JOURNAL OF
Algebra

Finite groups of $G_{2}(3)$-type

Michael Aschbacher ${ }^{1}$
California Institute of Technology, Pasadena, CA 91125, USA
Received 1 March 2002
Communicated by Michel Broué
Dedicated to J.G. Thompson on his 70th birthday

A finite group G is said to be of $G_{2}(3)$-type if G has subgroups H and M such that
(G1) H has normal subgroups H_{1} and H_{2} with $H_{1} \cong H_{2} \cong \operatorname{SL}_{2}(3)$, $\left|H: H_{1} H_{2}\right|=2, \mathbf{Z}_{2} \cong H_{1} \cap H_{2}$, and $H=C_{G}\left(H_{1} \cap H_{2}\right)$; and
(G2) $H_{1} \cap H_{2} \leqslant V \unlhd M$ with $C_{M}(V)=V \cong E_{8}$ and $M / V \cong L_{3}(2)$.
Our main theorem is:
Main Theorem. If G is of $G_{2}(3)$-type then $G \cong G_{2}(3)$.
See [1] for the definition of basic notation and terminology. The group $G_{2}(3)$ is the Chevalley group of type G_{2} over the field of order 3 .

In the proof of the classification of the finite simple groups, the group $G_{2}(3)$ arises as a quasithin group of characteristic 2. This class of groups is treated in [3], where $G_{2}(3)$ is identified using the Main Theorem. Our definition of " $G_{2}(3)$ type" is chosen to provide a characterization of $G_{2}(3)$ convenient for the purposes of [3]. The important condition is (G1), which gives the general structure of the centralizer of an involution, but some extra condition such as (G2) is necessary to rule out examples which are not simple. Two other such conditions are:
(G2') $H_{1} \cap H_{2}$ is not weakly closed in H with respect to G.
(G2") G has no subgroup of index 2 .

[^0]In Section 6 we sketch a proof that in a group G satisfying (G1), hypotheses (G2), ($\mathrm{G} 2^{\prime}$), and ($\mathrm{G} 2^{\prime \prime}$) are equivalent.

There are existing characterizations of $G_{2}(3)$ in the literature which we will discuss in a moment. Our purpose here is to obtain a much shorter and simpler treatment for purposes of the classification, using modern methods which are more conceptual, avoid character theory, and minimize detailed computation. In the existing treatments, as in ours, the proof divides into two cases:

Case I: H is not strongly 3-embedded in G. Case II: H is strongly 3-embedded in G.

Thompson established the first characterization of $G_{2}(3)$ in terms of local information in the N -group paper [10]. His hypotheses involve restrictions on both 2-locals and 3-locals, and implicitly exclude Case II. The first characterization of $G_{2}(3)$ via the centralizer of an involution is due to Janko in [9]; he essentially assumes Hypotheses (G1) and (G2"). In [8] and [7], Fong and Wong characterize groups with more general, but related centralizers; in the special case of $G_{2}(3)$ they appeal to Janko's paper to handle Case II. On the other hand Janko appeals to Thompson's work to handle Case I. Janko shows Case II leads to a contradiction using exceptional character theory. Both Fong-Wong and Thompson identify G as $G_{2}(3)$ in Case I by constructing a BN-pair for G.

We identify G in Case I: first by constructing a pair of 3-locals resembling the maximal parabolics in $G_{2}(3)$; then by appealing to work of Delgado and Stellmacher in [6] to conclude the amalgam determined by the 3-locals is unique up to isomorphism; and finally by an appeal to Corollary F.4.21 in [3] to identify G. In Case II we calculate the order of G by counting involutions, using an approach of Bender in [4]. This leads to an immediate contradiction via Sylow's Theorem.

1. A preliminary lemma

1.1. Let G be a group such that $G=Q L$ where $Q=O_{3}(G) \cong 3^{1+2}$ and $L \cong \mathrm{GL}_{2}(3)$ acts faithfully on $Q / Z(Q)$. Let $P \in \operatorname{Syl}_{3}(G)$. Then
(1) $P \cong \mathbf{Z}_{3}$ wr \mathbf{Z}_{3}.
(2) $J(P) \cong E_{27}$.
(3) $J(P)$ is inverted by an involution in $L-Z(L)$.
(4) $P \cap L \leqslant J(P)$.

Proof. First $P=X Q$, where $X=P \cap L$ is of order 3 and $N_{L}(X)=X F$, where $F=\langle t, z\rangle, Z(L)=\langle z\rangle$, and t is an involution inverting X. Let $Z=Z(Q)$; as L acts naturally on $Q / Z, C_{Q / Z}(X)=E / Z$ is of order 3 . Now $E=[E, z] \times C_{E}(z)$ with $Z=C_{E}(z)$, so as X centralizes z, X centralizes $[E, z]$ and Z. Therefore $A=E X \cong E_{27}$. Further t inverts Z and replacing t by $t z$ if necessary, we may assume t inverts $[E, z]$, so t inverts A. As $|P: A|=3, A \unlhd P$. Let $y \in Q-E$;
then y is of order 3 and as $[X, Q / Z]=E / Z$ and $[E, y]=Z, y$ acts on A with one Jordon block of size 3 . We conclude that $A=J(P)$ and the lemma holds.

2. 2-local structure

In this section we assume $\underset{\sim}{G}$ is of $G_{2}(3)$-type and let $Z=H_{1} \cap H_{2}$, z a generator of $Z, U=O_{2}(H), \widetilde{H}=H / Z$, and $H^{*}=H / U$. Let $\bar{M}=M / V$.
2.1. (1) V is the natural module for $\bar{M} \cong L_{3}$ (2).
(2) $H=C_{G}(z)$ and $M=N_{G}(V)$.
(3) $H \cap M=C_{M}(z)=N_{H}(V)$ is of index 3 in H and index 7 in M.
(4) $\left[H_{1}, H_{2}\right]=1$, so $O^{2}(H) \cong \mathrm{SL}_{2}(3) * \mathrm{SL}_{2}$ (3).
(5) $U=F^{*}(H)=O_{2}\left(H_{1}\right) O_{2}\left(H_{2}\right) \cong Q_{8}^{2}$.
(6) $U=O_{2}(H \cap M)$ and $(H \cap M)^{*} \cong S_{3}$.
(7) A Sylow 2-subgroup T of $H \cap M$ is Sylow in G.
(8) Let $X_{H} \in \operatorname{Syl}_{3}(H)$. Then $N_{\widetilde{H}}\left(\widetilde{X}_{H}\right)=\widetilde{X}_{H}\langle\tilde{t}\rangle$, where \tilde{t} is an involution inverting \widetilde{X}_{H} and $T=U\langle t\rangle$.

Proof. By $(\mathrm{G} 2), E_{8} \cong V=C_{M}(V)$. Thus $M / V \leqslant \mathrm{GL}(V)$, so as $M / V \cong \mathrm{GL}(V)$, (1) holds.
$\operatorname{By}(\mathrm{G} 1), H \cap M=C_{M}(z)$. Then by (1), $|M: H \cap M|=7$ and $|H \cap M|=2^{6} \cdot 3$. By (G1):

$$
|H|=2\left|H_{1} H_{2}\right|=2\left|H_{1}\right|\left|H_{2}\right| /\left|H_{1} \cap H_{2}\right|=\left|H_{1}\right| H_{2} \mid=2^{6} \cdot 3^{2},
$$

so $|H: H \cap M|=3$. Thus a Sylow 2-subgroup T of $H \cap M$ is Sylow in H and M, so $U=O_{2}(H) \leqslant O_{2}(H \cap M)$. By (G1), $|U| \geqslant O_{2}\left(H_{1}\right) O_{2}\left(H_{2}\right)=2^{5}$, while by (1) and the action of $\mathrm{GL}(V)$ on $V,\left|O_{2}\left(C_{M}(z)\right)\right|=2^{5}$ and $C_{M}(z) / O_{2}\left(C_{M}(z)\right) \cong S_{3}$. Thus $U=O_{2}\left(H_{1}\right) O_{2}\left(H_{2}\right)$ and (6) holds.

Next as $H_{i} \unlhd H,\left[H_{1}, H_{2}\right] \leqslant H_{1} \cap H_{2}=Z \leqslant Z(H)$, so as $H_{i}=O^{2}\left(H_{i}\right)$ and Z is of order 2, (4) holds. By (4), $F^{*}(H)=U \cong Q_{8}^{2}$, completing the proof of (5). As $F^{*}(H)=U, Z(T) \leqslant Z(U)$, so $Z(T)=Z$ by (5). Thus $T \in \operatorname{Syl}_{2}(G)$ as $H=C_{G}(z)$ and $T \in \operatorname{Syl}_{2}(H)$, so (7) holds.

As $C_{H}(E)$ is a 2-group for each elementary abelian subgroup E of U properly containing $Z, C_{G}(V)$ is a 2 -group. But $V=C_{M}(V)$, so by (7), V is Sylow in $C_{G}(V)$ and hence $V=C_{G}(V)$. Then as $\operatorname{Aut}_{M}(V)=\mathrm{GL}(V), M=N_{G}(V)$, completing the proof of (2) and (3).

