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A finite groupG is said to be ofG2(3)-type if G has subgroupsH andM such
that

(G1) H has normal subgroupsH1 and H2 with H1 ∼= H2 ∼= SL2(3),
|H :H1H2| = 2, Z2 ∼=H1 ∩H2, andH = CG(H1 ∩H2); and

(G2) H1 ∩H2 � V � M with CM(V )= V ∼=E8 andM/V ∼= L3(2).

Our main theorem is:

Main Theorem. If G is of G2(3)-type then G∼=G2(3).

See [1] for the definition of basic notation and terminology. The groupG2(3)
is the Chevalley group of typeG2 over the field of order 3.

In the proof of the classification of the finite simple groups, the groupG2(3)
arises as a quasithin group of characteristic 2. This class of groups is treated in [3],
whereG2(3) is identified using the Main Theorem. Our definition of “G2(3)-
type” is chosen to provide a characterization ofG2(3) convenient for the purposes
of [3]. The important condition is (G1), which gives the general structure of the
centralizer of an involution, but some extra condition such as (G2) is necessary to
rule out examples which are not simple. Two other such conditions are:

(G2′) H1 ∩H2 is not weakly closed inH with respect toG.
(G2′′) G has no subgroup of index 2.
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In Section 6 we sketch a proof that in a groupG satisfying (G1), hypotheses
(G2), (G2′), and (G2′′) are equivalent.

There are existing characterizations ofG2(3) in the literature which we will
discuss in a moment. Our purpose here is to obtain a much shorter and simpler
treatment for purposes of the classification, using modern methods which are
more conceptual, avoid character theory, and minimize detailed computation. In
the existing treatments, as in ours, the proof divides into two cases:

Case I:H is not strongly 3-embedded inG. Case II:H is strongly 3-embedded
in G.

Thompson established the first characterization ofG2(3) in terms of local
information in the N-group paper [10]. His hypotheses involve restrictions on both
2-locals and 3-locals, and implicitly exclude Case II. The first characterization of
G2(3) via the centralizer of an involution is due to Janko in [9]; he essentially
assumes Hypotheses (G1) and (G2′′). In [8] and [7], Fong and Wong characterize
groups with more general, but related centralizers; in the special case ofG2(3)
they appeal to Janko’s paper to handle Case II. On the other hand Janko appeals
to Thompson’s work to handle Case I. Janko shows Case II leads to a contradiction
using exceptional character theory. Both Fong–Wong and Thompson identifyG

asG2(3) in Case I by constructing a BN-pair forG.
We identifyG in Case I: first by constructing a pair of 3-locals resembling

the maximal parabolics inG2(3); then by appealing to work of Delgado and
Stellmacher in [6] to conclude the amalgam determined by the 3-locals is unique
up to isomorphism; and finally by an appeal to Corollary F.4.21 in [3] to
identify G. In Case II we calculate the order ofG by counting involutions,
using an approach of Bender in [4]. This leads to an immediate contradiction
via Sylow’s Theorem.

1. A preliminary lemma

1.1. Let G be a group such that G = QL where Q = O3(G) ∼= 31+2 and
L∼= GL2(3) acts faithfully on Q/Z(Q). Let P ∈ Syl3(G). Then

(1) P ∼= Z3 wr Z3.
(2) J (P )∼=E27.
(3) J (P ) is inverted by an involution in L−Z(L).
(4) P ∩L� J (P ).

Proof. FirstP =XQ, whereX = P ∩ L is of order 3 andNL(X) =XF , where
F = 〈t, z〉, Z(L) = 〈z〉, andt is an involution invertingX. Let Z = Z(Q); asL
acts naturally onQ/Z, CQ/Z(X)=E/Z is of order 3. NowE = [E,z] ×CE(z)

with Z = CE(z), so asX centralizesz, X centralizes[E,z] andZ. Therefore
A = EX ∼= E27. Furthert invertsZ and replacingt by tz if necessary, we may
assumet inverts[E,z], so t invertsA. As |P :A| = 3,A � P . Let y ∈Q−E;
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theny is of order 3 and as[X,Q/Z] = E/Z and[E,y] = Z, y acts onA with
one Jordon block of size 3. We conclude thatA= J (P ) and the lemma holds.

2. 2-local structure

In this section we assumeG is of G2(3)-type and letZ = H1 ∩ H2,
z a generator ofZ, U =O2(H), H̃ =H/Z, andH ∗ =H/U . Let �M =M/V .

2.1. (1) V is the natural module for �M ∼= L3(2).
(2) H = CG(z) and M =NG(V ).
(3) H ∩M = CM(z)=NH(V ) is of index 3 in H and index 7 in M .
(4) [H1,H2] = 1, so O2(H)∼= SL2(3) ∗ SL2(3).
(5) U = F ∗(H)=O2(H1)O2(H2)∼=Q2

8.
(6) U =O2(H ∩M) and (H ∩M)∗ ∼= S3.
(7) A Sylow 2-subgroup T of H ∩M is Sylow in G.
(8) Let XH ∈ Syl3(H). Then NH̃ (X̃H ) = X̃H 〈t̃〉, where t̃ is an involution

inverting X̃H and T = U〈t〉.

Proof. By (G2),E8 ∼= V = CM(V ). ThusM/V � GL(V ), so asM/V ∼= GL(V ),
(1) holds.

By (G1),H ∩M = CM(z). Then by (1),|M :H ∩M| = 7 and|H ∩M| = 26 ·3.
By (G1):

|H | = 2|H1H2| = 2|H1||H2|/|H1 ∩H2| = |H1|H2| = 26 · 32,

so|H :H ∩M| = 3. Thus a Sylow 2-subgroupT of H ∩M is Sylow inH andM,
soU =O2(H)�O2(H ∩M). By (G1),|U | �O2(H1)O2(H2)= 25, while by (1)
and the action of GL(V ) onV , |O2(CM(z))| = 25 andCM(z)/O2(CM(z))∼= S3.
ThusU =O2(H1)O2(H2) and (6) holds.

Next asHi � H , [H1,H2] � H1 ∩ H2 = Z � Z(H), so asHi = O2(Hi)

andZ is of order 2, (4) holds. By (4),F ∗(H) = U ∼= Q2
8, completing the proof

of (5). AsF ∗(H)=U , Z(T )� Z(U), soZ(T )=Z by (5). ThusT ∈ Syl2(G) as
H = CG(z) andT ∈ Syl2(H), so (7) holds.

