View metadata, citation and similar papers at core.ac.uk brought to you bnyORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com -
SCIENCE@DIRECT" ]OLJ-RNALOF
Algebra

ACADEMIC
PRESS Journal of Algebra 257 (2002) 197-214

www.academicpress.com

Finite groups oiG»(3)-type

Michael Aschbacheér

California Institute of Technology, Pasadena, CA 91125, USA
Received 1 March 2002
Communicated by Michel Broué
Dedicated to J.G. Thompson on his 70th birthday

A finite groupG is said to be of52(3)-typeif G has subgroup& andM such
that

(G1) H has normal subgroupsH: and Hz with H; = Hy = SLy(3),
|H : HiHy|=2,Z2= H1N Hy, andH = Cg(H1 N H>); and
(G2) HINHy <V 4 M with Cy (V) =V = EgandM/V = L3(2).

Our main theorem is:

Main Theorem. If G isof G2(3)-typethen G = G2(3).

See [1] for the definition of basic notation and terminology. The grGy(S3)
is the Chevalley group of typ62 over the field of order 3.

In the proof of the classification of the finite simple groups, the gréy3)
arises as a quasithin group of characteristic 2. This class of groups is treated in [3],
where G2(3) is identified using the Main Theorem. Our definition af5(3)-
type” is chosen to provide a characterizatiorGaf(3) convenient for the purposes
of [3]. The important condition is (G1), which gives the general structure of the
centralizer of an involution, but some extra condition such as (G2) is hecessary to
rule out examples which are not simple. Two other such conditions are:

(G2) HynN Hyis not weakly closed i with respect taG.
(G2") G has no subgroup of index 2.
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In Section 6 we sketch a proof that in a grotipsatisfying (G1), hypotheses
(G2), (G2), and (G2) are equivalent.

There are existing characterizations@$(3) in the literature which we will
discuss in a moment. Our purpose here is to obtain a much shorter and simpler
treatment for purposes of the classification, using modern methods which are
more conceptual, avoid character theory, and minimize detailed computation. In
the existing treatments, as in ours, the proof divides into two cases:

Case |:H is not strongly 3-embedded @. Case II:H is strongly 3-embedded
inG.

Thompson established the first characterizatiorGat3) in terms of local
information in the N-group paper [10]. His hypotheses involve restrictions on both
2-locals and 3-locals, and implicitly exclude Case Il. The first characterization of
G2(3) via the centralizer of an involution is due to Janko in [9]; he essentially
assumes Hypotheses (G1) and {(&2n [8] and [7], Fong and Wong characterize
groups with more general, but related centralizers; in the special caGe(8f
they appeal to Janko’s paper to handle Case Il. On the other hand Janko appeals
to Thompson’s work to handle Case I. Janko shows Case Il leads to a contradiction
using exceptional character theory. Both Fong—Wong and Thompson idéntify
asG(3) in Case | by constructing a BN-pair for.

We identify G in Case I first by constructing a pair of 3-locals resembling
the maximal parabolics iG2(3); then by appealing to work of Delgado and
Stellmacher in [6] to conclude the amalgam determined by the 3-locals is unique
up to isomorphism; and finally by an appeal to Corollary F.4.21 in [3] to
identify G. In Case Il we calculate the order @f by counting involutions,
using an approach of Bender in [4]. This leads to an immediate contradiction
via Sylow’'s Theorem.

1. A preliminary lemma

1.1. Let G be a group such that G = QL where Q = 03(G) = 32 and
L = GLy(3) actsfaithfullyon Q/Z(Q). Let P € Syl;(G). Then

(1) P=Z3wrZs.

(2) J(P) = Eor.

(3) J(P) isinverted by aninvolutionin L — Z(L).

(4 PNL<J(P).

Proof. First P = XQ, whereX = PN L is of order 3 andV; (X) = X F, where
F ={t,2z), Z(L) = (z), andz is an involution invertingX. Let Z = Z(Q); asL
acts naturally orQ/Z, Co,z(X) = E/Z is of order 3. NOWE = [E, z] x Cg(2)
with Z = Cg(z), so asX centralizes, X centralizeq E, z] and Z. Therefore
A = EX = Eo7. Furtherr inverts Z and replacing by ¢z if necessary, we may
assume inverts[E, z], soz invertsA. As|P: A|=3,A < P.Letye Q — E;
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theny is of order 3 and agX, Q/Z] = E/Z and[E, y] = Z, y acts onA with
one Jordon block of size 3. We conclude tlat J (P) and the lemma holds.

2. 2-local structure

In this section we assumeé is of G2(3)-type and letZ = Hi N Hp,
zageneratorof,U =02(H), H=H/Z,andH*=H/U.LetM =M/V.

2.1. (1) V isthe natural modulefor M = L3(2).

(2) H=Cg(z) and M = Ng (V).

@R HNM=Cpy(z)=Ng(V)isofindex3in H andindex7in M.

(4) [H1, Ho]l = 1, 50 O%(H) = SL»(3) * SLa(3).

(5) U = F*(H) = O2(H1) O2(H2) = Q3.

(6) U= 02(HNM)and (HNM)* = Sa.

(7) A Sylow 2-subgroup 7T of H N M isSylowin G.

(8) Let Xy € Syly(H). Then N(Xy) = Xp (i), where 7 is an involution
inverting X and T = U (1).

Proof. By (G2),Es=V =Cp (V). ThusM/V < GL(V),soasM/V = GL(V),
(1) holds.

By (G1),HNM = Cy(z). Thenby (1)JM : HNM| =7 and HNM| = 2°
By (G1):

|H| = 2|H1Hz| = 2|H1||Ha|/|H1 N Ho| = |H1|Ho| = 2° - 32,

SO|H : HN M| = 3. Thus a Sylow 2-subgroupof HN M is Sylow inH andM,
SoU = 02(H) < 02(HNM). By (G1),|U| > 02(H1) O2(Ha) = 2°, while by (1)
and the action of GLV) on V, |02(Cy(2))| = 2° and C iy (2)/ 02(Cpr (2)) = Sa.
ThusU = 02(H1) O2(H>?) and (6) holds.

