infant

ouse model may also be useful to compare the neo-
atal safety of the novel measles vaccine candidates in
arious prime-boost combinations, or whether this will
ave to be addressed directly in nonhuman infant pri-
ates, is now open for studies.

MATERIALS AND METHODS

ice

Specific pathogen-free adult BALB/c inbred mice were
urchased from Biological Research Laboratories (Fül-

insdorf, Switzerland) and kept under specific pathogen-
ree conditions. Breeding cages were checked daily for
irths. Pups were kept with mothers until weaning at the
ge of 4 weeks. Adult mice were used at 8–12 weeks of
ge.

accines and immunizations

Recombinant VVs expressing MV-HA were con-
tructed by using the host range selection system de-
cribed by Perkus et al. (1989). The VV-attenuated NYVAC

vP866) strain was originally derived from the Copenha-
en strain by the precise deletion of 18 open reading

rames (Tartaglia et al., 1992). To generate NYVAC(K1L)-
A, the MV-HA gene (Wild et al., 1992) was inserted into

the plasmid containing the vaccinia-K1L gene and the
modified vaccinia early/late H6 promoter (Goebel et al.,
1990; Lecouturier et al., 1996). The K1L gene, H6 pro-
moter, and polylinker region are located in this construct
within flanking Copenhagen vaccinia arms, replacing the
ATI region (ORFs A25L, A26L) (Goebel et al., 1990). For
immunizations, NYVAC(K1L)-HA was used at 1 3 105

PFU per mouse (1-week-old mice) or at 1 3 106 PFU per
mouse (adults) unless indicated otherwise in the text.
The immunization of 1-week-old mice with 1 3 105 PFU

r 1 3 106 PFU generated similar T-cell and antibody
responses, whereas 1 3 106 PFU was required to induce
substantial antibody responses in adult mice (data not
shown). Live-attenuated measles virus (Schwarz strain
(MVS), 5 3 105 CCID50 per mouse) was obtained from
Pasteur Mérieux Connaught, Marcy l’Etoile, France. Live-
recombinant canarypox virus expressing the measles
virus HA (vCp85, ALVAC-HA, 5 3 107 PFU per dose)
(Taylor et al., 1992) was generously provided by Dr. J.
Tartaglia, Virogenetics Inc., Troy, NY. These vaccines
were injected ip in a total volume of 100–200 ml. The DNA
vaccine encoding the membrane-bound MV-HA sub-
cloned into the pV1J plasmid was characterized previ-
ously (Martinez et al., 1997). The DNA plasmid was in-
jected im in each quadricep at a total dose of 100 mg in

a volume of 25 ml. In experiments with passively trans-
ferred anti-HA antibodies, 2-week-old mice were immu-
nized 48 h after ip transfer of 200 ml of immune serum
raised by repeat MVS immunization of adult mice. This
was previously demonstrated to result in titers of MV-HA
antibodies similar to those obtained in pups of immune
mothers (Siegrist et al., 1998a). To achieve lower MV-HA-
specific titers prior to immunization, MVS immune serum
was diluted in PBS prior to ip transfer.

Quantification of vaccine-specific antibodies

Mice were bled at regular intervals for the determina-
tion of vaccine-specific serum antibodies. Serum MV-HA
antibodies were measured by using plates coated with
Ltk-HA-transfected fibroblasts (Barrios et al., 1996). Incu-
bations were performed with serial serum dilution start-
ing at 1/100. After washing, the relevant isotype-specific
peroxidase-conjugated goat or rabbit anti-mouse anti-
body (Zymed Laboratories Inc., San Francisco, CA) was
incubated for 2 h at 37°C prior to washing, incubation
with ABTS substrate, and reading. The results were gen-
erated by reference to serial dilution of an out-titrated
serum pool from measles-HA-immunized adult mice. An-
tibody titers below the cutoff of the assay were given an
arbitrary titer of one-half the cutoff to allow calculation of
geometric mean antibody titers. To detect antibodies
against the viral vector NYVAC(K1L) in mice immunized
with NYVAC(K1L)-HA, 96-well plates were coated with
0.5 3 107 PFU/ml of NYVAC(K1L)-NP (50 ml per well) at

°C overnight. After washing, blocking was performed
ith 1% BSA in PBS/0.05% Tween 20 for 1 h at 37°C.

ncubations were performed with serial serum dilutions
tarting at 1/50. After washing, peroxidase-conjugated
oat or rabbit anti-mouse total IgG antibody (Zymed Lab-
ratories Inc.) was incubated for 2 h at 37°C prior to
ashing, incubation with substrate, and reading.

