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This paper presents a new method to estimate the time of important earthquakes in

Hormozgan region with magnitude greater than 5.5 based on the Radial Basis Function

(RBF) Neural Network (NN) models. Input vector to the network is composed of different

seismicity rates between main events that are calculated in convenient and reliable way

to create optimized training methods. It helps network with a limited number of

training data to estimation. It is common for earthquakes modeling by data-driven

methods in this case. In addition, the proposed method is combined with Rosenberg

cluster method to remove aftershocks events from the history of catalog for NN to better

process the data. The results show that created RBF model successfully estimates the

interevent times between large and sequence earthquakes that can be used as a tool to

predict earthquake, so that comparison with other NN structure, for example Multi-

Layer Perceptron (MLP) NN, reveals the superiority of the proposed method. Because of

superiority proposed method has higher accuracy, lower costs and simpler network

structure.
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1. Introduction

The earthquake is a natural phenomenon caused by the

sudden release of energy stored in the ground created by

seismic waves. Earthquakes occur naturally due to the nature

of tectonic motions [1,2]. Earthquakes cause ground

displacement and in some cases trigger a tsunami, it should

be noted that in some cases, human activities are effective in

occurrence of earthquakes. Forecasting and prediction in

many cases are synonymous, but have the subtle difference.

The present work is prediction [3]. Over time there have been

significant efforts in earthquake prediction. Earthquake

prediction is an interdisciplinary field of research in

seismology, physics, geology, mathematics, computer

science, engineering, and even social sciences. The US

National Academy of Science defines earthquake prediction

as the estimation of any one or more parameters of a future

earthquake, namely, time of occurrence, epicentral location,

and magnitude. Earthquake prediction studies can be

categorized into two types, one is based on the analysis of

earthquake precursor data, and the other is based on the

analysis of historic earthquake data. Important earthquake

precursors include changes in the earth's electromagnetic

field [4], abnormal animal behavior [5,6], seismic quiescence

[7], fault creep and continuous strain [8e10], and anomalous

geochemical observations [11,12]. Changes in seismicity

patterns are the most successful long-term precursors.

Studies based on historical earthquake data often attempt to

establish a magnitudeefrequency relationship. The most

popular distributions are the Gutenberg-Richter inverse

power law distribution [13]. One of the hardest but best

searching methods is the use of new and emerging

accounting principles, such as Neural Networks (NNs) and

evolutionary computation are particularly suited to solving

complex problems. In general, the time scale earthquake

prediction according to interval of the impending

earthquake is classified as short, medium and long-term.

The long-term prediction of natural disaster occurrence is

one of the most sought-after goals in geoscience. Succeeding

in such a goal involves obviating a multitude of difficulties;

not only the proper variables which will act as precursors

should be recognized and measured, but also the

correlations between those variables and disaster

occurrence should be identified. In spite of the significant

progress over the last 20 years [14e16], the determination of

such correlations remains a difficult endeavor as the

governing relationships are usually rather complex and

nonlinear, and the mechanisms creating the respective

correlations are only recently coming to be understood [17,18].

Seismicity databases (catalogs) are the most popular source

of data for long-termprediction studies for a number of reasons

(including: abundance, existence for almost all regions of the

world, availability on a continuous basis). On the other hand,

NNs are powerful mathematical tools [19] that simulate the

way that the human brain deals with information and the

procedure of learning. Recently, efforts have been made to

investigate the potential of Artificial Neural Networks (ANNs)

as a tool for system behavior simulation that are governed by

nonlinear multivariate and generally unknown
interconnections within a noisy, poorly-controllable physical