Next asH; < H, [H1,H2l < HHN Hy=7Z < Z(H), SO asH; = OZ(H,-)
andZ is of order 2, (4) holds. By (4)F*(H) = U = Q%, completing the proof
of (5). ASF*(H)=U, Z(T) < Z(U), so0Z(T) = Z by (5). ThusT € Syl,(G) as
H =Cg(z) andT € Syl,(H), so (7) holds.

As Cy(E) is a 2-group for each elementary abelian subgrBugd U properly
containingZ, Cg(V) is a 2-group. ButV = Cy(V), so by (7),V is Sylow
in Cg(V) and henceV = Cg (V). Then as Auf (V) = GL(V), M = Ng(V),
completing the proof of (2) and (3).

Let X e Syb(HN M) andX < Xp € Syk(H). ThenX =Zz andXy = Eg
is Sylow in HyHo. From the structure oM X7 =Cy(X) and X is inverted
by somet e T. ThusZ Cy(X), so CU(X) =1 and henceX is diagonally
embedded ind; x H, and Xy = Cj HZ(X) Thus Xy is 7-invariant and then

NH(XH) = XH( ). As H; < H andf invertsX, 7 invertsX establishing (8).
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22. () Foreachge G—MwithZ< V8, U=VV8andVNVeE=7Z.
@ |vnve L 2foral V8 £V,

Proof. By 2.1.6,V < O2(H N M) =U. As V is the natural module foM/V,
M is transitive onV#, so H = C(z) is transitive on{V¢: z € V&}. (Cf. A.1.7.1
in[3].)

Supposg € G — M andZ < V4. Then by the previous paragrapgh? e V7,
soV8 < U,and asO2(H N M) < H, O%(Hm) acts onV¢. Then asO%(H N M)
is irreducible on andV, U = VV$ andV N V¢ = Z, establishing (1). A3/ is
transitive onv#, (1) implies (2).

As V is the natural module fa#, there is a uniqué -invariant 4-subgroupys
of V. Let b = Ny (Vo).
Identify Z with F». As U is extraspecialH preserves the bilinear forn ) on
U and the associated quadratic fogndefined by(ii, 7) = [u, v] andq (i) = u?;
cf. 23.10 in [1]. ThusH* < O(ﬁ,q). We use this fact throughout the paper,
usually without further comment.

2.3. (1) H istrangitive on the 18 involutionsin U — Z and the 12 elements of
order 4inU.

(2) If i isaninvolutionin U — Vo> then C7 (i) = Cy (i) = Z2 x Dg.

(3) M hastwo orbitsonitsinvolutions: V# and theinvolutionsin M — V. For
i aninvolutionwith (i) = Z(T ), Cy (i) = Cy (i) £ Z» x Dg.

(4) H is transitive on involutions in H — U; each such element lifts to an
involution.

(5) H istrangtive on involutionsin H — U. For j an involutionin T — U,
Cu(j)=(j)V2= Es.

Proof. By 2.1.8,T = U (7), wheref is an involution invertingX iy € Sylg(H). It
follows thatC (T) = (i1, ii2), wherey; e UN H; fori =1,2. AsU N H; = Qg
and[H1, H2] =1, F = (u1,u2) = Z x Z4 and (a1ii2) is the unique singular
pointin F. As V> is aT-invariant singular point, it follows thalto = (u1uz, z) =
Q1(F).

Next there are involutions i — V, and each such involution is fused into
T — U underM. Thus there is an involutiopin T — U. For each such involution,
jiir € jY, so ju1 is an involution and hencg invertsu1. ThusCy (j) = Va, SO
asj* is selfcentralizing inH* by 2.1.8,Cy (j) = (j) V2 = Es.
_As |H*|2 =2, H* is transitive on its involutions, and then &g () = [17, jl,
H is transitive on its involutions by Exercise 2.8 in [2]. Thus (4) holds. As
|U:Cy(j)|=8=|F|, U is transitive onj F, S0 H is transitive on involutions in
H — U, completing the proof of (5).
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Part (1) is a standard fact about the orthogonal spiﬁpas is the fact that
Cy (i) = Z2 x Dg for i an involution inU — Z. By paragraph onecf(f) =Uif
i ¢ Vo, s0(2) holds.

As V is the natural module fodf, M is transitive onV*. For each involution
x €M —V, x is fused to a generator aZ(T ). Further if x € Z(T) then
T = Cg(x),s0Cy(x) < T.Butby(2),C7r(x) =Cy(x) =Z3 x Dg, so (3) holds.

2.4. G hasone class of involutions.

Proof. By 2.3.3, each involution inV is fused intoU. Also z is fused into
V —Z C U in M. Then the lemma follows from 2.3.1.

25.(1) In/ Vo= Z5 x Sa.
(2) 02(0%(I2)) = Z3.
(3) V isthe unique normal Eg-subgroup of /5.

Proof. First I» = S4 and there are involutions ifi — O2(1), so eitherly/ Vo =

Zox Sqor 02(12/ Vo) ZSL2(3). But@(U/ Vo) =1,s0(UN0O2(12))/Vo—V/ V2

contains involutions, and hence (1) holds. Ret: 02(02(1»)). As I, is transitive
on (R/V)¥, either Vo = 21(R) or R = E1¢. But by 2.3,m(T) =3, soV, =

21(R).NextUNR=ZsxZrandforuc UNR—Voandv eV — Vo, [u,v]=z2

generate® (U N R) as®(U) = (z). Thereforev invertsU N R, so asCy,(v) is

irreducible onR/ V, v invertsR. Therefore (2) and (3) hold.

3. 3-local structure

In this section we continue to assurieis of G,(3)-type and continue the
notation from the previous section. In additionety € Syl;(H), X; = Xy N H;
for i = 1,2, and X3 and X4 the remaining subgroups ofy of order 3. Let
Qi = O(Ng(Xi)).