AsCH(E) is a 2-group for each elementary abelian subgroupE of U properly
containingZ, CG(V ) is a 2-group. ButV = CM(V ), so by (7),V is Sylow
in CG(V ) and henceV = CG(V ). Then as AutM(V ) = GL(V ), M = NG(V ),
completing the proof of (2) and (3).

Let X ∈ Syl3(H ∩M) andX � XH ∈ Syl3(H). ThenX ∼= Z3 andXH
∼= E9

is Sylow in H1H2. From the structure ofM, XZ = CM(X) andX is inverted
by somet ∈ T . ThusZ = CU(X), so CŨ (X̃) = 1 and hencẽX is diagonally
embedded inH̃1 × H̃2 and X̃H = CH̃1H̃2

(X̃). ThusX̃H is t̃-invariant and then
NH̃ (X̃H )= X̃H 〈t̃〉. AsHi �H andt̃ invertsX̃, t̃ invertsX̃H , establishing (8).
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2.2. (1) For each g ∈G−M with Z � V g , U = VV g and V ∩ V g =Z.
(2) |V ∩ V g| � 2 for all V g �= V .

Proof. By 2.1.6,V � O2(H ∩ M) = U . As V is the natural module forM/V ,
M is transitive onV #, soH = CG(z) is transitive on{V g : z ∈ V g}. (Cf. A.1.7.1
in [3].)

Supposeg ∈G−M andZ � V g . Then by the previous paragraph,V g ∈ V H ,
soV g �U , and asO2(H ∩M)�H , O2(Hm) acts onV g . Then asO2(H ∩M)

is irreducible on�U andṼ , U = VV g andV ∩ V g =Z, establishing (1). AsM is
transitive onV #, (1) implies (2).

AsV is the natural module for�M , there is a uniqueT -invariant 4-subgroupV2

of V . Let I2 =NM(V2).
IdentifyZ with F2. AsU is extraspecial,H preserves the bilinear form( , ) on

Ũ and the associated quadratic formq defined by(ũ, ṽ)= [u,v] andq(ũ)= u2;
cf. 23.10 in [1]. ThusH ∗ � O(Ũ, q). We use this fact throughout the paper,
usually without further comment.

2.3. (1) H is transitive on the 18 involutions in U − Z and the 12 elements of
order 4 in U .

(2) If i is an involution in U − V2 then CT (i)= CU(i)∼= Z2 ×D8.
(3) M has two orbits on its involutions: V # and the involutions in M −V . For

i an involution with 〈ī〉 =Z(�T ), CM(i)= CU(i)∼= Z2 ×D8.
(4) H̃ is transitive on involutions in H̃ − Ũ ; each such element lifts to an

involution.
(5) H is transitive on involutions in H − U . For j an involution in T − U ,

CH(j)= 〈j 〉V2 ∼=E8.

Proof. By 2.1.8,T̃ = Ũ〈t̃〉, wheret̃ is an involution inverting̃XH ∈ Syl3(H̃ ). It
follows thatCŨ (T )= 〈ũ1, ũ2〉, whereui ∈ U ∩Hi for i = 1,2. AsU ∩Hi

∼=Q8

and [H1,H2] = 1, F = 〈u1, u2〉 ∼= Z2 × Z4 and 〈ũ1ũ2〉 is the unique singular
point in F̃ . As Ṽ2 is aT -invariant singular point, it follows thatV2 = 〈u1u2, z〉 =
Ω1(F ).

Next there are involutions inU − V , and each such involution is fused into
T −U underM. Thus there is an involutionj in T −U . For each such involution,
j̃ ũ1 ∈ j̃U , soju1 is an involution and hencej invertsu1. ThusCU(j) = V2, so
asj∗ is selfcentralizing inH ∗ by 2.1.8,CH (j)= 〈j 〉V2 ∼=E8.

As |H ∗|2 = 2,H ∗ is transitive on its involutions, and then asCŨ (j)= [Ũ , j ],
H̃ is transitive on its involutions by Exercise 2.8 in [2]. Thus (4) holds. As
|U :CU(j)| = 8 = |F |, U is transitive onjF , soH is transitive on involutions in
H −U , completing the proof of (5).
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Part (1) is a standard fact about the orthogonal spaceŨ , as is the fact that
CU(i)∼= Z2 ×D8 for i an involution inU −Z. By paragraph one,CT̃ (ĩ)= Ũ if
i /∈ V2, so (2) holds.

As V is the natural module for�M , M is transitive onV #. For each involution
x ∈ M − V , x̄ is fused to a generator ofZ(�T ). Further if x̄ ∈ Z(�T ) then
�T = C�H (x̄), soCM(x)� T . But by (2),CT (x)= CU(x)∼= Z2 ×D8, so (3) holds.

2.4. G has one class of involutions.

Proof. By 2.3.3, each involution inM is fused intoU . Also z is fused into
V −Z ⊆U in M. Then the lemma follows from 2.3.1.

2.5. (1) I2/V2 ∼= Z2 × S4.
(2) O2(O

2(I2))∼= Z2
4.

(3) V is the unique normal E8-subgroup of I2.

Proof. First Ī2 ∼= S4 and there are involutions inT −O2(I2), so eitherI2/V2 ∼=
Z2×S4 orO2(I2/V2)∼= SL2(3). ButΦ(U/V2)= 1, so(U ∩O2(I2))/V2−V/V2
contains involutions, and hence (1) holds. LetR =O2(O

2(I2)). As I2 is transitive
on (R/V2)

#, eitherV2 = Ω1(R) or R ∼= E16. But by 2.3,m2(T ) = 3, soV2 =
Ω1(R). NextU ∩R ∼= Z4 ×Z2 and foru ∈ U ∩R−V2 andv ∈ V −V2, [u,v] = z

generatesΦ(U ∩ R) asΦ(U) = 〈z〉. Thereforev invertsU ∩ R, so asCI2(v) is
irreducible onR/V2, v invertsR. Therefore (2) and (3) hold.

3. 3-local structure

In this section we continue to assumeG is of G2(3)-type and continue the
notation from the previous section. In addition letXH ∈ Syl3(H), Xi =XH ∩Hi

for i = 1,2, andX3 andX4 the remaining subgroups ofXH of order 3. Let
Qi =O(NG(Xi)).

3.1. (1) NH (XH)=XH 〈t, z〉, where t is an involution inverting XH .
(2) For i = 1,2, NH(Xi)=KiXi , where Ki =H3−i〈t〉 ∼= GL2(3).
(3) For k = 3,4, NH(Xk)=NH(XH ).
(4) For i = 1,2, NG(Xi)=QiKi .
(5) For each j , 1 � j � 4, zG ∩CG(Xj )= zCG(Xj ).
(6) For r �= s, Xs /∈XG

r .