Let $X \in \operatorname{Syl}_{3}(H \cap M)$ and $X \leqslant X_{H} \in \operatorname{Syl}_{3}(H)$. Then $X \cong \mathbf{Z}_{3}$ and $X_{H} \cong E_{9}$ is Sylow in $H_{1} H_{2}$. From the structure of $M_{\tilde{\sim}} X Z=C_{M}(X)$ and X is inverted by some $t \in T_{\sim}$. Thus $Z=C_{U}(X)$, so $C_{\widetilde{U}}(\widetilde{X})=1$ and hence \widetilde{X} is diagonally embedded in $\widetilde{H}_{1} \times \widetilde{H}_{2}$ and $\widetilde{X}_{H}=C_{H_{1}} \widetilde{H}_{2}(\widetilde{X})$. Thus \widetilde{X}_{H} is \tilde{t}-invariant and then $N_{\tilde{H}}\left(\widetilde{X}_{H}\right)=\widetilde{X}_{H}\langle\tilde{t}\rangle$. As $H_{i} \unlhd H$ and \tilde{t} inverts \tilde{X}, \tilde{t} inverts \widetilde{X}_{H}, establishing (8).
2.2. (1) For each $g \in G-M$ with $Z \leqslant V^{g}, U=V V^{g}$ and $V \cap V^{g}=Z$.
(2) $\left|V \cap V^{g}\right| \leqslant 2$ for all $V^{g} \neq V$.

Proof. By 2.1.6, $V \leqslant O_{2}(H \cap M)=U$. As V is the natural module for M / V, M is transitive on $V^{\#}$, so $H=C_{G}(z)$ is transitive on $\left\{V^{g}: z \in V^{g}\right\}$. (Cf. A.1.7.1 in [3].)

Suppose $g \in G-M$ and $Z \leqslant V^{g}$. Then by the previous paragraph, $V^{g} \in V^{H}$, so $V^{g} \leqslant U$, and as $O^{2}(H \cap M) \unlhd H, O^{2}(H m)$ acts on V^{g}. Then as $O^{2}(H \cap M)$ is irreducible on \bar{U} and $\widetilde{V}, U=\bar{V} V^{g}$ and $V \cap V^{g}=Z$, establishing (1). As M is transitive on $V^{\#}$, (1) implies (2).

As V is the natural module for \bar{M}, there is a unique T-invariant 4-subgroup V_{2} of V. Let $I_{2}=N_{M}\left(V_{2}\right)$.

Identify Z with \mathbf{F}_{2}. As U is extraspecial, H preserves the bilinear form (,) on \tilde{U} and the associated quadratic form q defined by $(\tilde{u}, \tilde{v})=[u, v]$ and $q(\tilde{u})=u^{2}$; cf. 23.10 in [1]. Thus $H^{*} \leqslant O(\widetilde{U}, q)$. We use this fact throughout the paper, usually without further comment.
2.3. (1) H is transitive on the 18 involutions in $U-Z$ and the 12 elements of order 4 in U.
(2) If i is an involution in $U-V_{2}$ then $C_{T}(i)=C_{U}(i) \cong \mathbf{Z}_{2} \times D_{8}$.
(3) M has two orbits on its involutions: $V^{\#}$ and the involutions in $M-V$. For i an involution with $\langle\bar{i}\rangle=Z(\bar{T}), C_{M}(i)=C_{U}(i) \cong \mathbf{Z}_{2} \times D_{8}$.
(4) \widetilde{H} is transitive on involutions in $\widetilde{H}-\widetilde{U}$; each such element lifts to an involution.
(5) H is transitive on involutions in $H-U$. For j an involution in $T-U$, $C_{H}(j)=\langle j\rangle V_{2} \cong E_{8}$.

Proof. By 2.1.8, $\widetilde{T}=\widetilde{U}\langle\tilde{t}\rangle$, where \tilde{t} is an involution inverting $\widetilde{X}_{H} \in \operatorname{Syl}_{3}(\tilde{H})$. It follows that $C_{\widetilde{U}}(T)=\left\langle\tilde{u}_{1}, \tilde{u}_{2}\right\rangle$, where $u_{i} \in U \cap H_{i}$ for $i=1$, 2 . As $U \cap H_{i} \cong Q_{8}$ and $\left[H_{1}, H_{2}\right]=1, F=\left\langle u_{1}, u_{2}\right\rangle \cong \mathbf{Z}_{2} \times \mathbf{Z}_{4}$ and $\left\langle\tilde{u}_{1} \tilde{u}_{2}\right\rangle$ is the unique singular point in \widetilde{F}. As \widetilde{V}_{2} is a T-invariant singular point, it follows that $V_{2}=\left\langle u_{1} u_{2}, z\right\rangle=$ $\Omega_{1}(F)$.

Next there are involutions in $U-V$, and each such involution is fused into $T-U$ under M. Thus there is an involution j in $T-U$. For each such involution, $\tilde{j} \tilde{u}_{1} \in \tilde{j}^{U}$, so $j u_{1}$ is an involution and hence j inverts u_{1}. Thus $C_{U}(j)=V_{2}$, so as j^{*} is selfcentralizing in H^{*} by 2.1.8, $C_{H}(j)=\langle j\rangle V_{2} \cong E_{8}$.

As $\left|H^{*}\right|_{2}=2, H^{*}$ is transitive on its involutions, and then as $C_{\tilde{U}}(j)=[\tilde{U}, j]$, \tilde{H} is transitive on its involutions by Exercise 2.8 in [2]. Thus (4) holds. As $\left|U: C_{U}(j)\right|=8=|F|, U$ is transitive on $j F$, so H is transitive on involutions in $H-U$, completing the proof of (5).

Part (1) is a standard fact about the orthogonal space \tilde{U}, as is the fact that $C_{U}(i) \cong \mathbf{Z}_{2} \times D_{8}$ for i an involution in $U-Z$. By paragraph one, $\left.C_{\widetilde{T}} \tilde{i}\right)=\widetilde{U}$ if $i \notin V_{2}$, so (2) holds.

As V is the natural module for \bar{M}, M is transitive on $V^{\#}$. For each involution $x \in M-V, \bar{x}$ is fused to a generator of $Z(\bar{T})$. Further if $\bar{x} \in Z(\bar{T})$ then $\bar{T}=C_{\bar{H}}(\bar{x})$, so $C_{M}(x) \leqslant T$. But by (2), $C_{T}(x)=C_{U}(x) \cong \mathbf{Z}_{2} \times D_{8}$, so (3) holds.

2.4. G has one class of involutions.

Proof. By 2.3.3, each involution in M is fused into U. Also z is fused into $V-Z \subseteq U$ in M. Then the lemma follows from 2.3.1.
2.5. (1) $I_{2} / V_{2} \cong \mathbf{Z}_{2} \times S_{4}$.
(2) $O_{2}\left(O^{2}\left(I_{2}\right)\right) \cong \mathbf{Z}_{4}^{2}$.
(3) V is the unique normal E_{8}-subgroup of I_{2}.

Proof. First $\bar{I}_{2} \cong S_{4}$ and there are involutions in $T-O_{2}\left(I_{2}\right)$, so either $I_{2} / V_{2} \cong$ $\mathbf{Z}_{2} \times S_{4}$ or $O^{2}\left(I_{2} / V_{2}\right) \cong \mathrm{SL}_{2}(3)$. But $\Phi\left(U / V_{2}\right)=1$, so $\left(U \cap O_{2}\left(I_{2}\right)\right) / V_{2}-V / V_{2}$ contains involutions, and hence (1) holds. Let $R=O_{2}\left(O^{2}\left(I_{2}\right)\right)$. As I_{2} is transitive on $\left(R / V_{2}\right)^{\#}$, either $V_{2}=\Omega_{1}(R)$ or $R \cong E_{16}$. But by $2.3, m_{2}(T)=3$, so $V_{2}=$ $\Omega_{1}(R)$. Next $U \cap R \cong \mathbf{Z}_{4} \times \mathbf{Z}_{2}$ and for $u \in U \cap R-V_{2}$ and $v \in V-V_{2},[u, v]=z$ generates $\Phi(U \cap R)$ as $\Phi(U)=\langle z\rangle$. Therefore v inverts $U \cap R$, so as $C_{I_{2}}(v)$ is irreducible on $R / V_{2}, v$ inverts R. Therefore (2) and (3) hold.

3. 3-local structure

In this section we continue to assume G is of $G_{2}(3)$-type and continue the notation from the previous section. In addition let $X_{H} \in \operatorname{Syl}_{3}(H), X_{i}=X_{H} \cap H_{i}$ for $i=1,2$, and X_{3} and X_{4} the remaining subgroups of X_{H} of order 3. Let $Q_{i}=O\left(N_{G}\left(X_{i}\right)\right)$.
3.1. (1) $N_{H}\left(X_{H}\right)=X_{H}\langle t, z\rangle$, where t is an involution inverting X_{H}.
(2) For $i=1,2, N_{H}\left(X_{i}\right)=K_{i} X_{i}$, where $K_{i}=H_{3-i}\langle t\rangle \cong \mathrm{GL}_{2}(3)$.
(3) For $k=3,4, N_{H}\left(X_{k}\right)=N_{H}\left(X_{H}\right)$.
(4) For $i=1,2, N_{G}\left(X_{i}\right)=Q_{i} K_{i}$.
(5) For each $j, 1 \leqslant j \leqslant 4, z^{G} \cap C_{G}\left(X_{j}\right)=z^{C_{G}\left(X_{j}\right)}$.
(6) For $r \neq s, X_{s} \notin X_{r}^{G}$.

Proof. By 2.1.8, $N_{H}\left(X_{H}\right)=X_{H}\langle t, z\rangle$, where \tilde{t} is an involution inverting \widetilde{X}_{H}, and by 2.3.4, t is an involution. Thus (1) holds. Similarly for $k=3,4, N_{H^{*}}\left(X_{k}^{*}\right)=$ $N_{H}\left(X_{H}\right)^{*}$ and $C_{\widetilde{U}}\left(X_{k}\right)=1$, so (3) holds. On the other hand for $i=1,2$, $X_{i} H_{3-i}=N_{H_{1} H_{2}}\left(X_{i}\right)$, so as t inverts X_{H}, (2) holds.