31.(1) Ng(Xy) = Xpg{t,z), wheret isan involution inverting X g .
(2 Fori=1,2, Ng(X;) = K;X;,where K; = H3z_; {t) = GL»(3).
Q) Fork=3,4, Ny(Xy) =Ny (Xpg).

@ Fori=1,2, Ng(X;) = 0iK;.
(5) Foreach j, 1< j < 4,29 NCg(X;) =zC6XD,
(6) Forr #5, X5 ¢ XO.

Proof. By 2.1.8, Ny (Xy) = Xg(t,z), wheref is an involution inverting)N(H,
and by 2.3.4¢ is an involution. Thus (1) holds. Similarly far= 3, 4, Ny« (X)) =
Nu(Xg)* and Ci(Xy) = 1, so (3) holds. On the other hand far= 1, 2,
X;H3; = Nu,n,(X;), S0 as invertsX g, (2) holds.
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By (2) and (3),Cu (X ;) has a Sylow 2-subgroufy isomorphictoQg orZ,, so
Z charT; and hencd’; € Syl,(Cg(X;)). Then(4) holds by Brauer—Suzuki [5].
Also Z is weakly closed irfj, so(5) holds and then ax, ¢ X/, (5) implies (6).

32.Fori=1,2:
(D) zinverts Q;/ X;.
(2) Qi = X;Cyp,(t)Cg, (t2), with Cg, (tz) = Co, ()" for h € K; with t" =¢z.
3) @(Q;) < X; and Q; isof exponent 3.
(4) 10;1 =3,3% or 3° and [Ng(X;)|3 = 32, 3%, 3%, respectively.

Proof. By 3.1.2,X; = O(Ng(X;)), so (1) holds. By (1)Q;/ X, is abelian, so by
Exercise 8.1in [1]Q; = Cy,(z)Cg, (t)Cy, (tz), and hence (2) holds. Next by 2.4,
t € 79, s0 Cg (1) is a {2, 3}-group and henc€ g, (r) is contained in a Sylow
3-group ofCg (), which is isomorphic taEg. ThusCy, (¢) is of exponent 3 and
order at most 9, so by (2;/ X is an elementary abelian 3-group of order3,, 3
or 3*. Thus (4) holds@ (Q;) < X;, and Q; is generated by elements of order 3.
AsD(Q;) < X; <Z(0)), Q; is of class at most 2, so &%, = £21(Q;), Q; is of
exponent 3 by 23.11 in [1]. Thus (3) holds.

3.3. (1) For k =3,4, Ng(Xi) = O3(Ng (X ;)){t, z) with |O3(Ng (Xi))| < 35,
(2) ING(Xj)lza< 3 forall j,1<j <4

Proof. Letk =3 or 4,1 = Ng(Xy), andY = O(I). By 3.1.3 and Thompson
transfer,l = Y ({t,z). If p is a prime divisor ofiY| then by 18.7 in [1] there is
a (t, z)-invariant Sylow p-subgroupP of Y, and by Exercise 8.1 in [1]y =
(Cy(2), Cy(t),Cy(tz)). ThereforeY is a 3-group by 2.4. Then using Exercise 8.1
in [1] and inducting on the order df, Y = Cy (z)Cy (¢1)Cy (tz), with |Cy (i)| <9
fori e (t,z)*. Thus (1) holds, and (1) and 3.2.4 imply (2).

In the remainder of this section we assu@e# X; fori =1 or2,and sek =
Xi,0=0;,I=Ng(X),K=K;,andP; = Xy Q. ThusP; € Sylz3(Ns(X;)) and
| P;| = 3| Q]. Changing notation if necessary, we may takel.

3.4. Q isnot isomorphic to 3112,

Proof. AssumeQ = 32 and letP = P;. By 3.1,1 = K Q with K = GL,(3)
and by 3.2z inverts 9/ X. ThusP =Zz wr Zz and Xy < A= J(P) = Ey7

by 1.1. FurthetX = Z(P), SOP € Sy(G). As X2 < Xy < A, [NG(X2)|3 > 33,
S0|Ng(X2)|3 > 3* by 3.2.4. ThusX> is in the center of some Sylow 3-subgroup
of G, impossible at = Z(P) andX» ¢ X by 3.1.6.
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35.10|=3°

Proof. Assume otherwise; then by 3.2|@)| = 3%. By 3.2.1z invertsQ/ X = Eg
and by 3.2.2,0 is of exponent 3 with®(Q) < X. Thus by 3.4,0 = E»7, SO

0 =X x E,whereE =[Q, z] = Eg andK acts faithfully as GICE) on E. Thus
P1=XoE x X 23112 x 73, s0D = Cg(Py) is of order 3, and we may choose
notation so thaD = Cg(t). HenceD is fused toX ; for some 1< j < 4.

SupposeX is weakly closed inz (P1) with respect toG. Then P1 € Syly(G)
and Ng(P1) = Ny(P1) = Pi(t, z). Also [Np,(X2)| = 3%, s0|NG(X2)[3 > 3* by
3.2.4, and henc& is in the center of some Sylow 3-subgroup®f Thus by
symmetry betweeX; and X, D # Xg < Ng(P1) for someg € G, so asX and
D are the only normal subgroups of ordet3= X§, contrary to 3.1.6.

ThereforeX is not weakly closed irZ (P1), so asPy € Syly(1), Ng(P1) & 1.
Then asD = @ (P1) and Ng(P1) acts onZ(P1) = XD with Py = C;(XD) =
Cc(XD), Ng(P1)/P1 = Z> x S3. Then astz inverts Z(P1), Ng(P1) =
P1(Cg(tz) N Ng(P1)) and Cg(tz) N Ng(P1) acts onZ(P1)Cp,(tz) = Q, SO
0 < Ng(P1). Now K has orbits{X}, DX, XX of order 1, 4, 8 on the set
of points of Q. Thus|XV6(@)| =13, 5, or 9. As 5 does not divideGL3(3)],
the second case is impossible. As{82) has no subgroup of order 1§ : Q| =
13-| GL2(3)|, the first case is out. ThusV¢(Q) s the set of 9 points i) — E and
E < Ng(Q). Therefore Aug (Q) is the stabilizer in SLQ) of the hyperplane
of 0, SONG(Q) = RK, with |[R| =3°, P = RXy € Syly(NG(Q)), and|P| =
As D < Z(P) andD e Xf for somej, P € Syl (G) by 3.3.2.