Proof. By 2.1.8,NH(XH) = XH 〈t, z〉, where t̃ is an involution inverting̃XH ,
and by 2.3.4,t is an involution. Thus (1) holds. Similarly fork = 3,4,NH ∗(X∗

k )=
NH(XH)

∗ and CŨ (Xk) = 1, so (3) holds. On the other hand fori = 1,2,
XiH3−i =NH1H2(Xi), so ast invertsXH , (2) holds.
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By (2) and (3),CH(Xj ) has a Sylow 2-subgroupTj isomorphic toQ8 or Z2, so
Z charTj and henceTj ∈ Syl2(CG(Xj )). Then(4) holds by Brauer–Suzuki [5].
AlsoZ is weakly closed inTj , so(5) holds and then asXs /∈XH

r , (5) implies (6).

3.2. For i = 1,2:
(1) z inverts Qi/Xi .
(2) Qi =XiCQi (t)CQi (tz), with CQi (tz)= CQi (t)

h for h ∈Ki with th = tz.
(3) Φ(Qi)�Xi and Qi is of exponent 3.
(4) |Qi | = 3, 33, or 35, and |NG(Xi)|3 = 32, 34, 36, respectively.

Proof. By 3.1.2,Xi =O(NH(Xi)), so (1) holds. By (1),Qi/Xi is abelian, so by
Exercise 8.1 in [1],Qi = CQi (z)CQi (t)CQi (tz), and hence (2) holds. Next by 2.4,
t ∈ zG, so CG(t) is a {2,3}-group and henceCQi (t) is contained in a Sylow
3-group ofCG(t), which is isomorphic toE9. ThusCQi (t) is of exponent 3 and
order at most 9, so by (2),Qi/XI is an elementary abelian 3-group of order 1, 32,
or 34. Thus (4) holds,Φ(Qi) � Xi , andQi is generated by elements of order 3.
As Φ(Qi)� Xi � Z(Qi), Qi is of class at most 2, so asQi =Ω1(Qi), Qi is of
exponent 3 by 23.11 in [1]. Thus (3) holds.

3.3. (1) For k = 3,4, NG(Xk)=O3(NG(Xj ))〈t, z〉 with |O3(NG(Xk))| � 36.
(2) |NG(Xj )|3 � 36 for all j , 1 � j � 4.

Proof. Let k = 3 or 4, I = NG(Xk), andY = O(I). By 3.1.3 and Thompson
transfer,I = Y 〈t, z〉. If p is a prime divisor of|Y | then by 18.7 in [1] there is
a 〈t, z〉-invariant Sylowp-subgroupP of Y , and by Exercise 8.1 in [1],Y =
〈CY (z),CY (t),CY (tz)〉. ThereforeY is a 3-group by 2.4. Then using Exercise 8.1
in [1] and inducting on the order ofY , Y = CY (z)CY (t)CY (tz), with |CY (i)| � 9
for i ∈ 〈t, z〉#. Thus (1) holds, and (1) and 3.2.4 imply (2).

In the remainder of this section we assumeQi �=Xi for i = 1 or 2, and setX =
Xi ,Q=Qi , I =NG(X),K =Ki , andPi =XHQ. ThusPi ∈ Syl3(NG(Xi)) and
|Pi | = 3|Q|. Changing notation if necessary, we may takei = 1.

3.4. Q is not isomorphic to 31+2.

Proof. AssumeQ ∼= 31+2 and letP = P1. By 3.1, I = KQ with K ∼= GL2(3)
and by 3.2,z invertsQ/X. ThusP ∼= Z3 wr Z3 andXH � A = J (P ) ∼= E27

by 1.1. FurtherX = Z(P), soP ∈ Syl3(G). AsX2 � XH �A, |NG(X2)|3 � 33,
so |NG(X2)|3 � 34 by 3.2.4. ThusX2 is in the center of some Sylow 3-subgroup
of G, impossible asX =Z(P) andX2 /∈XG by 3.1.6.
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3.5. |Q| = 35.

Proof. Assume otherwise; then by 3.2.4,|Q| = 33. By 3.2.1,z invertsQ/X ∼=E9
and by 3.2.2,Q is of exponent 3 withΦ(Q) � X. Thus by 3.4,Q ∼= E27, so
Q=X ×E, whereE = [Q,z] ∼=E9 andK acts faithfully as GL(E) onE. Thus
P1 = X2E ×X ∼= 31+2 × Z3, soD = CE(P1) is of order 3, and we may choose
notation so thatD = CE(t). HenceD is fused toXj for some 1� j � 4.

SupposeX is weakly closed inZ(P1) with respect toG. ThenP1 ∈ Syl3(G)
andNG(P1) = NI (P1) = P1〈t, z〉. Also |NP1(X2)| = 33, so |NG(X2)|3 � 34 by
3.2.4, and henceX2 is in the center of some Sylow 3-subgroup ofG. Thus by
symmetry betweenX1 andX2, D �=X

g
2 � NG(P1) for someg ∈ G, so asX and

D are the only normal subgroups of order 3,X =X
g
2, contrary to 3.1.6.

ThereforeX is not weakly closed inZ(P1), so asP1 ∈ Syl3(I), NG(P1) � I .
Then asD = Φ(P1) andNG(P1) acts onZ(P1) = XD with P1 = CI (XD) =
CG(XD), NG(P1)/P1 ∼= Z2 × S3. Then as tz inverts Z(P1), NG(P1) =
P1(CG(tz) ∩ NG(P1)) and CG(tz) ∩ NG(P1) acts onZ(P1)CP1(tz) = Q, so
Q � NG(P1). Now K has orbits{X}, DK , XK

0 of order 1, 4, 8 on the set∆
of points ofQ. Thus |XNG(Q)| = 13, 5, or 9. As 5 does not divide|GL3(3)|,
the second case is impossible. As GL3(3) has no subgroup of order 13· |I :Q| =
13· |GL2(3)|, the first case is out. ThusXNG(Q) is the set of 9 points inQ−E and
E � NG(Q). Therefore AutG(Q) is the stabilizer in SL(Q) of the hyperplaneE
of Q, soNG(Q)=RK, with |R| = 35, P =RXH ∈ Syl3(NG(Q)), and|P | = 36.
AsD � Z(P) andD ∈XG

j for somej , P ∈ Syl3(G) by 3.3.2.