By (2) and (3), $C_{H}\left(X_{j}\right)$ has a Sylow 2 -subgroup T_{j} isomorphic to Q_{8} or \mathbf{Z}_{2}, so Z char T_{j} and hence $T_{j} \in \operatorname{Syl}_{2}\left(C_{G}\left(X_{j}\right)\right)$. Then (4) holds by Brauer-Suzuki [5]. Also Z is weakly closed in T_{j}, so (5) holds and then as $X_{s} \notin X_{r}^{H}$, (5) implies (6).
3.2. For $i=1,2$:
(1) z inverts Q_{i} / X_{i}.
(2) $Q_{i}=X_{i} C_{Q_{i}}(t) C_{Q_{i}}(t z)$, with $C_{Q_{i}}(t z)=C_{Q_{i}}(t)^{h}$ for $h \in K_{i}$ with $t^{h}=t z$.
(3) $\Phi\left(Q_{i}\right) \leqslant X_{i}$ and Q_{i} is of exponent 3 .
(4) $\left|Q_{i}\right|=3,3^{3}$, or 3^{5}, and $\left|N_{G}\left(X_{i}\right)\right|_{3}=3^{2}, 3^{4}, 3^{6}$, respectively.

Proof. By 3.1.2, $X_{i}=O\left(N_{H}\left(X_{i}\right)\right)$, so (1) holds. By (1), Q_{i} / X_{i} is abelian, so by Exercise 8.1 in [1], $Q_{i}=C_{Q_{i}}(z) C_{Q_{i}}(t) C_{Q_{i}}(t z)$, and hence (2) holds. Next by 2.4, $t \in z^{G}$, so $C_{G}(t)$ is a $\{2,3\}$-group and hence $C_{Q_{i}}(t)$ is contained in a Sylow 3-group of $C_{G}(t)$, which is isomorphic to E_{9}. Thus $C_{Q_{i}}(t)$ is of exponent 3 and order at most 9 , so by (2), Q_{i} / X_{I} is an elementary abelian 3-group of order 1, 3^{2}, or 3^{4}. Thus (4) holds, $\Phi\left(Q_{i}\right) \leqslant X_{i}$, and Q_{i} is generated by elements of order 3 . As $\Phi\left(Q_{i}\right) \leqslant X_{i} \leqslant Z\left(Q_{i}\right), Q_{i}$ is of class at most 2 , so as $Q_{i}=\Omega_{1}\left(Q_{i}\right), Q_{i}$ is of exponent 3 by 23.11 in [1]. Thus (3) holds.
3.3. (1) For $k=3,4, N_{G}\left(X_{k}\right)=O_{3}\left(N_{G}\left(X_{j}\right)\right)\langle t, z\rangle$ with $\left|O_{3}\left(N_{G}\left(X_{k}\right)\right)\right| \leqslant 3^{6}$.
(2) $\left|N_{G}\left(X_{j}\right)\right|_{3} \leqslant 3^{6}$ for all $j, 1 \leqslant j \leqslant 4$.

Proof. Let $k=3$ or $4, I=N_{G}\left(X_{k}\right)$, and $Y=O(I)$. By 3.1.3 and Thompson transfer, $I=Y\langle t, z\rangle$. If p is a prime divisor of $|Y|$ then by 18.7 in [1] there is a $\langle t, z\rangle$-invariant Sylow p-subgroup P of Y, and by Exercise 8.1 in [1], $Y=$ $\left\langle C_{Y}(z), C_{Y}(t), C_{Y}(t z)\right\rangle$. Therefore Y is a 3-group by 2.4. Then using Exercise 8.1 in [1] and inducting on the order of $Y, Y=C_{Y}(z) C_{Y}(t) C_{Y}(t z)$, with $\left|C_{Y}(i)\right| \leqslant 9$ for $i \in\langle t, z\rangle^{\#}$. Thus (1) holds, and (1) and 3.2.4 imply (2).

In the remainder of this section we assume $Q_{i} \neq X_{i}$ for $i=1$ or 2 , and set $X=$ $X_{i}, Q=Q_{i}, I=N_{G}(X), K=K_{i}$, and $P_{i}=X_{H} Q$. Thus $P_{i} \in \operatorname{Syl}_{3}\left(N_{G}\left(X_{i}\right)\right)$ and $\left|P_{i}\right|=3|Q|$. Changing notation if necessary, we may take $i=1$.

3.4. Q is not isomorphic to 3^{1+2}.

Proof. Assume $Q \cong 3^{1+2}$ and let $P=P_{1}$. By $3.1, I=K Q$ with $K \cong \mathrm{GL}_{2}(3)$ and by $3.2, z$ inverts Q / X. Thus $P \cong \mathbf{Z}_{3}$ wr \mathbf{Z}_{3} and $X_{H} \leqslant A=J(P) \cong E_{27}$ by 1.1. Further $X=Z(P)$, so $P \in \operatorname{Syl}_{3}(G)$. As $X_{2} \leqslant X_{H} \leqslant A,\left|N_{G}\left(X_{2}\right)\right|_{3} \geqslant 3^{3}$, so $\left|N_{G}\left(X_{2}\right)\right|_{3} \geqslant 3^{4}$ by 3.2.4. Thus X_{2} is in the center of some Sylow 3-subgroup of G, impossible as $X=Z(P)$ and $X_{2} \notin X^{G}$ by 3.1.6.
3.5. $|Q|=3^{5}$.

Proof. Assume otherwise; then by 3.2.4, $|Q|=3^{3}$. By 3.2.1, z inverts $Q / X \cong E_{9}$ and by 3.2.2, Q is of exponent 3 with $\Phi(Q) \leqslant X$. Thus by $3.4, Q \cong E_{27}$, so $Q=X \times E$, where $E=[Q, z] \cong E_{9}$ and K acts faithfully as $\operatorname{GL}(E)$ on E. Thus $P_{1}=X_{2} E \times X \cong 3^{1+2} \times \mathbf{Z}_{3}$, so $D=C_{E}\left(P_{1}\right)$ is of order 3, and we may choose notation so that $D=C_{E}(t)$. Hence D is fused to X_{j} for some $1 \leqslant j \leqslant 4$.

Suppose X is weakly closed in $Z\left(P_{1}\right)$ with respect to G. Then $P_{1} \in \operatorname{Syl}_{3}(G)$ and $N_{G}\left(P_{1}\right)=N_{I}\left(P_{1}\right)=P_{1}\langle t, z\rangle$. Also $\left|N_{P_{1}}\left(X_{2}\right)\right|=3^{3}$, so $\left|N_{G}\left(X_{2}\right)\right|_{3} \geqslant 3^{4}$ by 3.2.4, and hence X_{2} is in the center of some Sylow 3-subgroup of G. Thus by symmetry between X_{1} and $X_{2}, D \neq X_{2}^{g} \unlhd N_{G}\left(P_{1}\right)$ for some $g \in G$, so as X and D are the only normal subgroups of order $3, X=X_{2}^{g}$, contrary to 3.1.6.

Therefore X is not weakly closed in $Z\left(P_{1}\right)$, so as $P_{1} \in \operatorname{Syl}_{3}(I), N_{G}\left(P_{1}\right) \nless I$. Then as $D=\Phi\left(P_{1}\right)$ and $N_{G}\left(P_{1}\right)$ acts on $Z\left(P_{1}\right)=X D$ with $P_{1}=C_{I}(X D)=$ $C_{G}(X D), \quad N_{G}\left(P_{1}\right) / P_{1} \cong \mathbf{Z}_{2} \times S_{3}$. Then as $t z$ inverts $Z\left(P_{1}\right), N_{G}\left(P_{1}\right)=$ $P_{1}\left(C_{G}(t z) \cap N_{G}\left(P_{1}\right)\right)$ and $C_{G}(t z) \cap N_{G}\left(P_{1}\right)$ acts on $Z\left(P_{1}\right) C_{P_{1}}(t z)=Q$, so $Q \unlhd N_{G}\left(P_{1}\right)$. Now K has orbits $\{X\}, D^{K}, X_{0}^{K}$ of order $1,4,8$ on the set Δ of points of Q. Thus $\left|X^{N_{G}(Q)}\right|=13,5$, or 9 . As 5 does not divide $\left|\mathrm{GL}_{3}(3)\right|$, the second case is impossible. $\mathrm{As}_{\mathrm{GL}}^{3}$ (3) has no subgroup of order $13 \cdot|I: Q|=$ $13 \cdot\left|\mathrm{GL}_{2}(3)\right|$, the first case is out. Thus $X^{N_{G}(Q)}$ is the set of 9 points in $Q-E$ and $E \unlhd N_{G}(Q)$. Therefore $\operatorname{Aut}_{G}(Q)$ is the stabilizer in $\operatorname{SL}(Q)$ of the hyperplane E of Q, so $N_{G}(Q)=R K$, with $|R|=3^{5}, P=R X_{H} \in \operatorname{Syl}_{3}\left(N_{G}(Q)\right)$, and $|P|=3^{6}$. As $D \leqslant Z(P)$ and $D \in X_{j}^{G}$ for some $j, P \in \operatorname{Syl}_{3}(G)$ by 3.3.2.