As K is irreducible onR/Q, R/E = 32 or R/E = [R/E,z] x Q/E.
Assume the latter. TheRg = [R, z] = Cry(f) x Cgy(tz) = Egl. But there is
y € G with XY < Cpg,(t), som3z(I) > 4, impossible agi3(P1) =

ThereforeR/E = 342, By 1.1, P/E = Z3 wr Z3 and S/E = J(P/E) =
E»7 is inverted bys = ¢ or rz. In particular, Q/E = Z(P/E), SO Z(P) =
Co(P) = D.NextRNS = 312 x Z3 with s inverting(RN S)/E, sos centralizes
D®RNS).ASRNS<LP,P(RNS)KZ(P)=D,soD=®(RNS). Thus as
s centralizesp (R N S), s =t. ThereforeD = Cg(¢), sot invertsS/D. As usual
§=Cs(2)Cs(tz)Cs(1), SOP(S) = D ands is of exponent 3.

LetS = S/D andY of order 3inCg(t) — S. ThenS is a 4- d|menS|onaFF3Y—
module, son3(Cs(Y)) 2 2. Therefore ag)/E =Cp/p(Y), C5(Y) = Q This is
impossible a$R, X]1=E andQ = EX. Thus the proof of 3.5 is complete.

3.6. 01 = 02, =3"2 x Egand |[Ng(X1) |3 = |Ng(X2)|3 = 3°.

Proof. By 3.2.3,®(Q) < X and Q is of exponent 3, while by 3.50]| =
ThereforeQ = Egg, 3l+2 x Eg, or 34, Also C (1) = Eg, s0X5 < X5, < Q for
someg € G. Then|Co(X3)| > 3% so0|Q2| > 33, and heanQ2| = 35 by 3.5.
Thus|Ng (X j)|3= 3% for j =1 and 2 by 3.2.4.
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AssumeQ = Egs. ThenQ = X x [Q, z] with Co(t) < [0, z]. Thus X} <
[0,2]. Asm(Co(Xp)) <3, Q = J(P1), s0Q = J(P{) = Q. But then 1=
m(Cg(z)) = m(Cgs(z)) = 2, a contradiction.

Therefore we may assung@= 3. ThenX = Z(Py), S0P = Py € Syl;(G).
Thus by 3.1.6|Ng (X>2)| < 3%, contrary to the first paragraph.

Let Gy = Ng(X), Y1 =X, andR1 = Q. By 3.6,R1 =312 x Eg,S0Z(R1) =
Y1 x E1, whereE1 =[Z(R1), 7] is the natural module fok1 = K. Let P = Py,
Y>=Cg,(P), G2 = Ng(Y2), andRy = 03(G2). Observe:

3.7. (1) G1= R1Lq with R{ =32 x Eg, L1 = GL2(3), Z(R1) = Y1 x Eq, and
Eq isthe natural modulefor L.

(2) F*(G1) = R1.

(3) P{t,z) = Ng,(Y2) = G1N G2.

4) Z(P)=Y1 x Yo.

3.8. (1) Ng(Z(P)) = Ng(P) = P{t, 7).
(2) P € Syk(G).

Proof. LetJ = Ng(Z(P)). By 3.7.4,Z(P) = Y1Y2, SO

CG(Z(P)) = Ccl(Z(P)) =Cg,(Y2)=P
by 3.7.3. AsZ(P) = Y1Y> we may choose notation so thatinvertsZ(P). Thus
as P = Cg(Z(P)), by a Frattini argument/ = PC,(tz) and P = Cp(tz) <
Cj(tz). But |Pg| =9 so Py € Sylh(Cg(tz)) and hencePy(t, z) = Cg(tz) N
Ng(Po) by 2.4 and 3.1.1. Therefore

J=PCj(tz) = PPo(t,z) = P(t,z) < Ng(P),
establishing (1). Of course (1) implies (2).

39.Y2€ X§.

Proof. By 3.8.2 and 3.6, there ig € G with X5 < Z(P). By 3.1.6,X5 # X.
Now Y1 andY> are the only(z, z)-invariant points ofZ(P), and hence by 3.8.2
the only points ofZ(P) normal in Ng(P). By symmetry betweerX; and X»,
X5 I Ng(P), soX5 =Y>.

By 3.9, Y2 = X9 for somea € G. Pick notation so that centralizesl’; thus
we may choose so thatz? =¢.

3.10. (1) Ro = 32 x Egwith Z(R2) = Y» x E», E2 = Eg, and E» isthe natural
modulefor Lz = H (z) = GL2(3).

(2) L isacomplementto Rz in Go.

(3) F*(G2) = Ra.
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Proof. As Y2 = X9, Y2 < Hy and G2 = Ng(X2). Then the various remarks
follow by symmetry betweerX; andX».

3.11. Let Go = (G1, G2). Then 03(Go) = 1.

Proof. Let R = 03(Gg). By 3.8, P € Syl3(Gg), so R < P and henceR <
PNO3(Gj)=Rjforj=1and 2. ThuR < S=R1NRz. But Z(P) < S and
[P,t] < Rz, SOEg1 = Z(P)[R1,t] < S. IndeedCkg, (1) = Y2 while Cg,(t) = Ej,
SO R1 # Ro, and hencesS| < 3*. ThereforeS = Z(P)[Ry, 1].

SupposeR # 1. Then 1#£ Cr(P) < Z(P) andCgr(P) is {t, z)-invariant, so
Y; < Rfor j =1 or 2. Thus, interchanging the rolesiafandY? if necessary, we
may assumé&’, < R. ThusE; = (YzGl) <R.