environment. The choice of the ANN approach is motivated

by the lack of clear causal relations between seismicity

patterns and related crustal environments. In addition, the

smart methods have higher precision, lower cost and easier

calculations than traditional and classical methods. It seems

attractive to us considering the seismicity rates, because

many seismologists share the view that changes in seismicity

rates can occur as part of the process of preparation for large

earthquakes [19,20]. Therefore, during the early 1980's the

impact of man-made effects on seismicity rates was

demonstrated for the first time [7].
2. Geological setting of studied region

Hormozgan region is in north of the Strait of Hormuz in

southern Iran, and is one of the most strategic parts of the

world politically and economically. Coastal zones of the re-

gion are on the east of Oman. The historical record confirms

that some areas, for example, Zagros and Makran, in terms of

seismicity are active of 2500 years ago, and this reflects the

long-term nature of seismicity areas [21]. Hormozgan region

as shown in Fig. 1 is located inside the interface between the

geographical coordinates 25�240N to 28�570N and 53�410E to

59�150E from Greenwich meridian [22].
3. Neural networks

Multi-Layer Perceptron (MLP) and Radial Basis Function

(RBF) NNs are briefly explained in this section.
3.1. RBF Neural networks

RBF network is a kind of forward NNs composed of three

layers including input layer, hidden layer and output layer.

Each of these layers has different roles, respectively [23]. In

RBF networks, outputs are determined by calculating the

distance between network inputs and the centers of the

hidden layer. The second layer is a hidden linear layer, and

outputs of this layer weight bearing samples from the

outputs of the input layer. Each hidden layer neuron with a

vector parameter called the center. Therefore, a general

description of the network is given by equation (1) [24]:

by ¼
XI

i¼1
wifðkx� cikÞ þ b (1)

Standard mode is usually the Euclidean distance, and RBF

is intended with Gaussian function as equation (2):
4ðrÞ ¼ exp

�
� aikx� cik2

�
(2)

In equations (1) and (2), the following definitions are

considered: i2{1, 2, 3,…, I}, so I is the number of neurons in the

hidden layer; wi, weight between neuron in the hidden layer

and output; 4, Gaussian function; ai, spread parameter

(amount of variance) neuron; x, input data vector; ci, center

vector of neuron; b, bias of output; by, output of the network.

Fig. 2 shows the schematic overview of a RBF network. M-

dimensional inputs (x1,…, xm) are placed in the input layer.

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004


Fig. 1 e Geographical location of Hormozgan region.
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Hidden layer include I neurons and each neuron in this layer is

calculated in terms of the Euclidean distance between the

centers and inputs. Hidden layer's neuron has an activation

function that is called RBF function. RBF function is a

selected Gaussian function which encompasses the spread

parameters (a1, …, ai) to adjust the shape of the curve.

Outputs of hidden layers are transmitted to the output layer

through weights (w1, …,wi). Here I show the number of

hidden layer neurons. Output layer is linear combination of

the hidden layer's outputs and bias parameter b. Finally, by is

obtained as RBF's output.
Fig. 2 e Schematic overview of a RBF NN.
RBF NN design method should determine the number of

neurons in the hidden layer. a, c and bmust be set correctly, in

order to obtain the desired output of RBF NN parameters w.

Root Mean Square Error (RMSE) can be used to evaluate

network performance. The error for RBF network can be

defined as:

ERMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI

i¼1ðy� byÞ2
I

s
(3)

Here y is the desired output and by shows output of RBF NN.

And minimizing the error function is the RBF NN training

method [24,25].
3.2. Multi-layer perceptron neural network

MLP NN is able to simulate various issues. In most impor-

tant part of MLP networks, the number of middle layers and

number of neurons should be determined by the input and

output parameters. MLP can do complex classifications by

using sufficient perceptron layers in the network. These

classifications by sigmoid transfer functions including LogSig,

TanSig and PureLin are related to the hidden layer MLP NN.

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004
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Fig. 3 is a view of MLP network. In this network, neurons of

each layer are connected to neurons the previous layer.

Output of each layer after influence function, is the input of

next layer, and this process will continue until the result to

be obtained [26e28].

4. Methods and process

In this section, we review and analyze the work process in

a rundown look.