As K is irreducible on $R / Q, R / E \cong 3^{1+2}$ or $R / E=[R / E, z] \times Q / E$. Assume the latter. Then $R_{0}=[R, z]=C_{R_{0}}(t) \times C_{R_{0}}(t z) \cong E_{81}$. But there is $y \in G$ with $X^{y} \leqslant C_{R_{0}}(t)$, so $m_{3}(I) \geqslant 4$, impossible as $m_{3}\left(P_{1}\right)=3$.

Therefore $R / E \cong 3^{1+2}$. By 1.1, $P / E \cong \mathbf{Z}_{3}$ wr \mathbf{Z}_{3} and $S / E=J(P / E) \cong$ E_{27} is inverted by $s=t$ or $t z$. In particular, $Q / E=Z(P / E)$, so $Z(P)=$ $C_{Q}(P)=D$. Next $R \cap S \cong 3^{1+2} \times \mathbf{Z}_{3}$ with s inverting $(R \cap S) / E$, so s centralizes $\Phi(R \cap S)$. As $R \cap S \unlhd P, \Phi(R \cap S) \leqslant Z(P)=D$, so $D=\Phi(R \cap S)$. Thus as s centralizes $\Phi(R \cap S)$, $s=t$. Therefore $D=C_{S}(t)$, so t inverts S / D. As usual $S=C_{S}(z) C_{S}(t z) C_{S}(t)$, so $\Phi(S)=D$ and S is of exponent 3 .

Let $\widehat{S}=S / D$ and Y of order 3 in $C_{R}(t)-S$. Then \widehat{S} is a 4-dimensional $\mathbf{F}_{3} Y$ module, so $m_{3}\left(C_{\widehat{S}}(Y)\right) \geqslant 2$. Therefore as $Q / E=C_{P / E}(Y), C_{\widehat{S}}(Y)=\widehat{Q}$. This is impossible as $[R, \widehat{X}]=\widehat{E}$ and $\widehat{Q}=\widehat{E} \widehat{X}$. Thus the proof of 3.5 is complete.
3.6. $Q_{1} \cong Q_{2} \cong 3^{1+2} \times E_{9}$ and $\left|N_{G}\left(X_{1}\right)\right|_{3}=\left|N_{G}\left(X_{2}\right)\right|_{3}=3^{6}$.

Proof. By 3.2.3, $\Phi(Q) \leqslant X$ and Q is of exponent 3, while by $3.5,|Q|=3^{5}$. Therefore $Q \cong E_{3^{5}}, 3^{1+2} \times E_{9}$, or 3^{1+4}. Also $C_{Q}(t) \cong E_{9}$, so $X_{2}^{g} \leqslant X_{H}^{g} \leqslant Q$ for some $g \in G$. Then $\left|C_{Q}\left(X_{2}^{g}\right)\right| \geqslant 3^{4}$, so $\left|Q_{2}\right| \geqslant 3^{3}$, and hence $\left|Q_{2}\right|=3^{5}$ by 3.5. Thus $\left|N_{G}\left(X_{j}\right)\right|_{3}=3^{6}$ for $j=1$ and 2 by 3.2.4.

Assume $Q \cong E_{3^{5}}$. Then $Q=X \times[Q, z]$ with $C_{Q}(t) \leqslant[Q, z]$. Thus $X_{1}^{g} \leqslant$ $[Q, z]$. As $m\left(C_{Q}\left(X_{H}\right)\right) \leqslant 3, Q=J\left(P_{1}\right)$, so $Q=J\left(P_{1}^{g}\right)=Q^{g}$. But then $1=$ $m\left(C_{Q}(z)\right)=m\left(C_{Q^{g}}(z)\right)=2$, a contradiction.

Therefore we may assume $Q \cong 3^{1+4}$. Then $X=Z\left(P_{1}\right)$, so $P=P_{1} \in \operatorname{Syl}_{3}(G)$. Thus by 3.1.6, $\left|N_{G}\left(X_{2}\right)\right|<3^{6}$, contrary to the first paragraph.

Let $G_{1}=N_{G}(X), Y_{1}=X$, and $R_{1}=Q$. By $3.6, R_{1} \cong 3^{1+2} \times E_{9}$, so $Z\left(R_{1}\right)=$ $Y_{1} \times E_{1}$, where $E_{1}=\left[Z\left(R_{1}\right), z\right]$ is the natural module for $L_{1}=K$. Let $P=P_{1}$, $Y_{2}=C_{E_{1}}(P), G_{2}=N_{G}\left(Y_{2}\right)$, and $R_{2}=O_{3}\left(G_{2}\right)$. Observe:
3.7. (1) $G_{1}=R_{1} L_{1}$ with $R_{1} \cong 3^{1+2} \times E_{9}, L_{1} \cong \mathrm{GL}_{2}$ (3), $Z\left(R_{1}\right)=Y_{1} \times E_{1}$, and E_{1} is the natural module for L_{1}.
(2) $F^{*}\left(G_{1}\right)=R_{1}$.
(3) $P\langle t, z\rangle=N_{G_{1}}\left(Y_{2}\right)=G_{1} \cap G_{2}$.
(4) $Z(P)=Y_{1} \times Y_{2}$.
3.8. (1) $N_{G}(Z(P))=N_{G}(P)=P\langle t, z\rangle$.
(2) $P \in \operatorname{Syl}_{3}(G)$.

Proof. Let $J=N_{G}(Z(P))$. By 3.7.4, $Z(P)=Y_{1} Y_{2}$, so

$$
C_{G}(Z(P))=C_{G_{1}}(Z(P))=C_{G_{1}}\left(Y_{2}\right)=P
$$

by 3.7.3. As $Z(P)=Y_{1} Y_{2}$ we may choose notation so that $t z$ inverts $Z(P)$. Thus as $P=C_{G}(Z(P))$, by a Frattini argument, $J=P C_{J}(t z)$ and $P_{0}=C_{P}(t z) \unlhd$ $C_{J}(t z)$. But $\left|P_{0}\right|=9$ so $P_{0} \in \operatorname{Syl}_{3}\left(C_{G}(t z)\right)$ and hence $P_{0}\langle t, z\rangle=C_{G}(t z) \cap$ $N_{G}\left(P_{0}\right)$ by 2.4 and 3.1.1. Therefore

$$
J=P C_{J}(t z)=P P_{0}\langle t, z\rangle=P\langle t, z\rangle \leqslant N_{G}(P),
$$

establishing (1). Of course (1) implies (2).
3.9. $Y_{2} \in X_{2}^{G}$.

Proof. By 3.8.2 and 3.6, there is $g \in G$ with $X_{2}^{g} \leqslant Z(P)$. By 3.1.6, $X_{2}^{g} \neq X$. Now Y_{1} and Y_{2} are the only $\langle t, z\rangle$-invariant points of $Z(P)$, and hence by 3.8.2 the only points of $Z(P)$ normal in $N_{G}(P)$. By symmetry between X_{1} and X_{2}, $X_{2}^{g} \unlhd N_{G}(P)$, so $X_{2}^{g}=Y_{2}$.

By 3.9, $Y_{2}=X_{2}^{a}$ for some $a \in G$. Pick notation so that t centralizes Y_{2}; thus we may choose a so that $z^{a}=t$.
3.10. (1) $R_{2} \cong 3^{1+2} \times E_{9}$ with $Z\left(R_{2}\right)=Y_{2} \times E_{2}, E_{2} \cong E_{9}$, and E_{2} is the natural module for $L_{2}=H_{1}^{a}\langle z\rangle \cong \mathrm{GL}_{2}(3)$.
(2) L_{2} is a complement to R_{2} in G_{2}.
(3) $F^{*}\left(G_{2}\right)=R_{2}$.

Proof. As $Y_{2}=X_{2}^{a}, Y_{2} \leqslant H_{2}^{a}$ and $G_{2}=N_{G}\left(X_{2}\right)^{a}$. Then the various remarks follow by symmetry between X_{1} and X_{2}.

3.11. Let $G_{0}=\left\langle G_{1}, G_{2}\right\rangle$. Then $O_{3}\left(G_{0}\right)=1$.

Proof. Let $R=O_{3}\left(G_{0}\right)$. By 3.8, $P \in \operatorname{Syl}_{3}\left(G_{0}\right)$, so $R \leqslant P$ and hence $R \leqslant$ $P \cap O_{3}\left(G_{j}\right)=R_{j}$ for $j=1$ and 2 . Thus $R \leqslant S=R_{1} \cap R_{2}$. But $Z(P) \leqslant S$ and $[P, t] \leqslant R_{2}$, so $E_{81} \cong Z(P)\left[R_{1}, t\right] \leqslant S$. Indeed $C_{R_{2}}(t)=Y_{2}$ while $C_{R_{1}}(t) \cong E_{9}$, so $R_{1} \neq R_{2}$, and hence $|S| \leqslant 3^{4}$. Therefore $S=Z(P)\left[R_{1}, t\right]$.

Suppose $R \neq 1$. Then $1 \neq C_{R}(P) \leqslant Z(P)$ and $C_{R}(P)$ is $\langle t, z\rangle$-invariant, so $Y_{j} \leqslant R$ for $j=1$ or 2 . Thus, interchanging the roles of Y_{1} and Y_{2} if necessary, we may assume $Y_{2} \leqslant R$. Thus $E_{1}=\left\langle Y_{2}^{G_{1}}\right\rangle \leqslant R$.