As K is irreducible onR/Q, R/E ∼= 31+2 or R/E = [R/E,z] × Q/E.
Assume the latter. ThenR0 = [R,z] = CR0(t) × CR0(tz)

∼= E81. But there is
y ∈G with Xy � CR0(t), som3(I)� 4, impossible asm3(P1)= 3.

ThereforeR/E ∼= 31+2. By 1.1, P/E ∼= Z3 wr Z3 and S/E = J (P/E) ∼=
E27 is inverted bys = t or tz. In particular,Q/E = Z(P/E), so Z(P) =
CQ(P)=D. NextR∩S ∼= 31+2×Z3 with s inverting(R∩S)/E, sos centralizes
Φ(R ∩ S). As R ∩ S � P , Φ(R ∩ S) � Z(P) = D, soD = Φ(R ∩ S). Thus as
s centralizesΦ(R ∩ S), s = t . ThereforeD = CS(t), so t invertsS/D. As usual
S = CS(z)CS(tz)CS(t), soΦ(S)=D andS is of exponent 3.

Let Ŝ = S/D andY of order 3 inCR(t)− S. ThenŜ is a 4-dimensionalF3Y -
module, som3(CŜ(Y ))� 2. Therefore asQ/E = CP/E(Y ), CŜ(Y ) = Q̂. This is
impossible as[R, X̂] = Ê andQ̂= ÊX̂. Thus the proof of 3.5 is complete.

3.6. Q1 ∼=Q2 ∼= 31+2 ×E9 and |NG(X1)|3 = |NG(X2)|3 = 36.

Proof. By 3.2.3,Φ(Q) � X andQ is of exponent 3, while by 3.5,|Q| = 35.
ThereforeQ∼=E35, 31+2 ×E9, or 31+4. AlsoCQ(t)∼=E9, soXg

2 �X
g
H �Q for

someg ∈ G. Then|CQ(X
g
2)| � 34, so |Q2| � 33, and hence|Q2| = 35 by 3.5.

Thus|NG(Xj )|3 = 36 for j = 1 and 2 by 3.2.4.
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AssumeQ ∼= E35. ThenQ = X × [Q,z] with CQ(t) � [Q,z]. ThusXg

1 �
[Q,z]. As m(CQ(XH )) � 3, Q = J (P1), soQ = J (P

g

1 ) = Qg . But then 1=
m(CQ(z))=m(CQg(z))= 2, a contradiction.

Therefore we may assumeQ∼= 31+4. ThenX =Z(P1), soP = P1 ∈ Syl3(G).
Thus by 3.1.6,|NG(X2)|< 36, contrary to the first paragraph.

LetG1 =NG(X), Y1 =X, andR1 =Q. By 3.6,R1 ∼= 31+2 ×E9, soZ(R1)=
Y1 ×E1, whereE1 = [Z(R1), z] is the natural module forL1 =K. Let P = P1,
Y2 = CE1(P ), G2 =NG(Y2), andR2 =O3(G2). Observe:

3.7. (1) G1 =R1L1 with R1 ∼= 31+2 ×E9, L1 ∼= GL2(3), Z(R1)= Y1 ×E1, and
E1 is the natural module for L1.

(2) F ∗(G1)=R1.
(3) P 〈t, z〉 =NG1(Y2)=G1 ∩G2.
(4) Z(P )= Y1 × Y2.

3.8. (1) NG(Z(P ))=NG(P) = P 〈t, z〉.
(2) P ∈ Syl3(G).

Proof. Let J =NG(Z(P)). By 3.7.4,Z(P)= Y1Y2, so

CG

(
Z(P)

) = CG1

(
Z(P)

) = CG1(Y2)= P

by 3.7.3. AsZ(P)= Y1Y2 we may choose notation so thattz invertsZ(P). Thus
asP = CG(Z(P )), by a Frattini argument,J = PCJ (tz) andP0 = CP (tz) �
CJ (tz). But |P0| = 9 so P0 ∈ Syl3(CG(tz)) and henceP0〈t, z〉 = CG(tz) ∩
NG(P0) by 2.4 and 3.1.1. Therefore

J = PCJ (tz)= PP0〈t, z〉 = P 〈t, z〉 �NG(P),

establishing (1). Of course (1) implies (2).

3.9. Y2 ∈XG
2 .

Proof. By 3.8.2 and 3.6, there isg ∈ G with X
g

2 � Z(P). By 3.1.6,Xg

2 �= X.
Now Y1 andY2 are the only〈t, z〉-invariant points ofZ(P), and hence by 3.8.2
the only points ofZ(P) normal inNG(P). By symmetry betweenX1 andX2,
X
g
2 �NG(P), soXg

2 = Y2.

By 3.9,Y2 = Xa
2 for somea ∈ G. Pick notation so thatt centralizesY2; thus

we may choosea so thatza = t .

3.10. (1) R2 ∼= 31+2 ×E9 with Z(R2)= Y2 ×E2, E2 ∼=E9, and E2 is the natural
module for L2 =Ha

1 〈z〉 ∼= GL2(3).
(2) L2 is a complement to R2 in G2.
(3) F ∗(G2)=R2.
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Proof. As Y2 = Xa
2, Y2 � Ha

2 andG2 = NG(X2)
a . Then the various remarks

follow by symmetry betweenX1 andX2.

3.11. Let G0 = 〈G1,G2〉. Then O3(G0)= 1.

Proof. Let R = O3(G0). By 3.8, P ∈ Syl3(G0), so R � P and henceR �
P ∩O3(Gj ) = Rj for j = 1 and 2. ThusR � S = R1 ∩ R2. But Z(P) � S and
[P, t] � R2, soE81 ∼= Z(P)[R1, t] � S. IndeedCR2(t)= Y2 while CR1(t)

∼= E9,
soR1 �=R2, and hence|S| � 34. ThereforeS =Z(P)[R1, t].

SupposeR �= 1. Then 1�= CR(P) � Z(P) andCR(P) is 〈t, z〉-invariant, so
Yj �R for j = 1 or 2. Thus, interchanging the roles ofY1 andY2 if necessary, we

may assumeY2 �R. ThusE1 = 〈YG1
2 〉 �R.

If E1 � Y2E2 then Y1E1 = Y2E2, so R1 = CP (Y1E1) = CP (Y2E2) = R2,
which we saw is not the case. ThusE1 � Y2E2. But L2 is irreducible on
R2/Z(R2), soR2 = RZ(R2) = RE2. However asY2 � Z(P), E1 � Z(R), so
R � CR2(E1)=E1E2, contradictingR2 =RE2.