4.1. Earthquakes catalog of study region

In this paper, we obtained earthquakes catalog from Inter-

national Institute of Seismology and Engineering. According to

Fig. 4, timeperiod (timewindow) is years between 1900 and late

2014, and geographical coordinates (the location window) is

25�240Ne28�570N, and 53�410E�59�150E. Number of events in

this window is 3840. The selection reason for this spatial and

temporal window is it covering all earthquakes of the

Hormozgan region. Hormozgan region and its earthquakes

has been separated by using ARCGIS software carefully (Fig. 5).

The first step for estimation the earthquakes in the region,

is providing a valid catalog of all historical and devices events.

In the following, the evaluation of the uncertainty of earth-

quake parameters is important. Obvious uncertainty in
Fig. 3 e Schematic overview of a MLP NN.

Fig. 4 e Map of geographical coordinates (the location windo
earthquake parameters is based on the number of local and

regional stations, stations distribution and velocitymodels. By

comparing the location, depth and magnitude reported by

different seismology centers can be evaluated the un-

certainties for each earthquake and its center. Determination

of the location of an earthquake for the Middle East before the

early 1970s had little accuracy. Based on the quality and

quantity of available information, determined uncertainty of

earthquake parameter for Iran in three periods of time for the

historical period (pre 1900) uncertainty in depth, location and

magnitude represent in 30 km, 100 km, 0.4 to 0.8, respectively;

for the early instrumental period (1900e1963), 20 km and 0.3 to

0.5 was calculated for location and magnitude; and for the

modern instrumental period (1964e1994), location errors for

moderate and major earthquake are about 15 km and 10 km,

and direct assignment of the surface wavemagnitudeMsmay

contain 0.2 to 0.4magnitude, units of error andMs values from

the conversion of, the body wavemagnitudeMb, suffer 0.45 to

0.67 magnitude units of uncertainty [21]. So that amount of

uncertainty is decreased along the time. Therefore, in this

research IT is considered a valid catalog from 1964 onwards

and for the 1609 earthquake.

4.1.1. Catalog magnitude scale
Since International Institute of Seismology and Earthquake

Engineering reported earthquake magnitude on different

scales, the scales need to be unified to prepare a catalog with

uniform magnitude scale [21]. In this study, we convert all

magnitudes to Mb, because most earthquakes have been

reported with Mb scale, the following relationships is used

for conversion [22,29].

Mb ¼ 2:41þ 0:558Ms 4:0 � Mb � 6:2 (4)

Mw ¼ 0:85Mbþ 1:03 3:5 � Mb � 6:2 (5)

There are many studies about correlation between the

local magnitude Ml and the moment magnitude Mw. But it is
w) and earthquakes distribution in time period of study.

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004


Fig. 5 e Separating earthquakes of Hormozgan region using ARCGIS software.
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impossible to define unique global relations between Ml and

Mb or other magnitude scales. Therefore, we could only

trust the internal correlation which exists in about 2000

records with both Mw and Ml. This correlation is obtained

from 2271 records in the time period of 1975e2010, shown in

Fig. 6. The divergence or distribution of the points is

minimum, and the R2 ¼ 0.98 is also convincing to get this

equation at this stage [21].

Mw ¼ 1:0136Ml� 0:0502; 4:0 � Ml � 8:3 (6)

Thus, according to equations (4)e(6), all related

magnitudes are converted to scale Mb and are evaluated.

4.1.2. Completeness magnitude variations through ZMAP
Themagnitude of completenessMc is theoretically defined

as the lowest magnitude at which 100% of the earthquakes in

a specific space-time range are detected. Mc determination of

instrumental earthquake catalogs is an essential and
Fig. 6 e Correlation betweenMl withMw in the catalog [21].
compulsory step for any seismicity analysis. There are several