If E1 < Y2E2 thenY1E1 = Y2E>, SO Ry = Cp(Y1E1) = Cp(Y2E2) = R>,
which we saw is not the case. Thug £ Y>2E». But Ly is irreducible on
R2/Z(R2), SO R = RZ(R2) = RE>. However asY, < Z(P), E1 < Z(R), SO
R < Cg,(E1) = E1E>, contradictingR, = RE>.

Theorem 3.12. If Q; # X; fori =1 or 2,then G = G2(3).

Proof. Leta = (G1,G1,2, G2), whereG1 2= G1 N Go. By 3.7, 3.8, 3.10, and
3.11,« is the amalgam of a weak BN-pair, in the sense of Section 4 of the Green
Book [6]. Then agR;| = 3° andG /R, = GLy(3), it follows from Theorem A
in the Green Book that is isomorphic to the amalgam 6f2(3).

Let F = (t,z). ThenF < F1 < L1, whereF; = Dg. ThusF, = F(s1), where
s1 IS an involution inG1 — G2. Similarly there is an involution, € G2 — G1
with F{s2) = Dg. Then[F,s1] =z and[F, s2] = ¢, SO (s1, s2) < Ng(F) with
S/Cs(F) = S3. Therefore(sys2)® € Cs(F). Butby 2.3.5CG (F) = Eg, soCs(F)
is of exponent 2. Thup1sz| = 3 or 6.

As « is theG»(3)-amalgam, a&ig is a faithful completion ofx (cf. Section 36
in [2]), and ags1s2| < 6, it follows from Corollary F.4.21 in [3] thaGo = G2(3).
ThereforeGo has one class of involutions andg,(z)| = 2° - 3% = |H|, so
Cc(z) = H < Gg. Thus Ng(T) < Ng(Z(T)) = H < Gg, so if G # Gg then
Gy is strongly embedded i6'. Hence by 7.6 in [2], there is a subgropof odd
order in G transitive on the involutions ofig. Therefore|Go: H| =3%.7-13
divides|D|, so D contains a Sylow 3-subgroup ¢fp. Thus D is contained in
a maximal parabolic subgroup 6fy, whereas the maximal parabolics &Pe3}-
groups. Henc& = Go = G2(3).

4, Thegeometry I'

In this section we continue to assung is of G2(3)-type and continue
the notation from the previous sections. We generate information about the
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permutation representation 6f on G/M by right multiplication, which will be
used in the next section to show tifatis not strongly 3-embedded .

4.1. Either
(1) H isstrongly 3-embedded in G, or
(2) G = G2(3).

Proof. Assume (2) fails. We observe first thél; (X;) < H fori =1 and 2. For
if not then by 3.1.40; # X;, contrary to Theorem 3.12 and our assumption that
(2) fails.

As Ng(X1) < H, also Ng(Xg) < H by 3.1.6. ThusXy € Syls(G) and
if (1) fails then Ng(X;) « H for j =3 or 4. But by 3.3.1,Ng(X;) =
O3(NgG (X ))(t,z). However asXy € Syl(G), O3(Ng(X;)) < Xu < H, SO
Ng(X;) < H, completing the proof.

During the remainder of the section assumés strongly 3-embedded i@.

4.2. Let Sy € Syl;(M). Then
(1) Ce(Sy) isa {2, 3Y-group.
(2) ING(Sm) : Ca(Sm)| = 3.

Proof. By 2.4,G has one class of involutions, so Hsis a 7-group,Cg (Sy) is
of odd order. Similarly ag/ is strongly 3-embedded i&, C (Sy) is a 3-group,
so (1) holds.

Next N (Sy) = Sy X, whereX is of order 3, and of course Ay ) = Zs.
Thus if (2) fails thenSy, is inverted by some involutioh and by (1) and a Frattini
argument we may taketo centralizeX. But asH is strongly 3-embedded i&,
X centralizes a unique involution, g6) = Cy (X), impossible ag inverts Sy,
andsSy, actsonV.

See Section 4 in [2] for a discussion of geometries, (in the sense of Tits)
including notation and terminology. Ldt be the rank 2 geometry with point
setV Y, line setZ®, and incidence equal to inclusion. Thasis represented as
a group of automorphisms df by conjugation, and by 2.1.34 = Ng(V) and
H = Ng(Z) are the stabilizers oV and Z, respectively. By constructiorg is
transitive on the points and lines &f, and from 2.1,M is transitive on the set
(V) of lines throughV, soG is flag transitive on™. Fora,y € I, letd(«a, y)
denote the distance of from y in I and I"’ (y) the set of vertices at distance
fromy in I'.

4.3. Digtinct lines are incident with at most one point and distinct points are
incident with at most oneline.
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Proof. By 2.2.2,|A N B| < 2 for distinct pointsA, B.

4.4, (1) Ifa, B € I' with d(a, B) < 2 then thereis a unique geodesic froma to 8.
(2) G istransitiveon I'%(«).
(3) V& e I'2(V) iff V N V& isaline, in which case the global stabilizer in G
of {V, V8} isthe stabilizer of the edge (V N V&, V), where VY isthe third point
onvnvs,

Proof. Part (1) follows from 4.3. Part (2) holds &g is 2-transitive onl" (V)
and H is 2-transitive on/"(Z). By 4.3,V8 ¢ r'2(v)iff VN Vvs=Z for some
line Z. Then by (1),M N M? is the stabilizer0?(H N M) in H of V andV%. As
x € HN MY — O%(H N M) interchange® andV#, (3) holds.

45. (1) If o, B € I" with d(«, B) = 3 then there is a unique geodesic from « to B.
(2) G, istransitiveon I"3(«) for eacha € I".
B r3vy=znm -v).