Theorem 3.12. If Qi �=Xi for i = 1 or 2, then G∼=G2(3).

Proof. Let α = (G1,G1,2,G2), whereG1,2 = G1 ∩ G2. By 3.7, 3.8, 3.10, and
3.11,α is the amalgam of a weak BN-pair, in the sense of Section 4 of the Green
Book [6]. Then as|Rj | = 35 andGj/Rj

∼= GL2(3), it follows from Theorem A
in the Green Book thatα is isomorphic to the amalgam ofG2(3).

Let F = 〈t, z〉. ThenF � F1 � L1, whereF1 ∼=D8. ThusF1 = F 〈s1〉, where
s1 is an involution inG1 − G2. Similarly there is an involutions2 ∈ G2 − G1
with F 〈s2〉 ∼= D8. Then [F, s1] = z and [F, s2] = t , so 〈s1, s2〉 � NG(F) with
S/CS(F )∼= S3. Therefore(s1s2)3 ∈ CS(F ). But by 2.3.5,CG(F)∼=E8, soCS(F )

is of exponent 2. Thus|s1s2| = 3 or 6.
As α is theG2(3)-amalgam, asG0 is a faithful completion ofα (cf. Section 36

in [2]), and as|s1s2| � 6, it follows from Corollary F.4.21 in [3] thatG0 ∼=G2(3).
ThereforeG0 has one class of involutions and|CG0(z)| = 26 · 32 = |H |, so
CG(z) = H � G0. ThusNG(T ) � NG(Z(T )) = H � G0, so if G �= G0 then
G0 is strongly embedded inG. Hence by 7.6 in [2], there is a subgroupD of odd
order inG0 transitive on the involutions ofG0. Therefore|G0 : H | = 36 · 7 · 13
divides |D|, soD contains a Sylow 3-subgroup ofG0. ThusD is contained in
a maximal parabolic subgroup ofG0, whereas the maximal parabolics are{2,3}-
groups. HenceG=G0 ∼=G2(3).

4. The geometry Γ

In this section we continue to assumeG is of G2(3)-type and continue
the notation from the previous sections. We generate information about the
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permutation representation ofG onG/M by right multiplication, which will be
used in the next section to show thatH is not strongly 3-embedded inG.

4.1. Either
(1) H is strongly 3-embedded in G, or
(2) G∼=G2(3).

Proof. Assume (2) fails. We observe first thatNG(Xi)� H for i = 1 and 2. For
if not then by 3.1.4,Qi �=Xi , contrary to Theorem 3.12 and our assumption that
(2) fails.

As NG(X1) � H , also NG(XH ) � H by 3.1.6. ThusXH ∈ Syl3(G) and
if (1) fails then NG(Xj ) � H for j = 3 or 4. But by 3.3.1,NG(Xj ) =
O3(NG(Xj ))〈t, z〉. However asXH ∈ Syl3(G), O3(NG(Xj )) � XH � H , so
NG(Xj )�H , completing the proof.

During the remainder of the section assumeH is strongly 3-embedded inG.

4.2. Let SM ∈ Syl7(M). Then
(1) CG(SM) is a {2,3}′-group.
(2) |NG(SM) :CG(SM)| = 3.

Proof. By 2.4,G has one class of involutions, so asH is a 7′-group,CG(SM) is
of odd order. Similarly asH is strongly 3-embedded inG, CG(SM) is a 3′-group,
so (1) holds.

NextNM(SM) = SMX, whereX is of order 3, and of course Aut(SM) ∼= Z6.
Thus if (2) fails thenSM is inverted by some involutioni, and by (1) and a Frattini
argument we may takei to centralizeX. But asH is strongly 3-embedded inG,
X centralizes a unique involution, so〈i〉 = CV (X), impossible asi invertsSM
andSM acts onV .

See Section 4 in [2] for a discussion of geometries, (in the sense of Tits)
including notation and terminology. LetΓ be the rank 2 geometry with point
setV G, line setZG, and incidence equal to inclusion. ThusG is represented as
a group of automorphisms ofΓ by conjugation, and by 2.1.2,M = NG(V ) and
H = NG(Z) are the stabilizers ofV andZ, respectively. By construction,G is
transitive on the points and lines ofΓ , and from 2.1,M is transitive on the set
Γ (V ) of lines throughV , soG is flag transitive onΓ . Forα,γ ∈ Γ , let d(α, γ )
denote the distance ofα from γ in Γ andΓ i(γ ) the set of vertices at distancei
from γ in Γ .

4.3. Distinct lines are incident with at most one point and distinct points are
incident with at most one line.
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Proof. By 2.2.2,|A∩B| � 2 for distinct pointsA,B.

4.4. (1) If α,β ∈ Γ with d(α,β)� 2 then there is a unique geodesic from α to β .
(2) Gα is transitive on Γ 2(α).
(3) V g ∈ Γ 2(V ) iff V ∩ V g is a line, in which case the global stabilizer in G

of {V,V g} is the stabilizer of the edge (V ∩ V g,V y), where V y is the third point
on V ∩ V g .

Proof. Part (1) follows from 4.3. Part (2) holds asM is 2-transitive onΓ (V )

andH is 2-transitive onΓ (Z). By 4.3,V g ∈ Γ 2(V ) iff V ∩ V g = Z for some
lineZ. Then by (1),M ∩Mg is the stabilizerO2(H ∩M) in H of V andV g . As
x ∈H ∩My −O2(H ∩M) interchangesV andV g , (3) holds.

4.5. (1) If α,β ∈ Γ with d(α,β)= 3 then there is a unique geodesic from α to β .
(2) Gα is transitive on Γ 3(α) for each α ∈ Γ .
(3) Γ 3(V )= ZG ∩ (M − V ).

Proof. Let p be a geodesic of length 3. Replacingp by its inverse if necessary,
and conjugating inG, we may takep to beZ,V,Zg,V x . By 2.2.1,Ug = V V x

andV ∩ V x = Zg . Thus asz ∈ V , z acts onV x but z /∈ V x . As [Ug,V x ] = Zg

andV x = CUg(V x), [V x,Z] = Zg , so Zg is determined byZ andV x . Thus
(1) follows from 4.4.1, while (2) and (3) follow from 2.3.3 and the fact that
z ∈Mx − V x .

4.6. (1) If d(V,V g)= 4 then there is a unique geodesic from V to V g .
(2) M is transitive on Γ 4(V ).
(3) M ∩Mg = V y , where {V y} = Γ 2(V )∩ Γ 2(V g).
(4) The global stabilizer of {V,V g} is isomorphic to Z2 ×D8.