methods to determine Mc. Two main methods are the tradi-

tional and commonmethods for estimating completeness of a

catalog. One is using the cumulative frequencyemagnitude

distribution (i.e., logN¼ a� bM, whereN counts the number of

earthquakes with magnitude greater than or equal to magni-

tude M; and a and b are seismicity and zone-dependent con-

stants). Another Mc determination method is using the

frequencyemagnitude distribution to apply the seismological

analysis in ZMAP software [30]. For instrumental earthquakes,

depending on the region and accuracy of seismogram

recorded, Mc can be presented by recorded events which

have different value [21]. If different time periods in this

study are considered for raw catalog, magnitude of

completeness variations can be studied clearly. As is shown

in Fig. 7 for years before 1997 the biggest magnitude

recorded is 4 or more, but in the following years to 2005, the

amount declined to about 3. A reason of these changes is

possibly related to increase or decrease in the number of

stations in that period [31].
Fig. 7 e Temporal variations magnitude of completeness in

raw catalog.

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004
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4.1.3. Magnitude of completeness raw catalog in Hormozgan
province

According to the available catalog for provinces of magni-

tude greater than or equal to 3.1 earthquakes in the region

(Fig. 8), the magnitude of completeness value is obtained

equal to 3 in this region by using ZMAP software.

4.2. Major and continuous earthquakes interevent times

This paper aims to estimate the occurrence of large

earthquakes, the output (target) variable of the RBF network

was selected to be the interevent time between two consec-

utive main events. Thus, a threshold M was defined and each

event exceeding M in magnitude was considered as a main

event. We define the interevent time Tk
M as follows:

Tk
M ¼ tk � tk�1 (7)

where tk denotes the occurrence time of the kth event, and tk�1

denotes the occurrence time of the (k � 1)th event in the cat-

alog, both of which are greater in magnitude than the valueM

[32]. Threshold M in this research is set equal to 5.5 for the

region according to investigated data and based on the

modified Mercalli and reviews. Finally, interevent times are

calculated for Hormozgan region according to equation (7).

In this study, real-time or origin-time is the occurrence time

of the recorded earthquake, according to the International

Institute of Earthquake Engineering and Seismology [33].

4.3. Seismicity patterns

Seismicity pattern studies gather data on the distribution

of earthquakes in space, time and size (hereafter referred to as

the first-order moment), examining seismicity rate, location

and migration of foreshocks and aftershocks, gaps, donuts

and variations in b value. In some cases, subjectively recog-

nizable patterns (e.g., foreshock cluster, gap, b value anomaly)

are observed which closely resemble those predicted for

various theories of seismogenesis in reference [31]. Changes in

seismicity activity are stresses reflector and preparation

stages of earthquakes [34e37]. In any case, uncertainty

physical description generation of earthquake and lack of

relationships between seismicity patterns and the skin
Fig. 8 e Completeness mag
environments are limitation factors for the development of

prediction. Data-driven nets as alternative to classical

approximation methods to predict earthquakes are so

important that during the last few years it has been taken

into consideration [32].

4.3.1. Seismicity rates
Change in seismicity rate is important as it shows the

preparation of large earthquakes. The necessary catalog pa-

rameters for seismicity rate analysis are earthquake origin

times and magnitudes. Seismicity rate variations can be well

illustrated by the cumulative number curves. Artificial

changes in seismicity rate changes arise mainly from three

categories: (1) detection changes arising from increased

capability of a network to recognize and locate events due to

installation of new stations, (2) systematic changes in mag-

nitudes of events (magnitude shifts), caused by changes in the

station distribution chosen to determine magnitudes, and (3)

reporting changes which are related to lack of reporting

magnitudes for detected events. As these changes will lead to

ineffective seismicity rates [20]. Selecting the proper input

variables is of paramount importance for the prediction

abilities of the resulting NN model. In this paper, the inputs

were selected as the seismicity rates between main and

continuous events. There are many reasons for this

selection: (1) seismicity rates can characterize the strain

accumulation and release process on the average, (2) they

are very easy to calculate and (3) their calculation is reliable

[32]. Seismicity rate as the rate of earthquake occurrence in

the time interval between the main events numbered k and

k � 1 is:

Rk
M1 ;M2

¼ Nk
M1 ;M2

Tk
M

(8)

where Nk
M1 ;M2

is the number of earthquake events that are

larger in magnitude than M1 and smaller than M2 and have

occurred betweenmain events numbered k and k� 1. Previous

studies showed that estimation accuracy increases when

more than one seismicity rate is given as input, attributing the

fact to the existence of clear differences in the variations of

seismic rates with the size of events. As the results of our

experiments were consistent with this hypothesis, we
nitude of raw catalog.