Proof. Let p be a geodesic of length 3. Replacipduy its inverse if necessary,
and conjugating irG, we may takep tobeZ,V, Z8, vV*. By 2.2.1,U$ = VV*
andVNV*=2z8 Thusax €V, zactsonV* butz ¢ V*. As[US,V*]=Z$
and V¥ = Cys(VY), [V¥,Z] = Z8, so Z8 is determined byZ and V*. Thus
(1) follows from 4.4.1, while (2) and (3) follow from 2.3.3 and the fact that
zeEM* —-V*,

4.6. (1) If d(V, V8) = 4 then thereisa unique geodesic from V to V8.
(2) M istransitiveon I"'4(V).
(3) MN M8 =V?Y where {(V¥}=T3(V)NT23(V8).
(4) The global stabilizer of {V, V8} isisomorphicto Z x Dg.

Proof. Supposep = V*,Z,V,Z”, VS8 is ageodesicin. By 2.2.1,U =VV~*
with V. N V¥ = Z, and similarlyU> = VV8 with V. N V8 = ZY. Therefore
[V¥,ZY]=Z and [V&,Z] = Z¥, so Ip = (V*,V8) < Ny(ZZ¥) and E4 =
ZZ7ZY < V. Thus we may choose notation so t@a” = V». Thereforelp < I =
Ny (V2).By 25,12/ Vo =Zox SaWith V) Vo = Z(I2/ V2) and02(02(12)) = Z%,
so we concluddég = I>. Again by 2.5,V is the unique normakg-subgroup off2,
so it follows that{V} = I'2(V*) N I'%(V¥), and then (1) follows from 4.4.1,
and (3) from 4.4.3.

To prove (2), given 4.4.2, it suffices to shavy, (V) is transitive on/2(V) —
I'(Z). But by 4.4.3,Ny(V*) = O%(H N M) and from 2.1.3,02(H N M) is
transitive onV — Z with the stabilizerCy (Z¥) in O%(H N M) of Z¥ satisfying
|ICy(ZY): V| =2andCuy (ZY) = 02(Cy(Z))Cy(ZY). AsCy (Z?) is transitive
onI'(Z¥) — {V} with 0%(Cy(Z?)) the kernel of this action, (2) follows. By (1)
and (2), the inverse op is conjugate top, so the global stabilizer ofV~, V&}



208 M. Aschbacher / Journal of Algebra 257 (2002) 197-214

is V (a) wherea € M — V with ¢ € V. As M is transitive on its involutions we
may choose to be an involution and then (4) holds.

4.7. (1) Ifd(Z, Z8) = 4 then there is a unique geodesic from Z to Z8.
(2) H has three orbits on I"*(Z) and the corresponding orbitals are all
selfpaired.
(3) H istransitiveon I'*(Z)NH and HNH$ = Egforeach Z8 € I'*(Z)NH.
(4) If z8 ¢ H then (z,z8) = Dgand H N H8 = Dg.

Proof. Supposep = Z,V,ZY,V* Z8 is a geodesic. Thed <V < U”, Z8 <

V¥ < UY, and by 2.2.1UY = VV* with V. N V¥ = ZY. Thus[V, Z8] = Z°.

If [Z,Z8] =1 thenz8 € H but as[V,Z8] =27, z5 ¢ U. ThusH N HS =
Cg(ZZ8) = Eg by 2.3.5, sOH N HS = ZZ8Z". In particularU N US = Z”,
soZ” is determined ang is determined by 4.4.1. Hence (1) holds in this case, as
does (3) by 2.3.5. By (1) and (3}; is transitive on geodesics of length 4 between
commuting lines, s@ is conjugate to the inverse gf, and hence the orbital
(Z, Z22)Y is selfpaired, establishing (2) in this case.

SoassumgZ, Z8] # 1;then[Z, Z8]1 = Z7, s0Z” is determined, and hence (1)
follows from 4.4.1. FurtherS = Cyy(Z) is of index 2 in the Sylow 2-group
Ngy(ZZ>) and has two orbits on the involutions Y — Cyy(Z), so H has
two orbits®1 and® on I'*(Z) — H. Now H* has 9 involutions, each fixing a
unigue singular point ot/ and each with 4 cycles of length 2 on the remaining
singular points. Further there are 36 pairs of distinct singular points and at most
one involution interchanges two such points, so each pair of points is a cycle
in a unique involution. This shows the orbitals determined’hyare selfpaired,
completing the proof of (2). Finallf N Hé = Cyy({Z, Z8)) = Dg, so (4) holds.

4.8. (1) Ifd(V, V8) =6thenthereisa unique geodesic from V to V.
(2) MN M8 =2ZY where{Z¥} = I'3(V)NI3(V¥).
(3) M hasthree orbitson I'8(V).
(4) The global stabilizer of {V, V8} isisomorphicto Eg.

Proof. We first show thai™®(V) # @. For if not
IG:M|=|VCe|=|r°W)|+|r?(v)|+|r*v)|.

Now by 4.4-4.6, for eacly < 4 and eaclw € '™ (V), there is a unique geodesic
from V to«. Thus|I"™ (V)| is the number of geodesic of lengthwith origin V.
Further if V =ao, ..., ay—1 is a geodesic then there am€(,,—1)| — 1 choices
for a,,, sO|I'™ (V)| =1, 7, 14, 84, 168, fom =0, 1, 2, 3, 4, respectively. Thus
|G:M|=183=3-61, so

|IG|=25.3%.7.61

Let P € Sylg1(G). As H is strongly 3-embedded iG and of order prime to 61,
Cg(P) is af2, 3)-group, saCg(P) = P or Cg(P) = PS for someS € Syl,(G).
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But in the latter case by 4.2.5 = C5(S) andNg(S) is of order 3 7-61. Then

|G : Ng(S)| =25.3=3mod 7, contrary to Sylow’s theorem. Thits= C¢ (P),

and |[Ng(P) : P| divides the order 60 of AgP) and |G|, so |[Ng(P) : P| is

a divisor of 12. Again this contradicts Sylow’s theorem. This establishes the claim
that I"8(V) + @.