Proof. Supposep = V x,Z,V,Zy,V g is a geodesic inΓ . By 2.2.1,U = V V x

with V ∩ V x = Z, and similarlyUy = V V g with V ∩ V g = Zy . Therefore
[V x,Zy ] = Z and [V g,Z] = Zy , so I0 = 〈V x,V g〉 � NM(ZZy) and E4 ∼=
ZZy � V . Thus we may choose notation so thatZZy = V2. ThereforeI0 � I2 =
NM(V2). By 2.5,I2/V2 ∼= Z2×S4 with V/V2 =Z(I2/V2) andO2(O

2(I2))∼= Z2
4,

so we concludeI0 = I2. Again by 2.5,V is the unique normalE8-subgroup ofI2,
so it follows that{V } = Γ 2(V x) ∩ Γ 2(V g), and then (1) follows from 4.4.1,
and (3) from 4.4.3.

To prove (2), given 4.4.2, it suffices to showNM(V x) is transitive onΓ 2(V )−
Γ (Z). But by 4.4.3,NM(V

x) = O2(H ∩ M) and from 2.1.3,O2(H ∩ M) is
transitive onV − Z with the stabilizerCU(Z

y) in O2(H ∩ M) of Zy satisfying
|CU(Z

y) : V | = 2 andCM(Zy)=O2(CM(Z
y))CU(Z

y). AsCM(Zy) is transitive
onΓ (Zy)− {V } with O2(CM(Zy)) the kernel of this action, (2) follows. By (1)
and (2), the inverse ofp is conjugate top, so the global stabilizer of{V x,V g}
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is V 〈a〉 wherea ∈ M − V with a2 ∈ V . As �M is transitive on its involutions we
may choosea to be an involution and then (4) holds.

4.7. (1) If d(Z,Zg)= 4 then there is a unique geodesic from Z to Zg .
(2) H has three orbits on Γ 4(Z) and the corresponding orbitals are all

selfpaired.
(3) H is transitive on Γ 4(Z)∩H andH ∩Hg ∼=E8 for eachZg ∈ Γ 4(Z)∩H .
(4) If zg /∈H then 〈z, zg〉 ∼=D8 and H ∩Hg ∼=D8.

Proof. Supposep = Z,V,Zy,V x,Zg is a geodesic. ThenZ � V � Uy , Zg �
V x � Uy , and by 2.2.1,Uy = V V x with V ∩ V x = Zy . Thus [V,Zg] = Zy .
If [Z,Zg] = 1 then zg ∈ H but as [V,Zg] = Zy , zg /∈ U . ThusH ∩ Hg =
CG(ZZ

g) ∼= E8 by 2.3.5, soH ∩ Hg = ZZgZy . In particularU ∩ Ug = Zy ,
soZy is determined andp is determined by 4.4.1. Hence (1) holds in this case, as
does (3) by 2.3.5. By (1) and (3),G is transitive on geodesics of length 4 between
commuting lines, sop is conjugate to the inverse ofp, and hence the orbital
(Z,Zg)G is selfpaired, establishing (2) in this case.

So assume[Z,Zg] �= 1; then[Z,Zg] =Zy , soZy is determined, and hence (1)
follows from 4.4.1. FurtherS = CHy (Z) is of index 2 in the Sylow 2-group
NHy (ZZy) and has two orbits on the involutions inUy − CUy (Z), soH has
two orbitsO1 andO2 on Γ 4(Z)−H . Now H ∗ has 9 involutions, each fixing a
unique singular point of̃U and each with 4 cycles of length 2 on the remaining
singular points. Further there are 36 pairs of distinct singular points and at most
one involution interchanges two such points, so each pair of points is a cycle
in a unique involution. This shows the orbitals determined byOi are selfpaired,
completing the proof of (2). FinallyH ∩Hg = CUy (〈Z,Zg〉)∼=D8, so (4) holds.

4.8. (1) If d(V,V g)= 6 then there is a unique geodesic from V to V g .
(2) M ∩Mg =Zy , where {Zy} = Γ 3(V )∩ Γ 3(V g).
(3) M has three orbits on Γ 6(V ).
(4) The global stabilizer of {V,V g} is isomorphic to E4.

Proof. We first show thatΓ 6(V ) �= ∅. For if not

|G :M| = ∣∣V G
∣∣ = ∣∣Γ 0(V )

∣∣ + ∣∣Γ 2(V )
∣∣ + ∣∣Γ 4(V )

∣∣.
Now by 4.4–4.6, for eachm� 4 and eachα ∈ Γ m(V ), there is a unique geodesic
fromV to α. Thus|Γ m(V )| is the number of geodesic of lengthm with originV .
Further ifV = α0, . . . , αm−1 is a geodesic then there are|Γ (αm−1)| − 1 choices
for αm, so |Γ m(V )| = 1, 7, 14, 84, 168, form = 0,1,2,3,4, respectively. Thus
|G :M| = 183= 3 · 61, so

|G| = 26 · 32 · 7 · 61.

Let P ∈ Syl61(G). As H is strongly 3-embedded inG and of order prime to 61,
CG(P) is a{2,3}′-group, soCG(P)= P orCG(P)= PS for someS ∈ Syl7(G).
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But in the latter case by 4.2,PS = CG(S) andNG(S) is of order 3· 7 · 61. Then
|G :NG(S)| = 26 · 3 ≡ 3 mod 7, contrary to Sylow’s theorem. ThusP = CG(P),
and |NG(P) : P | divides the order 60 of Aut(P ) and |G|, so |NG(P) : P | is
a divisor of 12. Again this contradicts Sylow’s theorem. This establishes the claim
thatΓ 6(V ) �= ∅.

Thus we may supposep = V x,Zr,V,Z,V w,Zs,V g is a geodesic inΓ . Then
d(V x,Z)= 3, soz ∈Mx −V x by 4.5.3. Similarlyz ∈Mg−V g . Further by 4.5.1,
the geodesic is determined byV x , Z, andV g . Conversely ifa is an involution
in D = Mx ∩ Mg , then settingA = 〈a〉, d(V x,A) � 3 � d(V g,A) and then as
d(V x,V g) = 6, these inequalities are equalities. Thereforea is not inV x or V g

andA determines a unique geodesic fromV x to V y . Thus the mapG �→ a(G) is
a bijection of the setG of geodesics fromV x to V g with the setA of involutions
in D. So to prove (1) it remains to show that|A| = 1.