If $E_{1} \leqslant Y_{2} E_{2}$ then $Y_{1} E_{1}=Y_{2} E_{2}$, so $R_{1}=C_{P}\left(Y_{1} E_{1}\right)=C_{P}\left(Y_{2} E_{2}\right)=R_{2}$, which we saw is not the case. Thus $E_{1} \nless Y_{2} E_{2}$. But L_{2} is irreducible on $R_{2} / Z\left(R_{2}\right)$, so $R_{2}=R Z\left(R_{2}\right)=R E_{2}$. However as $Y_{2} \leqslant Z(P), E_{1} \leqslant Z(R)$, so $R \leqslant C_{R_{2}}\left(E_{1}\right)=E_{1} E_{2}$, contradicting $R_{2}=R E_{2}$.

Theorem 3.12. If $Q_{i} \neq X_{i}$ for $i=1$ or 2 , then $G \cong G_{2}$ (3).
Proof. Let $\alpha=\left(G_{1}, G_{1,2}, G_{2}\right)$, where $G_{1,2}=G_{1} \cap G_{2}$. By 3.7, 3.8, 3.10, and 3.11, α is the amalgam of a weak BN-pair, in the sense of Section 4 of the Green Book [6]. Then as $\left|R_{j}\right|=3^{5}$ and $G_{j} / R_{j} \cong \mathrm{GL}_{2}(3)$, it follows from Theorem A in the Green Book that α is isomorphic to the amalgam of $G_{2}(3)$.

Let $F=\langle t, z\rangle$. Then $F \leqslant F_{1} \leqslant L_{1}$, where $F_{1} \cong D_{8}$. Thus $F_{1}=F\left\langle s_{1}\right\rangle$, where s_{1} is an involution in $G_{1}-G_{2}$. Similarly there is an involution $s_{2} \in G_{2}-G_{1}$ with $F\left\langle s_{2}\right\rangle \cong D_{8}$. Then $\left[F, s_{1}\right]=z$ and $\left[F, s_{2}\right]=t$, so $\left\langle s_{1}, s_{2}\right\rangle \leqslant N_{G}(F)$ with $S / C_{S}(F) \cong S_{3}$. Therefore $\left(s_{1} s_{2}\right)^{3} \in C_{S}(F)$. But by $2.3 \cdot 5, C_{G}(F) \cong E_{8}$, so $C_{S}(F)$ is of exponent 2 . Thus $\left|s_{1} s_{2}\right|=3$ or 6 .

As α is the $G_{2}(3)$-amalgam, as G_{0} is a faithful completion of α (cf. Section 36 in [2]), and as $\left|s_{1} s_{2}\right| \leqslant 6$, it follows from Corollary F.4.21 in [3] that $G_{0} \cong G_{2}(3)$. Therefore G_{0} has one class of involutions and $\left|C_{G_{0}}(z)\right|=2^{6} \cdot 3^{2}=|H|$, so $C_{G}(z)=H \leqslant G_{0}$. Thus $N_{G}(T) \leqslant N_{G}(Z(T))=H \leqslant G_{0}$, so if $G \neq G_{0}$ then G_{0} is strongly embedded in G. Hence by 7.6 in [2], there is a subgroup D of odd order in G_{0} transitive on the involutions of G_{0}. Therefore $\left|G_{0}: H\right|=3^{6} \cdot 7 \cdot 13$ divides $|D|$, so D contains a Sylow 3-subgroup of G_{0}. Thus D is contained in a maximal parabolic subgroup of G_{0}, whereas the maximal parabolics are $\{2,3\}$ groups. Hence $G=G_{0} \cong G_{2}$ (3).

4. The geometry Γ

In this section we continue to assume G is of $G_{2}(3)$-type and continue the notation from the previous sections. We generate information about the
permutation representation of G on G / M by right multiplication, which will be used in the next section to show that H is not strongly 3-embedded in G.

4.1. Either

(1) H is strongly 3-embedded in G, or
(2) $G \cong G_{2}(3)$.

Proof. Assume (2) fails. We observe first that $N_{G}\left(X_{i}\right) \leqslant H$ for $i=1$ and 2. For if not then by 3.1.4, $Q_{i} \neq X_{i}$, contrary to Theorem 3.12 and our assumption that (2) fails.

As $N_{G}\left(X_{1}\right) \leqslant H$, also $N_{G}\left(X_{H}\right) \leqslant H$ by 3.1.6. Thus $X_{H} \in \operatorname{Syl}_{3}(G)$ and if (1) fails then $N_{G}\left(X_{j}\right) \notin H$ for $j=3$ or 4 . But by 3.3.1, $N_{G}\left(X_{j}\right)=$ $O_{3}\left(N_{G}\left(X_{j}\right)\right)\langle t, z\rangle$. However as $X_{H} \in \operatorname{Syl}_{3}(G), O_{3}\left(N_{G}\left(X_{j}\right)\right) \leqslant X_{H} \leqslant H$, so $N_{G}\left(X_{j}\right) \leqslant H$, completing the proof.

During the remainder of the section assume H is strongly 3-embedded in G.
4.2. Let $S_{M} \in \operatorname{Syl}_{7}(M)$. Then
(1) $C_{G}\left(S_{M}\right)$ is a $\{2,3\}^{\prime}$-group.
(2) $\left|N_{G}\left(S_{M}\right): C_{G}\left(S_{M}\right)\right|=3$.

Proof. By 2.4, G has one class of involutions, so as H is a 7^{\prime}-group, $C_{G}\left(S_{M}\right)$ is of odd order. Similarly as H is strongly 3-embedded in $G, C_{G}\left(S_{M}\right)$ is a 3^{\prime}-group, so (1) holds.

Next $N_{M}\left(S_{M}\right)=S_{M} X$, where X is of order 3 , and of course $\operatorname{Aut}\left(S_{M}\right) \cong \mathbf{Z}_{6}$. Thus if (2) fails then S_{M} is inverted by some involution i, and by (1) and a Frattini argument we may take i to centralize X. But as H is strongly 3-embedded in G, X centralizes a unique involution, so $\langle i\rangle=C_{V}(X)$, impossible as i inverts S_{M} and S_{M} acts on V.

See Section 4 in [2] for a discussion of geometries, (in the sense of Tits) including notation and terminology. Let Γ be the rank 2 geometry with point set V^{G}, line set Z^{G}, and incidence equal to inclusion. Thus G is represented as a group of automorphisms of Γ by conjugation, and by 2.1.2, $M=N_{G}(V)$ and $H=N_{G}(Z)$ are the stabilizers of V and Z, respectively. By construction, G is transitive on the points and lines of Γ, and from 2.1, M is transitive on the set $\Gamma(V)$ of lines through V, so G is flag transitive on Γ. For $\alpha, \gamma \in \Gamma$, let $d(\alpha, \gamma)$ denote the distance of α from γ in Γ and $\Gamma^{i}(\gamma)$ the set of vertices at distance i from γ in Γ.
4.3. Distinct lines are incident with at most one point and distinct points are incident with at most one line.

Proof. By 2.2.2, $|A \cap B| \leqslant 2$ for distinct points A, B.
4.4. (1) If $\alpha, \beta \in \Gamma$ with $d(\alpha, \beta) \leqslant 2$ then there is a unique geodesic from α to β.
(2) G_{α} is transitive on $\Gamma^{2}(\alpha)$.
(3) $V^{g} \in \Gamma^{2}(V)$ iff $V \cap V^{g}$ is a line, in which case the global stabilizer in G of $\left\{V, V^{g}\right\}$ is the stabilizer of the edge $\left(V \cap V^{g}, V^{y}\right)$, where V^{y} is the third point on $V \cap V^{g}$.

Proof. Part (1) follows from 4.3. Part (2) holds as M is 2-transitive on $\Gamma(V)$ and H is 2-transitive on $\Gamma(Z)$. By 4.3, $V^{g} \in \Gamma^{2}(V)$ iff $V \cap V^{g}=Z$ for some line Z. Then by (1), $M \cap M^{g}$ is the stabilizer $O^{2}(H \cap M)$ in H of V and V^{g}. As $x \in H \cap M^{y}-O^{2}(H \cap M)$ interchanges V and V^{g}, (3) holds.
4.5. (1) If $\alpha, \beta \in \Gamma$ with $d(\alpha, \beta)=3$ then there is a unique geodesic from α to β.
(2) G_{α} is transitive on $\Gamma^{3}(\alpha)$ for each $\alpha \in \Gamma$.
(3) $\Gamma^{3}(V)=Z^{G} \cap(M-V)$.

Proof. Let p be a geodesic of length 3. Replacing p by its inverse if necessary, and conjugating in G, we may take p to be Z, V, Z^{g}, V^{x}. By 2.2.1, $U^{g}=V V^{x}$ and $V \cap V^{x}=Z^{g}$. Thus as $z \in V, z$ acts on V^{x} but $z \notin V^{x}$. As $\left[U^{g}, V^{x}\right]=Z^{g}$ and $V^{x}=C_{U^{g}}\left(V^{x}\right),\left[V^{x}, Z\right]=Z^{g}$, so Z^{g} is determined by Z and V^{x}. Thus (1) follows from 4.4.1, while (2) and (3) follow from 2.3.3 and the fact that $z \in M^{x}-V^{x}$.
4.6. (1) If $d\left(V, V^{g}\right)=4$ then there is a unique geodesic from V to V^{g}.
(2) M is transitive on $\Gamma^{4}(V)$.
(3) $M \cap M^{g}=V^{y}$, where $\left\{V^{y}\right\}=\Gamma^{2}(V) \cap \Gamma^{2}\left(V^{g}\right)$.
(4) The global stabilizer of $\left\{V, V^{g}\right\}$ is isomorphic to $\mathbf{Z}_{2} \times D_{8}$.