Thus we may suppoge=V~,Z",V,Z, V¥, Z*, V8isageodesicid . Then
d(V*,Z)=3,s0z € M* —V* by 4.5.3. Similarly; e M8 — V8. Furtherby 4.5.1,
the geodesic is determined B3*, Z, and V&. Conversely ifa is an involution
in D =M*N M8, then settingA = (a), d(V*, A) <3>d(V8, A) and then as
d(V*, V8) =6, these inequalities are equalities. Therefois not in vV~ or V8
and A determines a unique geodesic fram to V. Thus the mag — a(G) is
a bijection of the se§ of geodesics fronV* to V$ with the setA of involutions
in D. So to prove (1) it remains to show that| = 1.

Firstif X is of order 3inD thenCyx(X) # 1# Cys(X). But asH is strongly
3-embedded inG, X centralizes a unique involution, S0y:(X) = Cys(X),
contradictingd (V*, V&) > 2. ThusD is a{2, 7}-group. However all involutions
in a {2, 7}-subgroup ofM* are inV*, so D is a 2-group. Therefore ifA| # 1
then there exist distinct commuting involutionsand z in A. By the previous
paragraphga acts onV¥. Thus by 4.6.3a € M* N M¥ = V. Similarly a €
MNMS=V¥ soaecVNV¥=Z, contradictinga # z. This establishes (1)
and (2).

Write p(V~*, V&) for the unique geodesip from V* to V&, and define
q(V,v&) =27"V,Z, V¥, Z5. Thusq = q(V*, V8) is the geodesic fronz”
to Z%. By (1), the map : p(A, B)° — (A, B)¢ is a well defined function from
the set of orbits of5 on geodesics of length 6 whose origin is a point, to the set
of orbits of G on geodesics of length 4 whose origin is a line. By 477,is of
order 8. NowG,, acts onA = (I'(Z") — {V}) x (I'(Z°) — {V"}) of order 4, so
as|G,| =2, it follows thatG, is transitive onA. This shows that the ma
is a bijection. Therefore 4.7.2 implies (3). By 4.7.2, the orbital, Z*)¢ is
selfpaired so there ig € G interchangingZ” and Z*. Thena also reverses the
order of the pairs im, so asG, is transitive onA, the orbital(V~, V&G is also
selfpaired. Thus the global stabilizérof {V*, V8} is of order 4 by (2), st = Z4
or E4. Now in the former casd = (a) with a? € G,=2Z,50by2.3.4q € U.But
thenV? =V, impossible ag mapsp to its inverse, s&/* = V¥ £ V. Thus (4)
is established.

5. Countinginvolutions

In this section we assumg is of G2(3)-type andH is strongly 3-embedded
in G. Under these hypotheses we calculate the ordér,aind then use Sylow’s
theorem to obtain a contradiction. We calcul@ié by counting involutions, using
an approach of Helmut Bender in [4].
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We continue the notation of previous sections.

ForMg e G/M letn(Mg) = |z° N Mg| be the number of involutions i/ g,
and following Bender, define
29
|G: M| ’

bm =|{Mg € G/M —{M}: n(Mg) =m}| and f=

As 28| = |G : H|, it follows that

51. Let M # Mg € G/M; then the following are eguivalent:

(1) n(Mg) > 0.

(2) V& = V! for someinvolutioni € G.

(3) The global stabilizer G({V, V8}) in G of {V, V&} contains an involution
notin M.

Proof. AsM = Ng(V), Mg = Mx iff V& =V*, sothe lemma holds.

5.2. Leti bean involution notin M. Then

n(Mi)=|{xeMnM: x' =x"}| = n(G({v.V'}) - m)|.

Proof. The mapx — xi is a bijection of the set of elements #f inverted byi
andz% N Mi. Further each suchis in M N M*, and(M N M) (i) = G{V, V}),
so the lemma holds.

5.3.Letd(V,V8)=d. Then
(D) fd =2thenn(Mg) = 24.
(2) If d = 4 then n(Mg) = 4.
) Ifd=6thenn(Mg) =2.

Proof. First supposal = 2. Then by 4.4.3, up to conjugation i@, g € H,
G({V,Ve&)=HNM" where{V, V8, V" =TI (Z),andMNME& = O2(HNM).
By 2.3.5,H is transitive on involutions itH — U and for each such involution,
Cu(j) = (j)Cy(j) = Eg. Conjugating inH, we may takej* e (H N M")*,
while if k € H with j* € M" then (j%)* € j*HM" 50 asCy«(j*) = (j*),
k€ HNM". ThusH N M" is transitive on involutions it N M" — O%(H N M)
and|jM" | = |(H N M") : Cy(j)| = 24. Thus (1) follows from 5.2.

Next supposd = 4. Thenby 4.6 M " M8 = EgandG({V, V8}) =Z> x Dg,
so (2) follows from 5.2. Finally ifd = 6 then by 4.8,M N M8 = Z, and
G({V,V8}) = Ey4, so (3) follows from 5.2.
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54.n(Mg) > 1iffd(V,V8) <6.

Proof. If d(V, V&) <6themn(Mg) > 1by5.3. Sowe may assuriéV, V) > 6
but n(Hg) > 1 and it remains to derive a contradiction. Lete Mg be an
involution, A = (a), andY = M N M%. By 5.2,a inverts somey € Y¥. By 4.2,
y is not of order 7. Ify is of order 3, then a#/ is strongly 3-embedded i&,
a € Ng((y)) < Ng(Z*) for some Z* < V. But by symmetry,Z* < V&, so
d(V,V8) =1, contrary to assumption.

ThereforeY is a 2-group, so we may taketo be an involution. Thugy) = z%
for someb € G. By 4.5.3,d(Z%, V) <3>d(Z", V?), sod(V, V8) < 6, again a
contradiction.

5.5.(1) by =2°-32.7=2016
(2) by=2%-3.7=168
(3) bog = 14.
@A lfm>1landm # 2, 4, or 24, then b,,, = 0.