First if X is of order 3 inD thenCV x (X) �= 1 �= CV g(X). But asH is strongly
3-embedded inG, X centralizes a unique involution, soCV x (X) = CV g(X),
contradictingd(V x,V g) > 2. ThusD is a {2,7}-group. However all involutions
in a {2,7}-subgroup ofMx are inV x , soD is a 2-group. Therefore if|A| �= 1
then there exist distinct commuting involutionsa and z in A. By the previous
paragraph,a acts onV w. Thus by 4.6.3,a ∈ Mx ∩ Mw = V . Similarly a ∈
M ∩ Mg = V w, so a ∈ V ∩ Vw = Z, contradictinga �= z. This establishes (1)
and (2).

Write p(V x,V g) for the unique geodesicp from V x to V g , and define
q(V x,V g) = Zr,V,Z,V w,Zs . Thusq = q(V x,V g) is the geodesic fromZr

to Zs . By (1), the mapθ :p(A,B)G �→ q(A,B)G is a well defined function from
the set of orbits ofG on geodesics of length 6 whose origin is a point, to the set
of orbits ofG on geodesics of length 4 whose origin is a line. By 4.7,Gq is of
order 8. NowGq acts on∆ = (Γ (Zr)− {V })× (Γ (Zs)− {V w}) of order 4, so
as |Gp| = 2, it follows thatGq is transitive on∆. This shows that the mapθ
is a bijection. Therefore 4.7.2 implies (3). By 4.7.2, the orbital(Zr ,Zs)G is
selfpaired so there isa ∈ G interchangingZr andZs . Thena also reverses the
order of the pairs in∆, so asGq is transitive on∆, the orbital(V x,V g)G is also
selfpaired. Thus the global stabilizerA of {V x,V g} is of order 4 by (2), soA∼= Z4
orE4. Now in the former caseA= 〈a〉 with a2 ∈Gp =Z, so by 2.3.4,a ∈U . But
thenV a = V , impossible asa mapsp to its inverse, soV a = Vw �= V . Thus (4)
is established.

5. Counting involutions

In this section we assumeG is of G2(3)-type andH is strongly 3-embedded
in G. Under these hypotheses we calculate the order ofG, and then use Sylow’s
theorem to obtain a contradiction. We calculate|G| by counting involutions, using
an approach of Helmut Bender in [4].
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We continue the notation of previous sections.
ForMg ∈G/M let n(Mg) = |zG ∩Mg| be the number of involutions inMg,

and following Bender, define

bm = ∣∣{Mg ∈G/M − {M}: n(Mg) =m
}∣∣ and f = |zG|

|G :M| − 1.

As |zG| = |G :H |, it follows that

f = |M|
|H | − 1 = 7

3
− 1= 4

3
.

5.1. Let M �=Mg ∈G/M; then the following are equivalent:
(1) n(Mg) > 0.
(2) V g = V i for some involution i ∈G.
(3) The global stabilizer G({V,V g}) in G of {V,V g} contains an involution

not in M .

Proof. AsM =NG(V ), Mg =Mx iff V g = V x , so the lemma holds.

5.2. Let i be an involution not in M . Then

n(Mi)= ∣∣{x ∈M ∩Mi : xi = x−1}∣∣ = ∣∣zG ∩ (
G

({
V,V i

}) −M
)∣∣.

Proof. The mapx �→ xi is a bijection of the set of elements ofM inverted byi
andzG ∩Mi. Further each suchx is inM ∩Mi , and(M ∩Mi)〈i〉 =G({V,V i}),
so the lemma holds.

5.3. Let d(V,V g)= d . Then
(1) If d = 2 then n(Mg) = 24.
(2) If d = 4 then n(Mg) = 4.
(3) If d = 6 then n(Mg) = 2.

Proof. First supposed = 2. Then by 4.4.3, up to conjugation inG, g ∈ H ,
G({V,V g})=H ∩Mh, where{V,V g,V h} = Γ (Z), andM∩Mg =O2(H ∩M).
By 2.3.5,H is transitive on involutions inH −U and for each such involutionj ,
CH(j) = 〈j 〉CU(j) ∼= E8. Conjugating inH , we may takej∗ ∈ (H ∩ Mh)∗,
while if k ∈ H with jk ∈ Mh then (jk)∗ ∈ j∗(H∩Mh), so asCH ∗(j∗) = 〈j∗〉,
k ∈H ∩Mh. ThusH ∩Mh is transitive on involutions inH ∩Mh −O2(H ∩M)

and|jH∩Mh | = |(H ∩Mh) :CH(j)| = 24. Thus (1) follows from 5.2.
Next supposed = 4. Then by 4.6,M ∩Mg ∼=E8 andG({V,V g})∼= Z2 ×D8,

so (2) follows from 5.2. Finally ifd = 6 then by 4.8,M ∩ Mg ∼= Z2 and
G({V,V g})∼=E4, so (3) follows from 5.2.
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5.4. n(Mg) > 1 iff d(V,V g)� 6.

Proof. If d(V,V g)� 6 thenn(Mg) > 1 by 5.3. So we may assumed(V,V g) > 6
but n(Hg) > 1 and it remains to derive a contradiction. Leta ∈ Mg be an
involution,A = 〈a〉, andY = M ∩ Mg . By 5.2,a inverts somey ∈ Y #. By 4.2,
y is not of order 7. Ify is of order 3, then asH is strongly 3-embedded inG,
a ∈ NG(〈y〉) � NG(Z

x) for someZx � V . But by symmetry,Zx � V g , so
d(V,V g)= 1, contrary to assumption.

ThereforeY is a 2-group, so we may takey to be an involution. Thus〈y〉 =Zb

for someb ∈ G. By 4.5.3,d(Zb,V )� 3 � d(Zb,V g), sod(V,V g) � 6, again a
contradiction.

5.5. (1) b2 = 25 · 32 · 7 = 2016.
(2) b4 = 23 · 3 · 7= 168.
(3) b24 = 14.
(4) If m> 1 and m �= 2, 4, or 24, then bm = 0.

Proof. Let m > 1. By 5.4, bm �= 0 iff m = n(Mg) for some g ∈ G with
d(V,V g) � 6, in which casen(Mg) = n(d(V,V g)), wheren(d) = 24, 4, or 2
for d = 2, 4, or 6, respectively. LetMd = {Mg: d(V,V g) = d}; it follows that
bm = 0 unlessm= n(d) for d = 2, 4, or 6; furtherbn(d) = |Md |. In particular (4)
holds.