Proof. Suppose $p=V^{x}, Z, V, Z^{y}, V^{g}$ is a geodesic in Γ. By 2.2.1, $U=V V^{x}$ with $V \cap V^{x}=Z$, and similarly $U^{y}=V V^{g}$ with $V \cap V^{g}=Z^{y}$. Therefore $\left[V^{x}, Z^{y}\right]=Z$ and $\left[V^{g}, Z\right]=Z^{y}$, so $I_{0}=\left\langle V^{x}, V^{g}\right\rangle \leqslant N_{M}\left(Z Z^{y}\right)$ and $E_{4} \cong$ $Z Z^{y} \leqslant V$. Thus we may choose notation so that $Z Z^{y}=V_{2}$. Therefore $I_{0} \leqslant I_{2}=$ $N_{M}\left(V_{2}\right)$. By 2.5, $I_{2} / V_{2} \cong \mathbf{Z}_{2} \times S_{4}$ with $V / V_{2}=Z\left(I_{2} / V_{2}\right)$ and $O_{2}\left(O^{2}\left(I_{2}\right)\right) \cong \mathbf{Z}_{4}^{2}$, so we conclude $I_{0}=I_{2}$. Again by $2.5, V$ is the unique normal E_{8}-subgroup of I_{2}, so it follows that $\{V\}=\Gamma^{2}\left(V^{x}\right) \cap \Gamma^{2}\left(V^{g}\right)$, and then (1) follows from 4.4.1, and (3) from 4.4.3.

To prove (2), given 4.4.2, it suffices to show $N_{M}\left(V^{x}\right)$ is transitive on $\Gamma^{2}(V)$ $\Gamma(Z)$. But by 4.4.3, $N_{M}\left(V^{x}\right)=O^{2}(H \cap M)$ and from 2.1.3, $O^{2}(H \cap M)$ is transitive on $V-Z$ with the stabilizer $C_{U}\left(Z^{y}\right)$ in $O^{2}(H \cap M)$ of Z^{y} satisfying $\left|C_{U}\left(Z^{y}\right): V\right|=2$ and $C_{M}\left(Z^{y}\right)=O^{2}\left(C_{M}\left(Z^{y}\right)\right) C_{U}\left(Z^{y}\right)$. As $C_{M}\left(Z^{y}\right)$ is transitive on $\Gamma\left(Z^{y}\right)-\{V\}$ with $O^{2}\left(C_{M}\left(Z^{y}\right)\right)$ the kernel of this action, (2) follows. By (1) and (2), the inverse of p is conjugate to p, so the global stabilizer of $\left\{V^{x}, V^{g}\right\}$
is $V\langle a\rangle$ where $a \in M-V$ with $a^{2} \in V$. As \bar{M} is transitive on its involutions we may choose a to be an involution and then (4) holds.
4.7. (1) If $d\left(Z, Z^{g}\right)=4$ then there is a unique geodesic from Z to Z^{g}.
(2) H has three orbits on $\Gamma^{4}(Z)$ and the corresponding orbitals are all selfpaired.
(3) H is transitive on $\Gamma^{4}(Z) \cap H$ and $H \cap H^{g} \cong E_{8}$ for each $Z^{g} \in \Gamma^{4}(Z) \cap H$.
(4) If $z^{g} \notin H$ then $\left\langle z, z^{g}\right\rangle \cong D_{8}$ and $H \cap H^{g} \cong D_{8}$.

Proof. Suppose $p=Z, V, Z^{y}, V^{x}, Z^{g}$ is a geodesic. Then $Z \leqslant V \leqslant U^{y}, Z^{g} \leqslant$ $V^{x} \leqslant U^{y}$, and by 2.2.1, $U^{y}=V V^{x}$ with $V \cap V^{x}=Z^{y}$. Thus [$\left.V, Z^{g}\right]=Z^{y}$. If $\left[Z, Z^{g}\right]=1$ then $z^{g} \in H$ but as $\left[V, Z^{g}\right]=Z^{y}, z^{g} \notin U$. Thus $H \cap H^{g}=$ $C_{G}\left(Z Z^{g}\right) \cong E_{8}$ by 2.3.5, so $H \cap H^{g}=Z Z^{g} Z^{y}$. In particular $U \cap U^{g}=Z^{y}$, so Z^{y} is determined and p is determined by 4.4.1. Hence (1) holds in this case, as does (3) by 2.3.5. By (1) and (3), G is transitive on geodesics of length 4 between commuting lines, so p is conjugate to the inverse of p, and hence the orbital $\left(Z, Z^{g}\right)^{G}$ is selfpaired, establishing (2) in this case.

So assume $\left[Z, Z^{g}\right] \neq 1$; then $\left[Z, Z^{g}\right]=Z^{y}$, so Z^{y} is determined, and hence (1) follows from 4.4.1. Further $S=C_{H^{y}}(Z)$ is of index 2 in the Sylow 2-group $N_{H^{y}}\left(Z Z^{y}\right)$ and has two orbits on the involutions in $U^{y}-C_{U^{y}}(Z)$, so H has two orbits \mathcal{O}_{1} and \mathcal{O}_{2} on $\Gamma^{4}(Z)-H$. Now H^{*} has 9 involutions, each fixing a unique singular point of \widetilde{U} and each with 4 cycles of length 2 on the remaining singular points. Further there are 36 pairs of distinct singular points and at most one involution interchanges two such points, so each pair of points is a cycle in a unique involution. This shows the orbitals determined by \mathcal{O}_{i} are selfpaired, completing the proof of (2). Finally $H \cap H^{g}=C_{U^{y}}\left(\left\langle Z, Z^{g}\right\rangle\right) \cong D_{8}$, so (4) holds.
4.8. (1) If $d\left(V, V^{g}\right)=6$ then there is a unique geodesic from V to V^{g}.
(2) $M \cap M^{g}=Z^{y}$, where $\left\{Z^{y}\right\}=\Gamma^{3}(V) \cap \Gamma^{3}\left(V^{g}\right)$.
(3) M has three orbits on $\Gamma^{6}(V)$.
(4) The global stabilizer of $\left\{V, V^{g}\right\}$ is isomorphic to E_{4}.

Proof. We first show that $\Gamma^{6}(V) \neq \emptyset$. For if not

$$
|G: M|=\left|V^{G}\right|=\left|\Gamma^{0}(V)\right|+\left|\Gamma^{2}(V)\right|+\left|\Gamma^{4}(V)\right|
$$

Now by 4.4-4.6, for each $m \leqslant 4$ and each $\alpha \in \Gamma^{m}(V)$, there is a unique geodesic from V to α. Thus $\left|\Gamma^{m}(V)\right|$ is the number of geodesic of length m with origin V. Further if $V=\alpha_{0}, \ldots, \alpha_{m-1}$ is a geodesic then there are $\left|\Gamma\left(\alpha_{m-1}\right)\right|-1$ choices for α_{m}, so $\left|\Gamma^{m}(V)\right|=1,7,14,84,168$, for $m=0,1,2,3,4$, respectively. Thus $|G: M|=183=3 \cdot 61$, so

$$
|G|=2^{6} \cdot 3^{2} \cdot 7 \cdot 61
$$

Let $P \in \operatorname{Syl}_{61}(G)$. As H is strongly 3-embedded in G and of order prime to 61, $C_{G}(P)$ is a $\{2,3\}^{\prime}$-group, so $C_{G}(P)=P$ or $C_{G}(P)=P S$ for some $S \in \operatorname{Syl}_{7}(G)$.

But in the latter case by $4.2, P S=C_{G}(S)$ and $N_{G}(S)$ is of order $3 \cdot 7 \cdot 61$. Then $\left|G: N_{G}(S)\right|=2^{6} \cdot 3 \equiv 3 \bmod 7$, contrary to Sylow's theorem. Thus $P=C_{G}(P)$, and $\left|N_{G}(P): P\right|$ divides the order 60 of $\operatorname{Aut}(P)$ and $|G|$, so $\left|N_{G}(P): P\right|$ is a divisor of 12. Again this contradicts Sylow's theorem. This establishes the claim that $\Gamma^{6}(V) \neq \emptyset$.

Thus we may suppose $p=V^{x}, Z^{r}, V, Z, V^{w}, Z^{s}, V^{g}$ is a geodesic in Γ. Then $d\left(V^{x}, Z\right)=3$, so $z \in M^{x}-V^{x}$ by 4.5.3. Similarly $z \in M^{g}-V^{g}$. Further by 4.5.1, the geodesic is determined by V^{x}, Z, and V^{g}. Conversely if a is an involution in $D=M^{x} \cap M^{g}$, then setting $A=\langle a\rangle, d\left(V^{x}, A\right) \leqslant 3 \geqslant d\left(V^{g}, A\right)$ and then as $d\left(V^{x}, V^{g}\right)=6$, these inequalities are equalities. Therefore a is not in V^{x} or V^{g} and A determines a unique geodesic from V^{x} to V^{y}. Thus the map $\mathcal{G} \mapsto a(\mathcal{G})$ is a bijection of the set \mathcal{G} of geodesics from V^{x} to V^{g} with the set \mathcal{A} of involutions in D. So to prove (1) it remains to show that $|\mathcal{A}|=1$.