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004
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allowed the input vector to contain several values of different

seismicity rates, which were calculated for different values of

M1, M2 and k. The exact number of seismicity rates to be

chosen as input variables was optimized based on numerical

experiments, as will be discussed later. It would be intuitive to

include as input seismicity rates of the type Rk
M1 ;M2

for the

prediction of the corresponding interevent time Tk, as they

contain the most recent information preceding the main

event numbered k. However, such an inclusion would signif-

icantly diminish the practical value of the resulting NN as a

predictive tool. The reason is that, in order to make a predic-

tion for the interevent time Tk between main events k � 1 and

k, one would have to wait until main event k has already

occurred, so that the rate Rk
M1 ;M2

is available. In this case, pre-

diction of the interevent time Tk would be of no practical use.

Thus, the input vector for prediction of the interevent time Tk

should contain past seismicity rates from the period between

main events k � 1 and k � 2, i.e., Rk
M1 ;M2

. More than one period

between past main events could be utilized to produce addi-

tional input variables. Fig. 9 depicts a visual example for the

definition of the seismicity rate Rk
M1 ;M2

, in relation with main

events numbered k � 1 and k � 2.

The bounding parameters M1 and M2 define the range of

magnitudes used for calculating the corresponding seismicity

rate Rk
M1 ;M2

. The selection of the lower bounding parameterM1,

which acts as a cutoff magnitude, is important in order to

avoid producing a non-homogenous set of training data. A

sufficiently high value for M1 should be applied, guaranteeing

that variations in the calculated seismicity rate are not due to

differences in the way which earthquakes are recorded (e.g.,

changes in the sensitivity of earthquake recorders), but in fact

reflect a change in seismicity dynamics. The securing of ho-

mogeneity data set by properly selecting the cutoff magnitude

is important. It is also possible to introduce additional

bounding parameters, M3, M4 … Mz, thus segmenting the

magnitude range inmore than one zone. In this case, the total

number of seismicity rates used as input variables for each

period between older main events is equal to z � 1. Assuming

that p periods between older main events are taken into ac-

count, a total of p (z � 1) possible input variables to the NN is

produced [32].
Fig. 9 e Visual example for the definition of the seismicity rate

k ¡ 2 [32].
Based on what was described here will calculate the

seismicity rates for region. To do this work, according to the

interevent times of the major events in the catalog, border

parameters M1 and M2 is selected to calculate the seismicity

rates magnitude range Rk�1
M1 ;M2

. According to the province raw

catalog reviews and magnitude of changes, at first M1 equals

to 3 and the M2 equals to 4.2; and then M1 equals to 4.2 and

the M2 equal to 6.7. It should be noted that because of

incomplete catalog in some intervals, and few earthquakes

recorded by research and study, border parameters are the

best choice. By selecting border parameters M1 and M2, two

input vector seismicity rate for Hormozgan region is defined

as follows:

Rk�1
3;4:2 ¼

Nk�1
3;4:2

Tk�1
5:5

(9)

Rk�1
4:2;6:7 ¼

Nk�1
4:2;6:7

Tk�1
5:5

(10)

Thus the input vector for a NN is:

Rk�1
M1 ;M2

¼
"
Nk�1

3;4:2

Tk�1
5:5

Nk�1
4:2;6:7

Tk�1
5:5

#
(11)

According to equation (11) seismicity rates are calculated

for successive interevent times and major events in catalog.