Next by 4.4,M is transitive onM2 with

b24 = bn(2) = |M2| =
∣∣M :M ∩Mg

∣∣ = 14,

for Mg ∈ M2. This establishes (3) . Similarly by 4.6,M is transitive onM4 and
b4 = |M4| = |M|/8= 168, establishing (2). Finally by 4.8,M has three orbits on
M6, each of length|M|/2= 672, so (1) holds.

5.6. n(M)= |zG ∩M| = 7 · 13= 91.

Proof. By 2.3.3,∣∣zG ∩M
∣∣ = ∣∣V #

∣∣ + ∣∣zG ∩ (M − V )
∣∣ = 7+ 84= 91.

5.7. b1 = 0.

Proof. By Lemma 1 in [4],

b1 < σ = f−1
(
n(M)+

∑
i>1

(i − 1)bi

)
− 1−

∑
i>1

bi. (∗)

As we observed earlier,f−1 = 3/4. By 5.5,
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∑
i>1

(i − 1)bi = 25 · 32 · 7+ 3 · (23 · 3 · 7
) + 23· 14

= 14· (24 · 32 + 22 · 32 + 23
) = 14· (144+ 36+ 23)

= 14· 203.

Then by 5.6:

f−1
(
n(M)+

∑
i>1

(i − 1)bi

)
= 3 · (7 · 13+ 14· 203)

4
= 21· (13+ 406)

4

= 21· 419

4
.

Similarly

1+
∑
i>1

bi = 1+ 2016+ 168+ 14= 2199= 3 · 733,

so

σ = 21 · 419

4
− 3 · 733= 3 · (7 · 419− 2932)

4
= 3 · (2933− 2932)

4
= 3

4
,

and henceb1 < σ < 3/4 by (∗), sob1 = 0.

5.8. |G| = 26 · 32 · 7 · 733.

Proof. By Lemma 1 in [4],

|G :H | = ∣∣zG∣∣ = n(M)+
∑
i�1

ibi,

so by 5.5, 5.6, and 5.7,

|G :H | = 7 · 13+ 2 · (25 · 32 · 7
) + 4 · (23 · 3 · 7

) + 24· 14

= 7 · (13+ 576+ 96+ 48)= 7 · 733.

Therefore as|H | = 26 · 32, the lemma holds.

Observe next that 733 is a prime, so by 5.8, a Sylow 733-subgroupP of G is
of order 733.

5.9. (1) P = CG(P).
(2) |NG(P) : P | divides 12.

Proof. An argument in the first paragraph of the proof of 4.8 establishes (1). Then
as 732= 22 · 3 · 61, (1) and 5.8 imply (2).

We are now in a position to obtain a contradiction to the hypotheses of this
section, proving:
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Theorem 5.9. If G is of G2(3)-type then H is not strongly 3-embedded in G.

Namely by Sylow’s theorem,|G : NG(P)| ≡ 1 mod 733. But by 5.7 and 5.8,
|G :NG(P)| = 24+a · 31+b · 7, where 0� a � 2, andb = 0 or 1. However none of
these integers is congruent to 1 modulo 733. Therefore Theorem 5.9 is established.

Finally observe that 4.1 and Theorem 5.9 imply the Main Theorem.

6. Some equivalent hypotheses

In this section we assumeG is a finite group satisfying Hypothesis (G1), set
Z =H1 ∩H2, let z be a generator forZ, and pickT ∈ Syl2(H). We will sketch a
proof that hypotheses (G2), (G2′), and (G2′′) are equivalent.

Assume Hypothesis (G2). By 2.1.7 we may chooseT � M andT is Sylow
in G. Thus asM = O2(M) andM contains a Sylow 2-subgroup ofG, G =
O2(G), so (G2) implies (G2′′).

Next assume (G2′) fails; that isz is weakly closed inH with respect toG.
ThenT is Sylow inG and (cf. 7.7.1 in [2])H controls fusion of its 2-elements,
so by a standard transfer result (cf. 37.4 in [1])O2(G) ∩ H = O2(H). Thus as
H �=O2(H), G �=O2(G). Thus (G2′′) implies (G2′).

It remains to show (G2′) implies (G2), so assume (G2′). Thus there isg ∈ G

with z �= zg ∈ H . Let Q = O2(H) andU = O2(H1H2). The proof of 2.1.4 uses
only (G1) and shows thatO2(H) = H1H2 ∼= SL2(3) ∗ SL2(3), soU ∼= Q2

8. By
(G1),F ∗(H)=Q and eitherQ=U orQ= T .

AssumeQ = T . Then zg ∈ O2′
(H) = Q. Further Out(U) ∼= O+

4 (2) and
H1H2/U = F ∗(Out(U)), soO2(AutH(U)) = Inn(U) and henceQ = UCQ(U).
ObserveZ = Φ(Q) = Φ(CQ(z

g)), whereasCQ(z
g) � O2(Hg) = Qg , soZ =

Φ(CQ(z
g))�Φ(Qg)=Zg , contradictingz �= zg .

ThereforeF ∗(G) = U ∼=Q2
8. Assume next thatzg ∈ U and setV = U ∩Ug .

Then (cf. 8.3 in [2])Ũ =U/Z is an orthogonal space overF2 and by 8.15.3 in [2],
Ṽ is a totally singular line. From the structure of Out(U) = O+

4 (2), each totally
singular line is stabilized by some subgroup ofH of index 3. ThusNH(V )/V is
the stabilizer in GL(V ) of z, soM = 〈NH (V ),U

g〉 induces GL(V ) onV . Further
CG(V )= CH(V )= V , so (G2) is satisfied in this case.

Thus we may assumez is weakly closed inU with respect toG. Hence
t = zg ∈H −H1H2 and settingH ∗ =H/U , eitherH ∗

i = [H ∗
i , t

∗] for i = 1 and 2,
or we may assumet centralizes̃U ∩ H̃1. In the latter caset centralizes an element
u of order 4 inU ∩ H1, so as|H : O2(H)| = 2, z = u2 ∈ O2′

(O2(Hg)) = Ug ,
contradictingz weakly closed inU . Thus we may assume the former case
holds. Then arguing as in 2.3.5,H is transitive on involutions inH − U , so
all such involutions are inzG, andCH (z

g) = ZgCU (z
g), with CU(z

g) ∼= E4.
By symmetryCHg (z) = ZCUg (z) so U ∩ Ug = 〈u〉 is of order 2. Thusuz is
an involution inHg −Ug , souz ∈ zG ∩U , completing the proof.
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