First if X is of order 3 in D then $C_{V^{x}}(X) \neq 1 \neq C_{V^{g}}(X)$. But as H is strongly 3-embedded in G, X centralizes a unique involution, so $C_{V^{x}}(X)=C_{V^{g}}(X)$, contradicting $d\left(V^{x}, V^{g}\right)>2$. Thus D is a $\{2,7\}$-group. However all involutions in a $\{2,7\}$-subgroup of M^{x} are in V^{x}, so D is a 2 -group. Therefore if $|\mathcal{A}| \neq 1$ then there exist distinct commuting involutions a and z in \mathcal{A}. By the previous paragraph, a acts on V^{w}. Thus by 4.6.3, $a \in M^{x} \cap M^{w}=V$. Similarly $a \in$ $M \cap M^{g}=V^{w}$, so $a \in V \cap V^{w}=Z$, contradicting $a \neq z$. This establishes (1) and (2).

Write $p\left(V^{x}, V^{g}\right)$ for the unique geodesic p from V^{x} to V^{g}, and define $q\left(V^{x}, V^{g}\right)=Z^{r}, V, Z, V^{w}, Z^{s}$. Thus $q=q\left(V^{x}, V^{g}\right)$ is the geodesic from Z^{r} to Z^{s}. By (1), the map $\theta: p(A, B)^{G} \mapsto q(A, B)^{G}$ is a well defined function from the set of orbits of G on geodesics of length 6 whose origin is a point, to the set of orbits of G on geodesics of length 4 whose origin is a line. By 4.7, G_{q} is of order 8. Now G_{q} acts on $\Delta=\left(\Gamma\left(Z^{r}\right)-\{V\}\right) \times\left(\Gamma\left(Z^{s}\right)-\left\{V^{w}\right\}\right)$ of order 4, so as $\left|G_{p}\right|=2$, it follows that G_{q} is transitive on Δ. This shows that the map θ is a bijection. Therefore 4.7 .2 implies (3). By 4.7.2, the orbital $\left(Z^{r}, Z^{s}\right)^{G}$ is selfpaired so there is $a \in G$ interchanging Z^{r} and Z^{s}. Then a also reverses the order of the pairs in Δ, so as G_{q} is transitive on Δ, the orbital $\left(V^{x}, V^{g}\right)^{G}$ is also selfpaired. Thus the global stabilizer A of $\left\{V^{x}, V^{g}\right\}$ is of order 4 by (2), so $A \cong \mathbf{Z}_{4}$ or E_{4}. Now in the former case $A=\langle a\rangle$ with $a^{2} \in G_{p}=Z$, so by 2.3.4, $a \in U$. But then $V^{a}=V$, impossible as a maps p to its inverse, so $V^{a}=V^{w} \neq V$. Thus (4) is established.

5. Counting involutions

In this section we assume G is of $G_{2}(3)$-type and H is strongly 3-embedded in G. Under these hypotheses we calculate the order of G, and then use Sylow's theorem to obtain a contradiction. We calculate $|G|$ by counting involutions, using an approach of Helmut Bender in [4].

We continue the notation of previous sections.
For $M g \in G / M$ let $n(M g)=\left|z^{G} \cap M g\right|$ be the number of involutions in $M g$, and following Bender, define

$$
b_{m}=|\{M g \in G / M-\{M\}: n(M g)=m\}| \quad \text { and } \quad f=\frac{\left|z^{G}\right|}{|G: M|}-1 .
$$

As $\left|z^{G}\right|=|G: H|$, it follows that

$$
f=\frac{|M|}{|H|}-1=\frac{7}{3}-1=\frac{4}{3} .
$$

5.1. Let $M \neq M g \in G / M$; then the following are equivalent:
(1) $n(M g)>0$.
(2) $V^{g}=V^{i}$ for some involution $i \in G$.
(3) The global stabilizer $G\left(\left\{V, V^{g}\right\}\right)$ in G of $\left\{V, V^{g}\right\}$ contains an involution not in M.

Proof. As $M=N_{G}(V), M g=M x$ iff $V^{g}=V^{x}$, so the lemma holds.
5.2. Let i be an involution not in M. Then

$$
n(M i)=\left|\left\{x \in M \cap M^{i}: x^{i}=x^{-1}\right\}\right|=\left|z^{G} \cap\left(G\left(\left\{V, V^{i}\right\}\right)-M\right)\right| .
$$

Proof. The map $x \mapsto x i$ is a bijection of the set of elements of M inverted by i and $z^{G} \cap M i$. Further each such x is in $M \cap M^{i}$, and $\left(M \cap M^{i}\right)\langle i\rangle=G\left(\left\{V, V^{i}\right\}\right)$, so the lemma holds.
5.3. Let $d\left(V, V^{g}\right)=d$. Then
(1) If $d=2$ then $n(M g)=24$.
(2) If $d=4$ then $n(M g)=4$.
(3) If $d=6$ then $n(M g)=2$.

Proof. First suppose $d=2$. Then by 4.4.3, up to conjugation in $G, g \in H$, $G\left(\left\{V, V^{g}\right\}\right)=H \cap M^{h}$, where $\left\{V, V^{g}, V^{h}\right\}=\Gamma(Z)$, and $M \cap M^{g}=O^{2}(H \cap M)$. By 2.3.5, H is transitive on involutions in $H-U$ and for each such involution j, $C_{H}(j)=\langle j\rangle C_{U}(j) \cong E_{8}$. Conjugating in H, we may take $j^{*} \in\left(H \cap M^{h}\right)^{*}$, while if $k \in H$ with $j^{k} \in M^{h}$ then $\left(j^{k}\right)^{*} \in j^{*\left(H \cap M^{h}\right)}$, so as $C_{H^{*}}\left(j^{*}\right)=\left\langle j^{*}\right\rangle$, $k \in H \cap M^{h}$. Thus $H \cap M^{h}$ is transitive on involutions in $H \cap M^{h}-O^{2}(H \cap M)$ and $\left|j^{H \cap M^{h}}\right|=\left|\left(H \cap M^{h}\right): C_{H}(j)\right|=24$. Thus (1) follows from 5.2.

Next suppose $d=4$. Then by $4.6, M \cap M^{g} \cong E_{8}$ and $G\left(\left\{V, V^{g}\right\}\right) \cong \mathbf{Z}_{2} \times D_{8}$, so (2) follows from 5.2. Finally if $d=6$ then by $4.8, M \cap M^{g} \cong \mathbf{Z}_{2}$ and $G\left(\left\{V, V^{g}\right\}\right) \cong E_{4}$, so (3) follows from 5.2.
5.4. $n(M g)>1$ iff $d\left(V, V^{g}\right) \leqslant 6$.

Proof. If $d\left(V, V^{g}\right) \leqslant 6$ then $n(M g)>1$ by 5.3. So we may assume $d\left(V, V^{g}\right)>6$ but $n(H g)>1$ and it remains to derive a contradiction. Let $a \in M g$ be an involution, $A=\langle a\rangle$, and $Y=M \cap M^{g}$. By 5.2, a inverts some $y \in Y^{\#}$. By 4.2, y is not of order 7. If y is of order 3, then as H is strongly 3-embedded in G, $a \in N_{G}(\langle y\rangle) \leqslant N_{G}\left(Z^{x}\right)$ for some $Z^{x} \leqslant V$. But by symmetry, $Z^{x} \leqslant V^{g}$, so $d\left(V, V^{g}\right)=1$, contrary to assumption.

Therefore Y is a 2-group, so we may take y to be an involution. Thus $\langle y\rangle=Z^{b}$ for some $b \in G$. By 4.5.3, $d\left(Z^{b}, V\right) \leqslant 3 \geqslant d\left(Z^{b}, V^{g}\right)$, so $d\left(V, V^{g}\right) \leqslant 6$, again a contradiction.
5.5. (1) $b_{2}=2^{5} \cdot 3^{2} \cdot 7=2016$.
(2) $b_{4}=2^{3} \cdot 3 \cdot 7=168$.
(3) $b_{24}=14$.
(4) If $m>1$ and $m \neq 2,4$, or 24 , then $b_{m}=0$.

Proof. Let $m>1$. By 5.4, $b_{m} \neq 0$ iff $m=n(M g)$ for some $g \in G$ with $d\left(V, V^{g}\right) \leqslant 6$, in which case $n(M g)=n\left(d\left(V, V^{g}\right)\right)$, where $n(d)=24,4$, or 2 for $d=2,4$, or 6 , respectively. Let $\mathcal{M}_{d}=\left\{M g: d\left(V, V^{g}\right)=d\right\}$; it follows that $b_{m}=0$ unless $m=n(d)$ for $d=2,4$, or 6 ; further $b_{n(d)}=\left|\mathcal{M}_{d}\right|$. In particular (4) holds.

Next by 4.4, M is transitive on \mathcal{M}_{2} with

$$
b_{24}=b_{n(2)}=\left|\mathcal{M}_{2}\right|=\left|M: M \cap M^{g}\right|=14
$$

for $M g \in \mathcal{M}_{2}$. This establishes (3). Similarly by 4.6, M is transitive on \mathcal{M}_{4} and $b_{4}=\left|\mathcal{M}_{4}\right|=|M| / 8=168$, establishing (2). Finally by $4.8, M$ has three orbits on \mathcal{M}_{6}, each of length $|M| / 2=672$, so (1) holds.
5.6. $n(M)=\left|z^{G} \cap M\right|=7 \cdot 13=91$.

Proof. By 2.3.3,

$$
\left|z^{G} \cap M\right|=\left|V^{\#}\right|+\left|z^{G} \cap(M-V)\right|=7+84=91 .
$$

5.7. $b_{1}=0$.