4.3.2. Declustering
Seismicity declustering is the process of removing fore-

shocks and aftershocks from the mainshock. The identifica-

tion of background earthquakes is important for many

applications in seismology with regard to seismic hazard

assessment, development of clustered seismicity models,

earthquake prediction research, and seismicity rate change

estimation [32]. In this paper, the ZMAP software was used for

declustering these events. There are four algorithms to do

decluster in this software. Each algorithm considers

different time and distance ranges for declustering.

Reasenberg is used widely in linked-window method and

Reasenberg's method windows are designed larger in space

but shorter in time for larger shock. Up to now, most users
Rk
M1 ;M2

, in relation with main events numbered k ¡ 1 and

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004
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have applied either the algorithm of Gardner and Knopoff

(1974) or Reasenberg (1985), mainly because of the

availability of the source codes and the simplicity of the

algorithms. Each catalog needs to omit aftershocks and

foreshocks; on the other hand, main shocks should be

separated for use in the final catalog. Declustering method is

one of the most popular methods of seismology society that

it has become a routine procedure using standard parameter

values Table 1 [21].

In Table 1, tmin is the minimum value of the look-ahead

time for building clusters when the first event is not

clustered, tmax is the maximum value of the look-ahead

time for building clusters, P is the probability of detecting

the next clustered event used to compute the look-ahead

time, t and xk is the increase of the lower cut-off magnitude

during clusters.

xmeff ¼ xmeff þ xkM (12)

where M is the magnitude of the largest event in the cluster,

xmeff is the effective cutoff magnitude for catalog, rfact is the

number of crack radii surrounding each earthquake within

new events considered to be part of the cluster (unit: Km).

Rosenberg cluster method [31] is organized to remove the

aftershocks and declustering the data, since the existence of

these things will cause problems to the implementation of

the network [32]. Due to the earthquake events, there is

general assumption in seismicity studies [38]. Aftershocks

are detected, in declustering methods, based on the spatio-

temporal approximation and the higher average seismicity

rates than previous earthquakes. In this study, we use the

cluster approach introduced by Rosenberg [31].

This method identifies the aftershocks by linking earth-

quakes to clusters according to spatial and temporal interac-

tion zones. Moreover, Reasenberg's procedure is free from

assumptions with regard to the spatial aftershock distribu-

tion, and it describes their migration given that the back-

ground seismicity is low. The spatial extent of the interaction

zone is chosen according to stress distribution near the

mainshock area. Reasenberg's local nearness of events is

described by the spatial threshold d, depending on magnitude

according to:

logðdÞ ¼ 0:4M0 � 1:93þ k (13)

where M0 is the magnitude, k is equal to 1 for the distance to

the largest earthquake and equal to 0 for the distance to the

last event, and d is in kilometers. The model is a simple cir-

cular fault model with radius d. The Keilis-Borok formula
Table 1 e The standard input parameters for declustering
algorithm by Reasenberg method [21].

Parameter Standard Simulation range

Min Max

tmin (days) 1 0.5 2.5

tmax (days) 10 3 15

P 0.95 0.9 0.99

xmeff 4.0 0 1

xk 0.5 1.6 1.8

rfact 10 5 20
defines the seismic moment for static cracks as 16
7Dsd

3, where

Ds is the stress drop. Its temporal extension is based on

Omori's law. Each subsequent event is linked with the largest

event or with the last one in each cluster, which has formed

until current time. It should be also mentioned that over-

lapping clusters are joined [39].

In order to obtain a confidence of probability p1 for

observing the next sequence event, the time interval t is:

t ¼ �ln
�
1� p1

�
t

10
2ðDM�1Þ

3

(14)

DM ¼ Mmainshock �Mc (15)

whereMc is completenessmagnitude. It has become common

practice in seismological studies to use standard parameters

provided by ZMAP software packages [32]. In this study, to

achieve the primary goals, declustering catalog is used only

with standard parameters mentioned in Table 1. In ZMAP

software is adjustable, without calculation of the equations

(12)e(15) for the region. Thus the use of Rosenberg cluster

algorithm for the 1609 earthquake in Hormozgan region led

to the identification of 68 clusters of 17.03% of the catalog.