Proof. Let m > 1. By 5.4, b, # 0 iff m = n(Mg) for some g € G with
d(V,V8) <6, in which case:(Mg) = n(d(V, V8)), wheren(d) = 24, 4, or 2
for d =2, 4, or 6, respectively. Lem,; = {Mg: d(V, V8) = d}; it follows that
b, =0 unlessn =n(d) ford = 2, 4, or 6; furtheb,, ;) = | My|. In particular (4)
holds.

Next by 4.4,M is transitive onM with

boa=bu) = |Ma|=|M: M N M| =14

for Mg € M. This establishes (3) . Similarly by 4.8{ is transitive onM4 and
bs=|My| =|M|/8= 168, establishing (2). Finally by 4.8/ has three orbits on
Mg, each of lengthM|/2 =672, so (1) holds.

56.n(M)=z°NM|=7-13=91

Proof. By 2.3.3,
KON M=V +]“NM-V)=7+84=91
5.7.b1=0.

Proof. By Lemma 1 in [4],
b1<a:f_1(n(M)+Z(i—1)bi)—1—Zb,~. (%)
i>1 i>1

As we observed earlief, ™! = 3/4. By 5.5,
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> -1 =2°-32.7+3.(2°-3.7)+23-14

i>1
= 14.(2*.32 4+ 22.3% + 23) = 14 (144+ 36+ 23)
= 14.203
Then by 5.6:
_ _ 3.(7-13+14-203  21-(13+ 406
1
M —1b; | = =
f (n( >+§<z >1) 2 2
_21-419
==
Similarly
1+ ) b =1+2016+ 168+ 14=2199=3.733
i>1
SO
,_21:419 . .. 3:(7-419-293) 3-(2933-2932 _ g’
4 4 4 4

and hencé1 < o < 3/4 by (x), sob; = 0.
58./G|=26.32.7.733

Proof. By Lemma 1 in [4],
IG: H|=[z%]=n(M)+) ib;,
i>1
so by 5.5,5.6,and 5.7,
|G:H| =7-1342-(2°-32.7)+4-(22.3.7) +24- 14
=7-(13+576+96+48) =7-733
Therefore a$H | = 2° - 32, the lemma holds.

Observe next that 733 is a prime, so by 5.8, a Sylow 733-subgrooipG is
of order 733.

5.9. (1) P = Cg(P).
(2) ING(P) : P| divides 12.

Proof. Anargumentin the first paragraph of the proof of 4.8 establishes (1). Then
as 732=22.3.61, (1) and 5.8 imply (2).

We are now in a position to obtain a contradiction to the hypotheses of this
section, proving:
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Theorem 5.9. If G isof G2(3)-typethen H isnot strongly 3-embeddedin G.

Namely by Sylow’s theoremG : Ng(P)| =1 mod 733. But by 5.7 and 5.8,
|G : Ng(P)| = 24t2. 3140 . 7 where 0< a < 2, andb = 0 or 1. However none of
these integersis congruentto 1 modulo 733. Therefore Theorem 5.9 is established.
Finally observe that 4.1 and Theorem 5.9 imply the Main Theorem.

6. Some equivalent hypotheses

In this section we assumg is a finite group satisfying Hypothesis (G1), set
Z = H1N Hy, letz be a generator faz, and pickT € Syl,(H). We will sketch a
proof that hypotheses (G2), (32and (G2) are equivalent.

Assume Hypothesis (G2). By 2.1.7 we may cho@s& M andT is Sylow
in G. Thus asM = 0%(M) and M contains a Sylow 2-subgroup @, G =
02(G), so (G2) implies (G?).

Next assume (G2 fails; that isz is weakly closed inH with respect toG.
ThenT is Sylow in G and (cf. 7.7.1 in [2])H controls fusion of its 2-elements,
so by a standard transfer result (cf. 37.4 in [0§(G) N H = O?(H). Thus as
H # 0O%(H), G # 0%(G). Thus (G2) implies (G2).

It remains to show (G2 implies (G2), so assume (G2Thus there i € G
with z £ z8 € H. Let Q = O2(H) andU = O2(H1H>). The proof of 2.1.4 uses
only (G1) and shows tha®?(H) = H1H» = SL»(3) * SL2(3), soU = Q3. By
(G1),F*(H)=Q andeitheQ=UorQ=T.

Assume Q = T. Thenz¢ € 0% (H) = Q. Further Oul) = 07 (2) and
H1H>/U = F*(Ou(U)), so O2(Auty (U)) = Inn(U) and henced = UCq (V).
ObserveZ = & (Q) = ®(Co(z%)), whereasCy(z8) < O%(H®) = Q%,S0Z =
D (Cp(z8)) < P(Q¥) = Z8, contradicting: # z8.

ThereforeF*(G) =U = Qg. Assume next thag® € U and setV = U NUS.
Then (cf. 8.3in [2])(7 = U/Z is an orthogonal space oves and by 8.15.3in [2],
Visa totally singular line. From the structure of Qu) = 0;{(2), each totally
singular line is stabilized by some subgrouptdfof index 3. ThusNy (V)/V is
the stabilizer in GI(V) of z, soM = (Ng (V), U8) induces GI(V) on V. Further
Cg(V)=Cg(V)=V,so0 (G2)is satisfied in this case.

Thus we may assume is weakly closed inU with respect toG. Hence
t=z% € H—HiHyand settingd* = H/U, eitherH = [H},t*] fori = 1 and 2,
or we may assumecentralizedJ N ﬁl. In the latter case centralizes an element
u of order 4 inU N Hy, so as|H : 02(H)| = 2, z = u? € 0% (0%(H¥)) = US,
contradictingz weakly closed inU. Thus we may assume the former case
holds. Then arguing as in 2.3.% is transitive on involutions ind — U, so
all such involutions are in®, and Cy (z8) = Z8Cy (z%), with Cy (z8) = Eg.
By symmetryCps(z) = ZCys(z) soU NU8 = (u) is of order 2. Thusiz is
an involution inH$ — U$, souz € z% N U, completing the proof.
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