uantification of lymphokines in supernatants
f in vitro cultures

Spleens were harvested 3 weeks after immunization.
plenocytes were incubated in a humidified incubator in
MEM supplemented with 10% (v/v) heat-inactivated fe-

al calf serum (FCS) at 37°C in 5% CO2, with 1.5 mM
L-glutamine, 50 mM 2-mercaptoethanol, 100 U/ml peni-

illin, and 100 mg/ml streptomycin, essentially as previ-
usly described (Barrios et al., 1996). Cells were cultured

n 24-well plates and coincubated with vaccine antigens
MVS) or with DMEM–10% FCS only (control wells). Cell
upernatants were collected after 48 or 72 h to measure

L-5 and IFN-g contents by capture-ELISA (Barrios et al.,
996). Values for IL-5 and IFN-g were expressed by
eference to a standard curve constructed by assaying
erial dilution of the respective mouse cytokines. Values
elow the cutoff of the assay (IL-5: 25 pg/ml; IFN-g: 80
pg/ml) were given the concentration of one-half the cut-
off. Antigen-specific cytokine secretion was obtained by



w
e
f
P

c
c
c
n
t
a

(
p
D

19VACCINATION OF INFANT MICE WITH NYVAC(K1L)-HA
subtracting the cytokine content of the supernatant from
splenocytes incubated with DMEM–10% FCS alone.

Determination of CTL using 51Cr-release assay

Splenocytes were harvested 3–4 weeks after immuni-
zation. Identical numbers of splenocytes from immunized
mice were pooled and cultured as bulk as described
(Barrios et al., 1996). Cells were cultured in DMEM or
RPMI with 10% FCS containing 20 mg/ml MV-HA 544–552
CTL peptide (Barrios et al., 1996) and the cytolysis assay

as performed on day 7 of culture. Varying numbers of
ffector cells were added to 51Cr-labeled, HA-trans-

ected, MV-HA CTL peptide pulsed or nonpulsed (control)
815 target cells (5 3 103 per well). After 5 h of incubation

at 37°C, cell supernatants were harvested for the quan-
tification of 51Cr content using in a Minaxi 5000 gamma

ounter (Packard). The percentage of specific lysis was
alculated as [(experimental c.p.m. 2 spontaneous
.p.m.)/(total c.p.m. spontaneous c.p.m.)] 3 100. Sponta-
eous release and total release were determined from

arget cells incubated with medium alone and after the
ddition of 100 ml of 1 M HCl, respectively.

ELISPOT assay of HA-specific CD81 cells producing
IFN-g

This assay for the detection of CTL epitope-specific
IFN-g-secreting T cells was adapted from Miyahira et al.
1995). Splenocytes from immunized mice were pooled
er group and cells were grown in bulk cultures in
MEM/10% FCS containing 20 mg/ml MV-HA 544–552

CTL peptide (Barrios et al., 1996). The ELISPOT assay
was performed on day 7 of culture. Multiscreen 96-well
nitrocellulose plates (Millipore, Molsheim, France) were
coated overnight with 10 mg/ml rat anti-mouse IFN-g
monoclonal antibody (clone R46A2) (Pharmingen, San
Diego, CA). Cells were washed and placed at various
dilutions into the wells containing complete medium sup-
plemented with 30 U/ml IL-2 (EL-4 supernatant). Then,
105 irradiated (8000 Rad), MHC class II negative P815
cells expressing HA or P815 control cells were added as
APC to each well and the plates were incubated for 24 h
at 37°C and 5% CO2. The plates were then washed and
incubated overnight at 4°C together with 5 mg/ml biotin-
ylated anti-mouse IFN-g antibody (clone XMG) (Pharm-
ingen), washed, and then incubated with peroxidase-
conjugated ExtrAvidin (Sigma, St. Louis, MO). Spots were
developed by adding freshly prepared substrate buffer
(0.3 mg/ml of 3-amino-9-ethyl-carbazole and 0.03% H2O2

in 0.1 M sodium acetate (pH 4.8)). The number of spots
(per well) was counted using the KS ELISPOT Reader
System (Zeiss, Hallbergmoos, Germany) and expressed

as spots/million spleen cells/experimental group.
Statistical analysis

Significant analysis between results obtained from
various groups of mice was performed by using the
Mann–Whitney U test. Probability values . 0.05 were
considered insignificant.
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