The remaining events were not associated with any cluster,

and the number of which is included the 1335 earthquake.
4.4. Calculation of interevent times major and
continuous events for declustered catalog

In this section, interevent times calculation between two

major and continuous event using equation (7) for declustered

catalog has been investigated. After declustering and remove

aftershocks in the raw catalog which included the 1609

earthquakes in the region, thus results declustered catalog

includes 1335 earthquakes. The number of large earthquakes

during the period 1965 to late 2014 is equal to 26

earthquakes. Analysis of the raw catalog reveals that there

are four earthquakes with Mb > 5.5 as aftershocks in raw

catalog which are removed by declustering. 22 earthquakes

remain as the main earthquake. In this study, major and

continuous earthquakes interevent times based on

earthquake real-times is very important for earthquake

prediction analysis. This graph increase visual analysis of

targets and help users research and understand it.

Earthquake occurrence real-time chart in terms of

interevent times is shown in Fig. 10.
4.5. Calculation seismicity rates by declustered catalog

According to what described in Section 4.3, to calculate the

seismicity rates, first major and continuous earthquakes

interevent times in the catalog are carefully considered, and

catalog boundary parameters M1 and M2 is selected to calcu-

late Rk�1
M1 ;M2

. It should be noted that the optimal parameters of

the boundary for declustered catalog must be the previous

values of the boundary parameters M1, M2 and so M. With

selection boundary parameters M1, M2, two input vector for

Hormozgan region for declustered catalog based on equations

(9) and (10), and NN input vector by equation (11) is defined.

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004


Fig. 10 e Graph of major and continuous earthquakes interevent times based on earthquake real-times.
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Thus, seismicity rates are calculated for all intervals in

declustered and raw catalog.
5. Evaluation of proposed approach

In this section, we analyze the results and discuss its

simulations.

5.1. Catalog data as NN input

NN input data, including seismicity rates, major and

continuous earthquakes interevent times are defined as

matrices. Every NN is consisted of two phases “training”

and “test”. About 70 percent of the data randomly and

optimized is chosen for training, and the remaining is for

testing.

5.2. Determination the optimal parameters in RBF
network

RBF network effective parameters are listed in Table 2,

and their optimum values are obtained by trial and error

with regard to the input raw data and declustered catalog.

This means that by fixing one parameter, another

parameter has been checked by different values to ensure
Table 2 e The standard input parameters for RBF
network.

Parameter Standard Simulation range

Min Max Optimum

Goal 0.0 e e 0.01

Spread 1.0 0.001 2 0.02

MN Default is matrix

of Q input

2 14 10

DF 25 1 15 2

Function Gaussian e e Gaussian
optimal value. Therefore, determination of a parameter

value assessed another parameter value. Finally, the

optimum parameters for the data listed in Table 2 are

considered.

5.3. Determination the optimal parameters MLP
network

Effective parameters in a MLP network are showed in

Table 3. Their optimum value is obtained with respect to

input raw data and declustered catalog by trial and error.

This means that by fixing one parameter, another

parameter has been checked by different values to ensure

optimal value. Therefore, determination of a parameter

value assessed another parameter value. Finally, the

optimum parameters listed in the Table 3 are considered

for this study.

5.4. Analysis of prediction results

To evaluate the performance of network prediction, the

results is compared with each other.

5.4.1. Results of MLP network prediction
Prediction results of the MLP network is shown in

Figs. 11e13, respectively. Fig. 11 show the MLP NN

output with declustered catalog data, Fig. 12 shows
Table 3 e The standard input parameters for MLP
network.

Parameter Simulation range

Min Max Optimum

Si 1 10 2

Number of neurons 2 30 15

TFi e e TanSig

BTF e e Trainlm

BLF e e Learngdm

http://dx.doi.org/10.1016/j.geog.2016.03.004
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Fig. 11 e Network output with transfer function Tansig and

2 hidden layers.