Proof. By Lemma 1 in [4],

$$
\begin{equation*}
b_{1}<\sigma=f^{-1}\left(n(M)+\sum_{i>1}(i-1) b_{i}\right)-1-\sum_{i>1} b_{i} . \tag{*}
\end{equation*}
$$

As we observed earlier, $f^{-1}=3 / 4$. By 5.5,

$$
\begin{aligned}
\sum_{i>1}(i-1) b_{i} & =2^{5} \cdot 3^{2} \cdot 7+3 \cdot\left(2^{3} \cdot 3 \cdot 7\right)+23 \cdot 14 \\
& =14 \cdot\left(2^{4} \cdot 3^{2}+2^{2} \cdot 3^{2}+23\right)=14 \cdot(144+36+23) \\
& =14 \cdot 203
\end{aligned}
$$

Then by 5.6:

$$
\begin{aligned}
f^{-1}\left(n(M)+\sum_{i>1}(i-1) b_{i}\right) & =\frac{3 \cdot(7 \cdot 13+14 \cdot 203)}{4}=\frac{21 \cdot(13+406)}{4} \\
& =\frac{21 \cdot 419}{4}
\end{aligned}
$$

Similarly

$$
1+\sum_{i>1} b_{i}=1+2016+168+14=2199=3 \cdot 733
$$

so

$$
\sigma=\frac{21 \cdot 419}{4}-3 \cdot 733=\frac{3 \cdot(7 \cdot 419-2932)}{4}=\frac{3 \cdot(2933-2932)}{4}=\frac{3}{4},
$$

and hence $b_{1}<\sigma<3 / 4$ by $(*)$, so $b_{1}=0$.
5.8. $|G|=2^{6} \cdot 3^{2} \cdot 7 \cdot 733$.

Proof. By Lemma 1 in [4],

$$
|G: H|=\left|z^{G}\right|=n(M)+\sum_{i \geqslant 1} i b_{i},
$$

so by $5.5,5.6$, and 5.7,

$$
\begin{aligned}
|G: H| & =7 \cdot 13+2 \cdot\left(2^{5} \cdot 3^{2} \cdot 7\right)+4 \cdot\left(2^{3} \cdot 3 \cdot 7\right)+24 \cdot 14 \\
& =7 \cdot(13+576+96+48)=7 \cdot 733
\end{aligned}
$$

Therefore as $|H|=2^{6} \cdot 3^{2}$, the lemma holds.
Observe next that 733 is a prime, so by 5.8 , a Sylow 733 -subgroup P of G is of order 733.
5.9. (1) $P=C_{G}(P)$.
(2) $\left|N_{G}(P): P\right|$ divides 12 .

Proof. An argument in the first paragraph of the proof of 4.8 establishes (1). Then as $732=2^{2} \cdot 3 \cdot 61$, (1) and 5.8 imply (2).

We are now in a position to obtain a contradiction to the hypotheses of this section, proving:

Theorem 5.9. If G is of $G_{2}(3)$-type then H is not strongly 3-embedded in G.

Namely by Sylow's theorem, $\left|G: N_{G}(P)\right| \equiv 1 \bmod 733$. But by 5.7 and 5.8, $\left|G: N_{G}(P)\right|=2^{4+a} \cdot 3^{1+b} \cdot 7$, where $0 \leqslant a \leqslant 2$, and $b=0$ or 1 . However none of these integers is congruent to 1 modulo 733. Therefore Theorem 5.9 is established.

Finally observe that 4.1 and Theorem 5.9 imply the Main Theorem.

6. Some equivalent hypotheses

In this section we assume G is a finite group satisfying Hypothesis (G1), set $Z=H_{1} \cap H_{2}$, let z be a generator for Z, and pick $T \in \operatorname{Syl}_{2}(H)$. We will sketch a proof that hypotheses (G2), (G2'), and (G2") are equivalent.

Assume Hypothesis (G2). By 2.1.7 we may choose $T \leqslant M$ and T is Sylow in G. Thus as $M=O^{2}(M)$ and M contains a Sylow 2-subgroup of $G, G=$ $O^{2}(G)$, so (G2) implies ($\mathrm{G}^{\prime \prime}$).

Next assume ($\mathrm{G} 2^{\prime}$) fails; that is z is weakly closed in H with respect to G. Then T is Sylow in G and (cf. 7.7.1 in [2]) H controls fusion of its 2-elements, so by a standard transfer result (cf. 37.4 in [1]) $O^{2}(G) \cap H=O^{2}(H)$. Thus as $H \neq O^{2}(H), G \neq O^{2}(G)$. Thus ($\mathrm{G} 2^{\prime \prime}$) implies (G^{\prime}).

It remains to show ($\mathrm{G} 2^{\prime}$) implies (G 2), so assume ($\mathrm{G} 2^{\prime}$). Thus there is $g \in G$ with $z \neq z^{g} \in H$. Let $Q=O_{2}(H)$ and $U=O_{2}\left(H_{1} H_{2}\right)$. The proof of 2.1.4 uses only (G1) and shows that $O^{2}(H)=H_{1} H_{2} \cong \mathrm{SL}_{2}(3) * \mathrm{SL}_{2}(3)$, so $U \cong Q_{8}^{2}$. By (G1), $F^{*}(H)=Q$ and either $Q=U$ or $Q=T$.

Assume $Q=T$. Then $z^{g} \in O^{2^{\prime}}(H)=Q$. Further $\operatorname{Out}(U) \cong O_{4}^{+}(2)$ and $H_{1} H_{2} / U=F^{*}(\operatorname{Out}(U))$, so $O_{2}\left(\operatorname{Aut}_{H}(U)\right)=\operatorname{Inn}(U)$ and hence $Q=U C_{Q}(U)$. Observe $Z=\Phi(Q)=\Phi\left(C_{Q}\left(z^{g}\right)\right)$, whereas $C_{Q}\left(z^{g}\right) \leqslant O^{2}\left(H^{g}\right)=Q^{g}$, so $Z=$ $\Phi\left(C_{Q}\left(z^{g}\right)\right) \leqslant \Phi\left(Q^{g}\right)=Z^{g}$, contradicting $z \neq z^{g}$.

Therefore $F^{*}(G)=U \cong Q_{8}^{2}$. Assume next that $z^{g} \in U$ and set $V=U \cap U^{g}$. Then (cf. 8.3 in [2]) $\tilde{U}=U / Z$ is an orthogonal space over \mathbf{F}_{2} and by 8.15 .3 in [2], \widetilde{V} is a totally singular line. From the structure of $\operatorname{Out}(U)=O_{4}^{+}(2)$, each totally singular line is stabilized by some subgroup of H of index 3 . Thus $N_{H}(V) / V$ is the stabilizer in $\mathrm{GL}(V)$ of z, so $M=\left\langle N_{H}(V), U^{g}\right\rangle$ induces GL (V) on V. Further $C_{G}(V)=C_{H}(V)=V$, so (G2) is satisfied in this case.

Thus we may assume z is weakly closed in U with respect to G. Hence $t=z^{g} \in H-H_{1} H_{2}$ and setting $H^{*}=H / U$, either $H_{i}^{*}=\left[H_{i}^{*}, t^{*}\right]$ for $i=1$ and 2, or we may assume t centralizes $\widetilde{U} \cap \widetilde{H}_{1}$. In the latter case t centralizes an element u of order 4 in $U \cap H_{1}$, so as $\left|H: O^{2}(H)\right|=2, z=u^{2} \in O^{2^{\prime}}\left(O^{2}\left(H^{g}\right)\right)=U^{g}$, contradicting z weakly closed in U. Thus we may assume the former case holds. Then arguing as in $2.3 .5, H$ is transitive on involutions in $H-U$, so all such involutions are in z^{G}, and $C_{H}\left(z^{g}\right)=Z^{g} C_{U}\left(z^{g}\right)$, with $C_{U}\left(z^{g}\right) \cong E_{4}$. By symmetry $C_{H^{g}}(z)=Z C_{U^{g}}(z)$ so $U \cap U^{g}=\langle u\rangle$ is of order 2. Thus $u z$ is an involution in $H^{g}-U^{g}$, so $u z \in z^{G} \cap U$, completing the proof.

References

[1] M. Aschbacher, Finite Group Theory, Cambridge Univ. Press, Cambridge, 1986.
[2] M. Aschbacher, Sporadic Groups, Cambridge Univ. Press, Cambridge, 1994.
[3] M. Aschbacher, S. Smith, A Classification of Quasithin Groups, to appear.
[4] H. Bender, Finite groups with large subgroups, Illinois J. Math. 18 (1974) 223-228.
[5] R. Brauer, M. Suzuki, On finite groups of even order whose Sylow group is a generalized quaternion group, Proc. Nat. Acad. Sci. 45 (1959) 1757-1759.
[6] A. Delgado, D. Goldschmidt, B. Stellmacher, Groups Graphs: New Results and Methods, Birkhäuser, Basel, 1985.
[7] P. Fong, A characterization of the finite simple groups $\operatorname{PSp}(4, p), G_{2}(q), D_{4}^{2}(q)$, II, Nagoya Math. J. 39 (1970) 39-79.
[8] P. Fong, W. Wong, A characterization of the finite simple groups $P S p(4, p), G_{2}(q), D_{4}^{2}(q), \mathrm{I}$, Nagoya Math. J. 36 (1969) 143-185.
[9] Z. Janko, A characterization of the simple group $G_{2}(3)$, J. Alg. 12 (1969) 360-371.
[10] J. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, II, Pacific J. Math. 33 (1970) 451-536.

[^0]: E-mail address: asch@romeo.caltech.edu.
 1 This work was partially supported by NSF-9901367.