Fig. 12 e Correlation between predicted and real interevent

times.

Fig. 13 e MLP network-important and continuous earthquakes

(declustered catalog).
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correlation between predicted and real interevent times,

and Fig. 13 shows important and continuous

earthquakes predicted interevent times versus the real

time events.

It should be noted that MLP NN is trained by declustered

and raw catalog optimized input vectors, so it is consid-

ered as a standard structure with transfer function Tansig

and 2 hidden layer with 15 neuron in each layer and the

number of layers range varies from 1 to 10. All possible

combinations are tested and RMSE of the best mode for

declustered and raw catalog equal to 6.66 and 17.79,

respectively.

5.4.2. Results of RBF network prediction
Prediction results of the RBF network are shown in Figs.

14e16, respectively. Fig. 14 shows RBF NN output with

declustered catalog data. Fig. 15 shows correlation between

predicted and real interevent time. Fig. 16 shows important

and continuous earthquakes predicted interevent times

versus the real time events.

The entire process for raw catalog data with RBF NN is

similar. By comparing the results of the RBF network output

forms with raw data and declustered data, it is quite evident

that the network with declustered data with optimize input

data has better performance, as experimental tests have fewer

error and better predictions than the raw data. So its RMSE for

declustered and raw catalog input is 1.48 and 3.17,

respectively.

Table 4 shows the results of both networks. Despite

optimized parameters and input vector, MLP NN can't make

meaningful and significant relationship between the input

values and the interevent times with important and

successive earthquakes, on the contrary, RBF NN provides a

better prediction.
predicted interevent times versus the real time event

http://dx.doi.org/10.1016/j.geog.2016.03.004
http://dx.doi.org/10.1016/j.geog.2016.03.004


Fig. 16 e RBF network-important and continuous earthquakes p

remove aftershocks.

Fig. 15 e Correlation between predicted and real interevent

times.

Table 4 e Comparison of the results for different modes.

Catalog Input vector N

Raw (M > 5.5)
"
Rk�1
3;4:2

Rk�1
4:2;6:7

#
Declustered (M > 5.5)

"
Rk�1
3;4:2

Rk�1
4:2;6:7

#

Fig. 14 e RBF NN output data by declustered earthquakes

catalog data with neuron number ¼ 10 and spread ¼ 0.02.
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6. Conclusion

This paper introduced a new methodology to estimate

the interevent times of significant earthquake events based

on RBF NNs, given a database of historic seismicity data. In

order to formulate the models, the input variables were

selected among different seismicity rates, whereas the

output variables were the interevent times between sig-

nificant seismic events. The methodology was applied to

the Hormozgan earthquakes catalog. The results stressed

the importance of removing the aftershock events since a

reliable estimation cannot be obtained using the raw cat-

alog. To this end, the Reasenberg technique was applied to

decluster the raw catalog. Following the application of the

Reasenberg technique, the input vector to the NN model

was optimized. The resulting predictions revealed a strong

correlation of the input variables with the interevent times,

thus was confirmed the applicability of the proposed

approach is to successfully estimate large earthquakes

interevent times. A different NN structure, namely, the

MLP structure, was also used to analyze the same data.

After repeating training method for both MLP and RBF

network was revealed that the RBF NN to predict is best

network with RMSE equal 1.48 for declustered catalog

because of improved input data (seismicity rates). A com-

parison between the two techniques highlighted the su-

periority of the RBF network models, in terms of higher

estimation accuracy and simpler network structure.

Finally, results confirmed superiority of both the declus-

tering method and the RBF NN to predict interevent times

between major and continuous earthquakes in Hormozgan

region.
redicted interevent times versus the real time event with

umber of data NN type RMSE

25 RBF 3.17

MLP 17.79

21 RBF 1.48

MLP 6.66

http://dx.doi.org/10.1016/j.geog.2016.03.004
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